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§ 1. The theory of symmetric polynomials abounds in dual identities
and symmetries of various kinds. It has been investigated from the
determinantal standpoint largely by means of quotients of alternants,
such as,

\a«becv | ~\a°blcz |

the denominator being the difference product of a, b, c, . . . . , a simple
alternant.

This quotient, which has been called by Muir a bi-alternant, was
first considered in detail by Jacobi, who gave in 1841, its equivalent as

h a hp h y . . . .

the elements kr being complete homogeneous or " Aleph " symmetric
functions in a, 6, c, . . . . , of degree r. We shall denote this type of
isobaric determinant by

h(a f> y ••
\0 1 2 . .

the upper indices being those of the elements in the first row of the
bi-alternant, the lower indices being the index-differences between the
first row and the various rows in order.

Naegelsbach in 1871, gave an equivalent form in elementary
symmetric functions CTi namely in our notation

a £ y ...
0 1 2

where it is meant by ( )' that the two rows of indices in the bracket
are dual or bicomplementary to (a j3 y . . . . ) and ( 0 1 2 . . . . ) respect-
ively. Dual sets are defined thus:

To obtain the dual of (a j8 y . . . . v) with respect to (0 1 2 . . . . v)
we write in reversed order the members missing in (a j8 y .. . . v) and
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then replace each one by its complement with respect to v, that is any
S by v — S, and so on. For example the dual of (0134) with respect
to (012345) is (03). The dual of a set in natural order (0123 ) is
another set in natural order.

MacMahon in combinatory investigations found dualities in
isobaric determinants of a rather different type. His theorem, though
expressed by him in terms of " Compositions of integers," can be
expressed as follows,

a j8 y . . . . fx v\ ~ / a P y
0 a P /x) ~ \0 a P

the lower indices indicating as before index-difference of rows from
first row, and the pairs of sets being dual as before.

Bi-alternants, their minors and the above determinant of
MacMahon are all special cases of the general isobaric determinants,

p q .. .

a type which has been considered by Naegelsbach, Segar, Muir, Nanson,
Roe, and Aitken, and which is the subject of an important general
theorem by Roe.1

Aitken has given the theorem of duality which can be expressed
as follows,

\0 p q . . ..) \0 p q

which includes the Jacobi-Naegelsbach and MacMahon cases.

Our object now is to express such a general isobaric determinant
as a linear function of the bi-alternants, and more generally to show
the relationship between identities in isobaric determinants and
identities in alternants and monomial symmetric functions.

§ 2. Since the theory of symmetric functions depends largely on the
rules for multiplying alternants by monomial symmetric functions,
we may take the opportunity to express these rules concisely.

We denote an alternant | aabpcy . . . . | by i ( o j 3 y . . . . ) or by

(o jSy . . . . ) the dots indicating permutation, with determinantal sign,

of the indices affected, and summation of all terms so obtained. The

1Muir, History of Determinants, 1900-1920 (Glasgow, 1930), 186.
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monomial symmetric function E a" M c .. .. we denote by P(a /9 y.. . .)
-r* -f -t-

or by (a /? y.. . . ) , indicating permutation of indices and summation
of terms, all taken positively. Thus the relation of monomial,
symmetric function to alternant is that of 'permanent to determinant.

RULES.

(1) P(a1plYl....) P ( a 2 j 3 2 y 2 . . . . ) =

(2)

(3) A (aiplYl ....)A (a2/32y2 . . . .) = P [ax+a2,

The proof of rule (2) is given by Muir and Metzler1; other rules can
similarly be proved.

The right members will give all the required terms without
omission and with correct sign.

§ 3. THEOREM.

/ / the bi-alternant hi ' ' ' ' \ be expanded in terms of

monomial symmetric functions as

the expansion being indicated by a single typical term, then

aPy....\ (a-ip-j y - k . . . .

where S indicates permutation of i, j , k .. .., and summation.

PROOF.

Let A be an operator affecting elements in the first column only
(that is those with suffixes involving a) such that A'l_i = *_i_1, while
B, 0 are similar operators affecting the later columns. These
operators act independently of each other and obey the fundamental
laws of Algebra.

Thus we have

as can be seen at once by expanding the symbolic alternant operator.

1 Muir and Metzler, "Theory of Determinants" (1930), p. 344.
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But we have also by Jacobi's theorem on bi-alternants,

| A0 B? C . . .. | = +\ijk....
+\AiBiCk....+\\ A°Bl C 2 . . . . | + . . . .

and so operating with both sides on hah'phy .... we obtain

P y .. . . \ •> v< , fa — i P — j y — h . . . .>

pq ) %3k-- \ 0 1 2 . . .

which was required to be proved.

Example. I t being known from tables of symmetric functions or
otherwise that

h(° 2l) = Za2b + 2abc,
10 1 ^,

we have

h

+

a — 2 j 3 - l y \ f e / o — 2 j 3 y - l
0 2 4 7 "\ 0 1 2 / V 0 1 2

a— l j S - l y - 1
, 0 1 2

which can be easily verified on expansion.
Thus general isobaric determinants can be investigated by means of
bi-alternants and the known expansions of bi-alternants.

The theorem given above is merely one case of the general
result that an identity bilinear in alternants and monomial symmetric
functions yields a corresponding identity in isobaric determinants.
To take a simple example, by the multiplication theorem §2(2),
we may find

A (024) = A (0J3) P(011) - A (012) P ( l l l ) .

Writing this in operational form and taking ha hp hy as operand we get

h
0 2 4 0

— i y —

1 3 0
p y —
1 3

which can be verified.

a — 1 ]8 — 1 y
0 1 3

- h a - 1 P- 1 y - 1
0 1 2

§ 4. In the proof of these results the fact that hr in the operand is
a symmetric function has not been used. In fact these identities
belong to a type characteristic of independent functional operations
generally. For example, the purely determinantal analogue of the
first example of § (3) is

a0

a2

a.

bo
b2

b,

Co
c%
ci

==

a2 b
a3 b
04 b

1 c0

2 Ci

3 c2

. . . . +2
&x bi c

Q>2 0% &2 "

a3 b3 c3 !
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or again, for a minor of a Wronskian in terms of Wronskians,

f,9,hf

f g h

f" g" h"
f'y g'T h'*

h.

P g'" h"
+ 2

g' h'
g" h"

f" g'" h"'

Many other examples might be given of expansions of this kind.

§(5). By Aitken's theorem of duality we have

h(aJy----\ = c(aJy----sj.
0 P q -... 0 p q

Each side can be expanded linearly in bi-alternants, the terms corre-
sponding to those in the expansions of

0 p q
and q

2 that is C 0 p q
0 1 2

in monomials. The variables being arbitrary, each A-bi-alternant-
term in the expansion must be in Jacobi-Naegelsbach duality with a-
C bi-alternant in the other. We thus have a very peculiar theorem
as follows:

THEOREM.

/ / any arbitrary alternant A (aj8y . . . . ) has its indices diminished

by those occur ing in the terms in the expansion ofh " in mono-

mials, and if in the aggregate of alternants so obtained each alternant is
replaced by its dual, the resultiug set is identical with that obtained by
diminishing the indices of the dual alternant A (ajSy . . . . ) ' by those of

the terms of the expansion of C Op q in monomials.

To be precise we must take the duality to be with respect to such
a set (012 . . . . v) that the orders of the alternants are equal. (This is
necessary in order that the number of variables in the dual alternants
may be the same.)

Example. h2 = £ a2 + 2 ab and C2 = 2 ab are simple examples of
dual bi-alternants and 4(1456) and 4(0457) are dual alternants.
Operating on A (1456) with an operator corresponding to h2 we
derive

A (1256) + A (1436) + A (0356) + A (1346) = A (1256) + A (0356),
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^,nd operating on A (0457) with an operator corresponding to C2 we get

A (0347) + A (0356),

other terms vanishing. This is in agreement with the theorem, for
the dual of (1256) is (0347), while (0356) is self dual.

A direct proof of this peculiar property of dual sets appears to
be difficult.
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