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Abstract

A fundamental question in wave turbulence theory is to understand how the wave kinetic equation describes the

long-time dynamics of its associated nonlinear dispersive equation. Formal derivations in the physics literature,

dating back to the work of Peierls in 1928, suggest that such a kinetic description should hold (for well-prepared

random data) at a large kinetic time scale )kin ≫ 1 and in a limiting regime where the size L of the domain goes to

infinity and the strength U of the nonlinearity goes to 0 (weak nonlinearity). For the cubic nonlinear Schrödinger

equation, )kin = $
(
U−2

)
and U is related to the conserved mass _ of the solution via U = _2!−3 .

In this paper, we study the rigorous justification of this monumental statement and show that the answer seems

to depend on the particular scaling law in which the (U, !) limit is taken, in a spirit similar to how the Boltzmann–

Grad scaling law is imposed in the derivation of Boltzmann’s equation. In particular, there appear to be two

favourable scaling laws: when U approaches 0 like !−Y+ or like !−1− Y
2
+ (for arbitrary small Y), we exhibit the wave

kinetic equation up to time scales$ ()kin!
−Y), by showing that the relevant Feynman-diagram expansions converge

absolutely (as a sum over paired trees). For the other scaling laws, we justify the onset of the kinetic description at

time scales )∗ ≪ )kin and identify specific interactions that become very large for times beyond )∗. In particular,

the relevant tree expansion diverges absolutely there. In light of those interactions, extending the kinetic description

beyond )∗ toward )kin for such scaling laws seems to require new methods and ideas.
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1. Introduction

The kinetic framework is a general paradigm that aims to extend Boltzmann’s kinetic theory for dilute

gases to other types of microscopic interacting systems. This approach has been highly informative, and

became a cornerstone of the theory of nonequilibrium statistical mechanics for a large body of systems

[43, 44]. In the context of nonlinear dispersive waves, this framework was initiated in the first half of

the past century [41] and developed into what is now called wave turbulence theory [51, 39]. There,

waves of different frequencies interact nonlinearly at the microscopic level, and the goal is to extract an

effective macroscopic picture of how the energy densities of the system evolve.

The description of such an effective evolution comes via the wave kinetic equation (WKE), which

is the analogue of Boltzmann’s equation for nonlinear wave systems [46]. Such kinetic equations have

been derived at a formal level for many systems of physical interest (nonlinear Schrödinger (NLS) and

nonlinear wave (NLW) equations, water waves, plasma models, lattice crystal dynamics, etc.; compare

[39] for a textbook treatment) and are used extensively in applications (thermal conductivity in crystals

[45], ocean forecasting [31, 49], and more). This kinetic description is conjectured to appear in the

limit where the number of (locally interacting) waves goes to infinity and an appropriate measure of

the interaction strength goes to zero (weak nonlinearity1). In such kinetic limits, the total energy of the

whole system often diverges.

The fundamental mathematical question here, which also has direct consequences for the physical

theory, is to provide a rigorous justification of such wave kinetic equations starting from the microscopic

dynamics given by the nonlinear dispersive model at hand. The importance of such an endeavour stems

from the fact that it allows an understanding of the exact regimes and the limitations of the kinetic theory,

which has long been a matter of scientific interest (see [20, 1]). A few mathematical investigations have

recently been devoted to studying problems in this spirit [23, 7, 35], yielding some partial results and

useful insights.

This manuscript continues the investigation initiated in [7], aimed at providing a rigorous justification

of the wave kinetic equation corresponding to the nonlinear Schrödinger equation,

8mCE − ΔE + |E |2 E = 0.

As we shall explain later, the sign of the nonlinearity has no effect on the kinetic description, so we

choose the defocussing sign for concreteness. The natural setup for the problem is to start with a spatial

domain given by a torus T3
!

of size L, which approaches infinity in the thermodynamic limit we seek.

This torus can be rational or irrational, which amounts to rescaling the Laplacian into

ΔV :=
1

2c

3∑
8=1

V8m
2
8 , V := (V1, . . . , V3) ∈ [1, 2]3 ,

and taking the spatial domain to be the standard torus of size L, namely T3
!
= [0, !]3 with periodic

boundary conditions. With this normalisation, an irrational torus would correspond to taking the V 9 to

be rationally independent. Our results cover both cases, and in part of them V is assumed to be generic –

that is, avoiding a set of Lebesgue measure 0.

The strength of the nonlinearity is related to the characteristic size _ of the initial data (say in the

conserved !2 space). Adopting the ansatz E = _D, we arrive at the following equation:{
8mCD − ΔVD + _2 |D |2 D = 0, G ∈ T3

!
= [0, !]3 ,

D(0, G) = Din(G).
(NLS)

The kinetic description of the long-time behaviour is akin to a law of large numbers, and therefore

one has to start with a random distribution of the initial data. Heuristically, a randomly distributed,

!2-normalised field would (with high probability) have a roughly uniform spatial distribution, and

1It is for this reason that the theory is sometimes called weak turbulence theory.
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consequently an !∞G norm ∼ !−3/2. This makes the strength of the nonlinearity in (NLS) comparable to

_2!−3 (at least initially2), which motivates us to introduce the quantity

U = _2!−3

and phrase the results in terms of U instead of _. The kinetic conjecture states that at sufficiently long

time scales, the effective dynamics of the Fourier-space mass density E |D̂(C, :) |2
(
: ∈ Z3

!
= !−1

Z
3
)

is

well approximated – in the limit of large L and vanishing U – by an appropriately scaled solution =(C, b)
of the following WKE:

mC=(C, b) = K (=(C, ·)) ,

K(q) (b) :=

∫
( b1 , b2 , b3) ∈R33

b1−b2+b3=b

qq1q2q3

(
1

q
− 1

q1

+ 1

q2

− 1

q3

)
XR

(
|b1 |2V − |b2 |2V + |b3 |2V − |b |2V

)
3b13b23b3,

(WKE)

where we used the shorthand notations q 9 := q
(
b 9

)
and |b |2V =

∑3
9=1 V 9

(
b ( 9)

)2

for b =
(
b (1) , · · · , b (3)

)
.

More precisely, one expects this approximation to hold at the kinetic timescale )kin ∼ U−2 =
!23

_4 , in the

sense that

E |D̂(C, :) |2 ≈ =
(
C

)kin

, :

)
as ! → ∞, U → 0. (1.1)

Of course, for such an approximation to hold at time C = 0, one has to start with a well-prepared

initial distribution for D̂in(:) as follows: denoting by =in the initial data for (WKE), we assume

D̂in(:) =
√
=in(:)[: (l), (1.2)

where [: (l) are mean-0 complex random variables satisfying E |[: |2 = 1. In what follows, [: (l) will

be independent, identically distributed complex random variables, such that the law of each [: is either

the normalised complex Gaussian or the uniform distribution on the unit circle |I | = 1.

Before stating our results, it is worth remarking on the regime of data and solutions covered by

this kinetic picture in comparison to previously studied and well-understood regimes in the nonlinear

dispersive literature. For this, let us look back at the (pre-ansatz) NLS solution v, whose conserved

energy is given by

E[E] :=

∫
T
3
!

1

2
|∇E |2 + 1

4
|E |4 dG.

We are dealing with solutions having an !∞-norm of $
(√
U
)

(with high probability) and whose total

mass is $
(
U!3

)
, in a regime where U is vanishingly small and L is asymptotically large. These bounds

on the solutions are true initially, as we have already explained, and will be propagated in our proof.

In particular, the mass and energy are very large and will diverge in this kinetic limit, as is common in

taking thermodynamic limits [42, 37]. Moreover, the potential part of the energy is dominated by the

kinetic part – the former of size $
(
U3!3

)
and the latter of size $

(
U!3

)
– which explains why there

is no distinction between the defocussing and focussing nonlinearities in the kinetic limit. It would be

interesting to see how the kinetic framework can be extended to regimes of solutions which are sensitive

to the sign of the nonlinearity; this has been investigated in the physics literature (e.g., [22, 25, 50]).

2Formal derivations of the wave kinetic equation often involve heuristic arguments (like a propagation of quasi-Gaussianity of
the initial data through time) which effectively imply that the strength of the nonlinearity stays ∼ _2!−3 . Such heuristic arguments
are hard to justify rigorously; however, this bound on the nonlinearity strength will be propagated and proved as a consequence
of our estimates.
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1.1. Statement of the results

It is not a priori clear how the limits ! → ∞ and U → 0 need to be taken for formula (1.1) to

hold or whether there is an additional scaling law (between U and L) that needs to be satisfied in the

limit. In comparison, such scaling laws are imposed in the rigorous derivation of Boltzmann’s equation

[34, 10, 26], which is derived in the so-called Boltzmann–Grad limit [27]: namely, the number N of

particles goes to ∞ while their radius r goes to 0 in such a way that #A3−1 ∼ $ (1). To the best of our

knowledge, this central point has not been adequately addressed in the wave-turbulence literature.

Our results seem to suggest some key differences depending on the chosen scaling law. Roughly

speaking, we identify two special scaling laws for which we are able to justify the approximation

(1.1) up to time scales !−Y)kin for any arbitrarily small Y > 0. For other scaling laws, we identify

significant absolute divergences in the power-series expansion for E |D̂(C, :) |2 at much earlier times. We

can therefore only justify this approximation at such shorter times (which are still better than those in

[7]). In these cases, whether or not formula (1.1) holds up to time scales !−Y)kin depends on whether

such series converge conditionally instead of absolutely, and thus would require new methods and ideas,

as we explain later.

We start by identifying the two favourable scaling laws. We use the notation f+ for any numerical

constant f (e.g., f = −Y or f = −1 − Y
2
, where Y is as in Theorem 1.1) to denote a constant that is

strictly larger than and sufficiently close to f.

Theorem 1.1. Set 3 ≥ 2 and let V ∈ [1, 2]3 be arbitrary. Suppose that =in ∈ S
(
R
3 → [0,∞)

)
is

Schwartz3 and [: (l) are independent, identically distributed complex random variables, such that the

law of each [: is either complex Gaussian with mean 0 and variance 1 or the uniform distribution on

the unit circle |I | = 1. Assume well-prepared initial data Din for (NLS) as in equation (1.2).

Fix 0 < Y < 1 (in most interesting cases Y will be small); recall that _ and L are the parameters

in (NLS) and let U = _2!−3 be the characteristic strength of the nonlinearity. If U has the scaling law

U ∼ ! (−Y)+ or U ∼ !(−1− Y
2 )+, then we have

E |D̂(C, :) |2 = =in(:) +
C

)kin

K(=in) (:) + >ℓ∞
:

(
C

)kin

)
!→∞

(1.3)

for all !0+ ≤ C ≤ !−Y)kin, where )kin = U−2/2, K is defined in (WKE) and >ℓ∞
:

(
C

)kin

)
!→∞

is a quantity

that is bounded in ℓ∞
:

by !−\ C
)kin

for some \ > 0.

We remark that in the time interval of the approximation we have been discussing, the right hand sides

of formulas (1.1) and (1.3) are equivalent. Also note that any type of scaling law of the form U ∼ !−B

gives an upper bound of C ≤ !−Y)kin ∼ !2B−Y for the times considered. Consequently, for the two scaling

laws in Theorem 1.1, the time t always satisfies C ≪ !2, and it is for this reason that the rationality type

of the torus is not relevant. As will be clear later, no similar results can hold for C ≫ !2 in the case of a

rational torus,4 as this would require rational quadratic forms to be equidistributed on scales ≪ 1, which

is impossible. However, if the aspect ratios V are assumed to be generically irrational, then one can

access equidistribution scales that are as small as !−3+1 for the resulting irrational quadratic forms [4, 7].

This allows us to consider scaling laws for which )kin can be as big as !3− on generically irrational tori.

Remark 1.2. Strictly speaking, in evaluating equation (1.3) one has to first ensure the existence of the

solution u. This is guaranteed if 3 ∈ {2, 3, 4} (when (NLS) is �1-critical or subcritical). When 3 ≥ 5

we shall interpret equation (1.3) such that the expectation is taken only when the long-time smooth

solution u exists. Moreover, from our proof it follows that the probability that this existence fails is at

most $
(
4−!

\
)
, which quickly becomes negligible when ! → ∞.

3In fact, only a finite amount of decay and smoothness is needed on =in. We chose =in ∈ S to simplify the exposition and avoid
minor distracting technicalities.

4Even at the endpoint case where C ∼ !2, the number-theoretic components of the proof would yield different answers to those
anticipated by the theory; see Section 5.
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Figure 1. Admissible range for (U, !, )) in the
(
log!

(
U−1

)
, log! )

)
plot when 3 ≥ 3. The coloured

region is the range of Theorem 1.3 (up to Y endpoint accuracy). The red line denotes the case when

) = )kin = U−2, which our coloured region touches at two points corresponding to ) ∼ 1 and ) ∼ !2.

The following theorem covers general scaling laws, including the ones that can only be accessed

for the generically irrational torus. By a simple calculation of exponents, we can see that it implies

Theorem 1.1.

Theorem 1.3. With the same assumptions as in Theorem 1.1, we impose the following conditions on

(U, !, )) for some X > 0:

) ≤
{
!2−X if V8 is arbitrary,

!3−X if V8 is generic,
U ≤



!−X)−1 if ) ≤ !,

!−1−X if ! ≤ ) ≤ !2,

!1−X)−1 if ) ≥ !2.

(1.4)

Then formula (1.3) holds for all ! X ≤ C ≤ ) .

It is best to read this theorem in terms of the
(
log!

(
U−1

)
, log! )

)
plot in Figure 1. The kinetic

conjecture corresponds to justifying the approximation in formula (1.1) up to time scales) . )kin = U−2.

As we shall explain later, the time scale ) ∼ )kin represents a critical scale for the problem from a

probabilistic point of view. This is depicted by the red line in the figure, and the region below this

line corresponds to a probabilistically subcritical regime (see Section 1.2.1). The shaded blue region

corresponds to the (U,)) region in Theorem 1.3, neglecting X losses. This region touches the line

) = U−2 at the two points corresponding to
(
U−1, )

)
= (1, 1) and

(
!, !2

)
, whereas the two scaling laws

of Theorem 1.1, where
(
U−1, )

)
∼ (!Y−, !Y−) and

(
U−1, )

)
∼

(
!1+ Y

2
−, !2−

)
, approach these two points

when Y is small.

These results rely on a diagrammatic expansion of the NLS solution in Feynman diagrams akin to a

Taylor expansion. The shaded blue region depicting the result of Theorem 1.3 corresponds to the cases

when such a diagrammatic expansion is absolutely convergent for very large L. In the complementary
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region between the blue region and the line ) = )kin, we show that some (arbitrarily high-degree) terms

of this expansion do not converge to 0 as their degree goes to ∞, which means that the diagrammatic

expansion cannot converge absolutely in this region. Therefore, the only way for the kinetic conjecture

to be true in the scaling regimes not included in Theorem 1.1 is for those terms to exhibit a highly

nontrivial cancellation, which would make the series converge conditionally but not absolutely.

Finally, we remark on the restriction in formula (1.4). The upper bounds on T on the left are necessary

from number-theoretic considerations: indeed, if ) ≫ !2 for a rational torus, or if ) ≫ !3 for an

irrational one, the exact resonances of the NLS equation dominate the quasi-resonant interactions that

lead to the kinetic wave equation. One should therefore not expect the kinetic description to hold in those

ranges of T (see Lemma 3.2 and Section 4). The second set of restrictions in formula (1.4) correspond

exactly to the requirement that the size of the Feynman diagrams of degree n can be bounded by d= with

some d ≪ 1. In fact, if one aims only at proving existence with high probability (not caring about the

asymptotics of E |D̂(C, :) |2), then the restrictions on the left of formula (1.4) will not be necessary, and

one obtains control for longer times. See also the following remark:

Remark 1.4 (Admissible scaling laws). The foregoing restrictions on T impose the limits of the ad-

missible scaling laws, in which U → 0 and ! → ∞, for which the kinetic description of the long-time

dynamics can appear. Indeed, since )kin = U−2, then the necessary (up to ! X factors) restrictions

) ≪ !2−X (resp., ) ≪ !3−X) on the rational (resp., irrational) torus already mentioned imply that

one should only expect the previous kinetic description in the regime where U & !−1 (resp., & !−3/2).

In other words, the kinetic description requires the nonlinearity to be weak, but not too weak! In the

complementary regime of very weak nonlinearity, the exact resonances of the equation dominate the

quasi-resonances – a regime referred to as discrete wave turbulence (see [36, 32, 39]), in which different

effective equations, like the (CR) equation in [24, 6], can arise.

1.2. Ideas of the proof

As Theorem 1.1 is a consequence of Theorem 1.3, we will focus on Theorem 1.3. The proof of

Theorem 1.3 contains three components: (1) a long-time well-posedness result, where we expand the

solution to (NLS) into Feynman diagrams for sufficiently long time, up to a well-controlled error term;

(2) computation of E |D̂: (C) |2
(
: ∈ Z3

!

)
using this expansion, where we identify the leading terms and

control the remainders; and (3) a number-theoretic result that justifies the large box approximation,

where we pass from the sums appearing in the expansion in the previous component to the integral

appearing on the right-hand side of (WKE).

The main novelty of this work is in the first component, which is the hardest. The second component

follows similar lines to those in [7]. Regarding the third component, the main novelty of this work is to

complement the number-theoretic results in [7] (which dealt only with the generically irrational torus)

by the cases of general tori (in the admissible range of time ) ≪ !2). This provides an essentially full

(up to !Y losses) understanding of the number-theoretic issues arising in wave-turbulence derivations

for (NLS). Therefore, we will limit this introductory discussion to the first component.

1.2.1. The scheme and probabilistic criticality

Though technically involved, the basic idea of the long-time well-posedness argument is in fact quite

simple. Starting from (NLS) with initial data of equation (1.2), we write the solution as

D = D (0) + · · · + D (# ) +R#+1, (1.5)

where D (0) = 4−8CΔVDin is the linear evolution, D (=) are iterated self-interactions of the linear solution

D (0) that appear in a formal expansion of u and R#+1 is a sufficiently regular remainder term.

Since D (0) is a linear combination of independent random variables, and each D (=) is a multilinear

combination, each of them will behave strictly better (both linearly and nonlinearly) than its deterministic

analogue (i.e., with all [: = 1). This is due to the well-known large deviation estimates, which yield a
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‘square root’ gain coming from randomness, akin to the central limit theorem (for instance, ‖Din‖!∞ is

bounded by !−3/2 · ‖Din‖!2 in the probabilistic setting, as opposed to 1 · ‖Din‖!2 deterministically by

Sobolev embedding, assuming compact Fourier support). This gain leads to a new notion of criticality

for the problem, which can be defined5 as the edge of the regime of (U,)) for which the iterate D (1)

is better bounded than the iterate D (0) . It is not hard to see that D (1) can have size up to $ (U
√
)) (in

appropriate norms), compared to the$ (1) size of D (0) (see, e.g., formula (2.25) for = = 1). This justifies

the notion that ) ∼ )kin = U−2 corresponds to probabilistically critical scaling, whereas the time scales

) ≪ )kin are subcritical.6

As it happens, a certain notion of criticality might not capture all the subtleties of the problem. As

we shall see, some higher-order iterates D (=) will not be better bounded than D (=−1) in the full subcritical

range ) ≪ U−2 we have postulated, but instead only in a subregion thereof. This is what defines our

admissible blue region in Figure 1.

We should mention that the idea of using the gain from randomness goes back to Bourgain [3] (in

the random-data setting) and to Da Prato and Debussche [14] (later, in the stochastic PDE setting).

They first noticed that the ansatz D = D (0) +R allows one to put the remainder R in a higher regularity

space than the linear term D (0) . This idea has since been applied to many different situations (see, e.g.,

[5, 8, 11, 15, 21, 33, 38]), though most of these works either involve only the first-order expansion (i.e.,

# = 0) or involve higher-order expansions with only suboptimal bounds (e.g., [2]). To the best of our

knowledge, the present paper is the first work where the sharp bounds for these D ( 9) terms are obtained

to arbitrarily high order (at least in the dispersive setting).

Remark 1.5. There are two main reasons why the high-order expansion (1.5) gives the sharp time of

control, in contrast to previous works. The first is that we are able to obtain sharp estimates for the terms

D ( 9) with arbitrarily high order, which were not known previously due to the combinatorial complexity

associated with trees (see Section 1.2.2).

The second reason is more intrinsic. In higher-order versions of the original Bourgain–Da Prato–

Debussche approach, it usually stops improving in regularity beyond a certain point, due to the presence

of the high-low interactions (heuristically, the gain of powers of low frequency does not transform to the

gain in regularity). This is a major difficulty in random-data theory, and in recent years a few methods

have been developed to address it, including regularity structure [29], para-controlled calculus [28] and

random averaging operators [18]. Fortunately, in the current problem this issue is absent, since the well-

prepared initial data (1.2) bound the high-frequency components (where |: | ∼ 1) and low-frequency

components (where |: | ∼ !−1) uniformly, so the high-low interaction is simply controlled in the same

way as the high-high interaction, allowing one to gain regularity indefinitely as the order increases.

1.2.2. Sharp estimates of Feynman trees

We start with the estimate for D (=) . As is standard with the cubic nonlinear Schrödinger equation, we

first perform the Wick ordering by defining

F := 4−28_2"0C · D, "0 :=

⨏
T
3
!

|D |2 .

Note that "0 is essentially the mass which is conserved. Now w satisfies the renormalised equation

8mCF − ΔVF + _2

(
|F |2 − 2

⨏
T
3
!

|F |2
)
F = 0, (1.6)

5One can interpret the usual scaling criticality for (NLS) in the same way: it corresponds to the minimum regularity s for

which the first iterate of an � B-normalised rescaled bump function like # −B+ 3
2 q (# G) is better bounded than the linear solution(

comparing |D |? D to ΔD for such data gives the critical regularity Bcritical =
3
2 − 2

?

)
.

6It may be supercritical under deterministic scaling. See [18] for a discussion of these notions in the more customary context
of Sobolev regularity of local well-posedness in deterministic versus probabilistic settings.
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Figure 2. On the left, a node n with its three children n1, n2, n3, with signs ]1 = ]3 = ] = −]2. On the

right, a tree of scale 4 (s(T ) = 4) with root r, four branching nodes (r, n1, n2, n3) and ; = 9 leaves,

along with their signatures.

and |F̂: (C) |2 = |D̂: (C) |2. This gets rid of the worst resonant term, which would otherwise lead to a

suboptimal time scale.

Let F (=) be the nth-order iteration of the nonlinearity in equation (1.6), corresponding to the D (=) in

equation (1.5). Since this nonlinearity is cubic, by induction it is easy to see that F (=) can be written (say,

in Fourier space) as a linear combination of terms7 JT , where T runs over all ternary trees with exactly

n branching nodes (we will say it has scale s(T ) = =). After some further reductions, the estimate for

JT can be reduced to the estimate for terms of the form

Σ: :=
∑

(:1 ,...,:2=+1) ∈(
[±:1

· · · [±:2=+1
,

(
[+: , [

−
:

)
:= ([: (l), [: (l)) , (1.7)

where [: (l) is as in equation (1.2), (:1, . . . , :2=+1) ∈
(
Z
3
!

)2=+1
, S is a suitable finite subset of

(
Z
3
!

)2=+1

and the (2= + 1) subscripts correspond to the (2= + 1) leaves of T (see Definition 2.2 and Figure 2).8

To estimate Σ: defined in formaul (1.7) we invoke the standard large deviation estimate (see Lemma

3.1), which essentially asserts that |Σ: | . (#()1/2 with overwhelming probability, provided that there

is no pairing in (:1, . . . , :2=+1), where a pairing
(
:8 , : 9

)
means :8 = : 9 and the signs of [:8 and [: 9

in formula (1.7) are opposites. Moreover, in the case of a pairing
(
:8 , : 9

)
we can essentially replace

[±
:8
[±
: 9

=
��[:8 ��2 ≈ 1, so in general we can bound, with overwhelming probability,

|Σ: |2 .
∑

(unpaired :8)

©«
∑

(paired :8 ):
(:1 ,...,:2=+1) ∈(

1

ª®®®¬

2

.

∑
(:1 ,...,:2=+1) ∈(

1 · sup
(unpaired :8)

∑
(paired :8):

(:1 ,...,:2=+1) ∈(

1.

It thus suffices to bound the number of choices for (:1, . . . , :2=+1) given the pairings, as well as the

number of choices for the paired : 9s given the unpaired : 9s.

In the no-pairing case, such counting bounds are easy to prove, since the set S is well adapted to the

tree structure of T ; what makes the counting nontrivial is the pairings, especially those between leaves

that are far away or from different levels (see Figure 3, where a pairing is depicted by an extra link

between the two leaves). Nevertheless, we have developed a counting algorithm that specifically deals

with the given pairing structure of T and ultimately leads to sharp counting bounds and consequently

sharp bounds for Σ: (see Proposition 3.5).

7We will first perform rescaling and conjugation by the linear Schrödinger flow (see Section 2.1); for simplicity we still use
JT to denote these terms.

8In reality one may have coefficients < = <(:, :1, . . . , :2=+1) in the expression of ": in formula (1.7), but one can always
reduce to the form of formula (1.7) by restricting to the level sets of m.
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Figure 3. A paired tree with two pairings (? = 2). The set S of single leaves is {l1, l4, l6, l7, l9}.
The subset R ⊂ S ∪ {r} of red-coloured vertices is {r, l1, l4, l6}. Here (;, ?, A) = (9, 2, 4). A strongly

admissible assignment with respect to this pairing, colouring and a certain fixed choice of the red modes(
:r , : l4 , : l6

)
corresponds to having the modes : l2 = : l3 , : l5 = : l8 and |: l | ≤ ! \ for all the uncoloured

leaves. The rest of the modes are determined according to Definition 2.2.

1.2.3. An ℓ2 operator norm bound

In contrast to the tree terms JT , the remainder term R#+1 has no explicit random structure. Indeed, the

only way it feels the ‘chaos’ of the initial data is through the equation it satisfies, which in integral form

and spatial Fourier variables looks like

R#+1 = J∼# + L(R#+1) +Q(R#+1) + C(R#+1),

where J∼# is a sum of Feynman trees JT (already described) of scale s(T ) ∼ # , and L, Q and C are,

respectively, linear, bilinear and trilinear operator in R#+1. The main point here is that one would like to

propagate the estimates on J∼# to R#+1 itself; this is how we make rigorous the so-called ‘propagation

of chaos or quasi-Gaussianity’ claims that are often adopted in formal derivations. In another aspect,

qualitative results on propagation of quasi-Gaussianity, in the form of absolute continuity of measures,

have been obtained in some cases (with different settings) by exploiting almost-conservation laws

(e.g., [48]).

Since we are bootstrapping a smallness estimate on R#+1, any quadratic and cubic form of R#+1

will be easily bounded. It therefore suffices to propagate the bound for the termL(R#+1), which reduces

to bounding the ℓ2 → ℓ2 operator norm for the linear operator L. By definition, the operator L will have

the form E ↦→ IW
(
JT 1

,JT 2
, E

)
, where I is the Duhamel operator, W is the trilinear form coming from

the cubic nonlinearity and JT 1
,JT 2

are trees of scale ≤ #; thus in Fourier space it can be viewed as

a matrix with random coefficients. The key to obtaining the sharp estimate for L is then to exploit the

cancellation coming from this randomness, and the most efficient way to do this is via the ))∗ method.

In fact, the idea of applying the ))∗ method to random matrices has already been used by Bourgain

[3]. In that paper one is still far above (probabilistic) criticality, so applying the))∗ method once already

gives adequate control. In the present case, however, we are aiming at obtaining sharp estimates, so

applying ))∗ once will not be sufficient.

The solution is thus to apply ))∗ sufficiently many times (say, � ≫ 1), which leads to the analysis

of the kernel of the operator (LL∗)� . At first sight this kernel seems to be a complicated multilinear

expression which is difficult to handle; nevertheless, we make one key observation, namely that this
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Figure 4. Construction of the tree T � by successive plantings of trees T 1 and T 2 onto the first two

nodes of a ternary tree, starting with a root r and stopping after 2� steps, leaving a leaf node r′. In the

figure, � = 2.

kernel can essentially be recast in the form of formula (1.7) for some large auxiliary tree T = T � ,

which is obtained from a single root node by attaching copies of the trees T 1 and T 2 successively a total

of 2� times (see Figure 4). With this observation, the arguments in the previous section then lead to

sharp bounds of the kernel of (LL∗)� , up to some loss that is a power of L independent of D; taking

the 1/(2�) power and choosing D sufficiently large makes this power negligible and implies the sharp

bound for the operator norm of L (see Section 3.3).

1.2.4. Sharpness of estimates

We remark that the estimates we prove for JT are sharp up to some finite power of L (independent

of T ). More precisely, from Proposition 2.5 we know that for any ternary tree T of scale n and possible

pairing structure (see Definition 3.3), with overwhelming probability,

sup
:

‖(JT): ‖ℎ1 ≤ !0+d=, (1.8)

where d is some quantity depending on U, L and T (see formula (2.24)), k is the spatial Fourier variable

and ℎ1 is a time-Sobolev norm defined in equation (2.22); on the other hand, we will show that that for

some particular choice of trees T of scale n and some particular choice of pairings, with high probability,

sup
:

‖(JT): ‖ℎ1 ≥ !−3d=. (1.9)

The timescale T of Theorem 1.3 is the largest that makes d ≪ 1; thus if one wants to go beyond T in cases

other than Theorem 1.1, it would be necessary to address the divergence of formula (1.9) with d ≫ 1 by

exploiting the cancellation between different tree terms or different pairing choices (see Section 3.4).

1.2.5. Discussions

Shortly after the completion of this paper, work of Collot and Germain [12] was announced that studies

the same problem, but only in the rational-torus setting. In the language of this paper, their result

https://doi.org/10.1017/fmp.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.6


Forum of Mathematics, Pi 11

corresponds to the validity of equation (1.3) for ! ≤ C ≤ !2−X , under the assumption U ≤ !−1−X .

This is a special case of Theorem 1.3, essentially corresponding to the rectangle below the horizontal

line log! ) = 2 and to the right of the vertical line log!

(
U−1

)
= 1 in Figure 1. We also mention later

work by the same authors [13], where they consider a generic nonrectangular torus (as opposed to the

rectangular tori here and in [12]) and prove the existence of solutions (but without justifying equation

(1.3)) up to time C ≤ !−X)kin for a wider range of power laws between U and L.

While the present paper was being peer-reviewed, we submitted new work to arXiv [16], in which

we provide the first full derivation of (WKE) from (NLS). Those results reach the kinetic time scale

C = g ·)kin, where g is independent of L (compared to Theorem 1.1 here, where g ≤ !−Y), for the scaling

law U ∼ !−1 on generic (irrational) rectangular tori and the scaling laws U ∼ !−W (where W < 1 and is

close to 1) on arbitrary rectangular tori.

Shortly after completing [16], we received a preprint of a forthcoming deep work by Staffilani and

Tran [47]. It concerns a high-dimensional (on T3 for 3 ≥ 14) KdV equation under a time-dependent

Stratonovich stochastic forcing, which effectively randomises the phases without injecting energy into

the system. The authors derive the corresponding wave kinetic equation up to the kinetic time scale, for

the scaling law U ∼ !−0 (i.e., first taking ! → ∞ and then taking U → 0). They also prove a conditional

result without such forcing, where the condition is verified for some particular initial densities converging

to the equilibrium state (stationary solution to the wave kinetic equation) in the limit.

1.3. Organisation of the paper

In Section 2 we explain the diagrammatic expansion of the solution into Feynman trees, and state the

a priori estimates on such trees and remainder terms, which yield the long-time existence of such

expansions. Section 3 is devoted to the proof of those a priori estimates. In Section 4 we prove the

main theorems already mentioned, and in Section 5 we prove the necessary number-theoretic results

that allow us to replace the highly oscillating Riemann sums by integrals.

1.4. Notation

Most notation will be standard. Let I+ = I and I− = I. Define |: |V by |: |2V = V1:
2
1
+ · · · + V3:2

3
for

: = (:1, . . . , :3). The spatial Fourier series of a function D : T3
!
→ C is defined on Z3

!
:= !−1

Z
3 by

D̂: =

∫
T
3
!

D(G)4−2c8: ·G , so that D(G) = 1

!3

∑
:∈Z3

!

D̂:4
2c8: ·G . (1.10)

The temporal Fourier transform is defined by

5̃ (g) =
∫
R

4−2c8C g 5 (C)dC.

Let X > 0 be fixed throughout the paper. Let N, s and 1 > 1
2

be fixed, such that N and s are

large enough and 1 − 1
2

is small enough, depending on d and X. The quantity C will denote any large

absolute constant, not dependent on
(
#, B, 1 − 1

2

)
, and \ will denote any small positive constant, which

is dependent on
(
#, B, 1 − 1

2

)
; these may change from line to line. The symbols $ (·), . and so on will

have their usual meanings, with implicit constants depending on \. Let L be large enough depending on

all these implicit constants. If some statement S involving l is true with probability ≥ 1 −  4−!\

for

some constant K (depending on \), then we say this statement S is L-certain.

When a function depends on many variables, we may use notations like

5 = 5
(
G8 : 8 ∈ �, H 9 : 1 ≤ 9 ≤ <

)
to denote a function f of variables (G8 : 8 ∈ �) and H1, . . . , H<.
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2. Tree expansions and long-time existence

2.1. First reductions

Let D̂: (C) be the Fourier coefficients of D(C), as in equation (1.10). Then with 2: (C) := 42c8 |: |2V C D̂: (C) =(
F
T
3
!
4−8CΔVD

)
(:), we arrive at the following equation for the Fourier modes:



8 ¤2: =

(
_
!3

)2 ∑
(:1 ,:2 ,:3) ∈(Z3!)3

:−:1+:2−:3=0

2:1
2:2
2:3
42c8Ω(:1 ,:2 ,:3 ,:)C

2: (0) = (2: )in = D̂: (0),
(2.1)

where Ω(:1, :2, :3, :) = |:1 |2V − |:2 |2V + |:3 |2V − |: |2V . Note that the sum can be written as

∑
(:1 ,:2 ,:3) ∈(Z3!)3

:−:1+:2−:3=0

= 2
∑
:1=:

−
∑

:1=:2=:3

+
∑

:1 ,:3≠:

,

which, defining " =
∑

:3

��2:3

��2 (which is conserved), allows us to write

8 ¤2: =

(
_

!3

)2 ©«
2"2: − |2: |2 2: +

×∑
(:1 ,:2 ,:3)

2:1
2:2
2:3
42c8Ω(:1 ,:2 ,:3 ,:)Cª®¬

.

Here and later,
∑× represents summation under the conditions : 9 ∈ Z3! , :1−:2+:3 = : and : ∉ {:1, :3}.

Introducing 1: (C) = 2: (C)4−28(!−3_)2
"C , we arrive at the following equation for 1: (C):



8 ¤1: =

(
_
!3

)2
(
− |1: |2 1: +

×∑
(:1 ,:2 ,:3)

1:1
1:2
1:3
42c8Ω(:1 ,:2 ,:3 ,:)C

)

1: (0) = (1: )in = D̂: (0).
(2.2)

In Theorem 1.3 we will be studying the solution D(C), or equivalently the sequence (1: (C)):∈Z3
!
, on

a time interval [0, )]. It will be convenient, to simplify some notation later, to work on the unit time

interval [0, 1]. For this we introduce the final ansatz

0: (C) = 1: ()C),

which satisfies the equation



8 ¤0: =

(
U)
!3

) (
− |0: |2 0: +

×∑
(:1 ,:2 ,:3)

0:1
0:2
0:3
42c8)Ω(:1 ,:2 ,:3 ,:)C

)

0: (0) = (0: )in = D̂: (0).
(2.3)

Here we have also used the relation U = _2!−3 . Recall the well-prepared initial data (1.2), which

transform into the initial data for 0: :

(0: )in =
√
=in · [: (l), (2.4)

where [: (l) are the same as in equation (1.2).
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2.2. The tree expansion

Let a(C) = (0: (C)):∈Z3
!

and ain = a(0). Let � = [0, 1]; we will fix a smooth compactly supported cutoff

function j such that j ≡ 1 on J. Then by equation (2.3), we know that for C ∈ � we have

a(C) = j(C)ain + IW(a, a, a) (C), (2.5)

where the Duhamel term is defined by

I� (C) = j(C)
∫ C

0

j(C ′)� (C ′)dC ′, (2.6)

W(b, c, d): (C) := − 8U)
!3

©«
− (1:2:3: ) (C) +

×∑
(:1 ,:2 ,:3)

(
1:1
2:2
3:3

)
(C)42c8)Ω(:1 ,:2 ,:3 ,:)Cª®¬

. (2.7)

Since we will only be studying a for C ∈ �, from now on we will replace a by the solution to equation

(2.5) for C ∈ R (the existence and uniqueness of the latter will be clear from a proof to follow). We will

be analysing the temporal Fourier transform of this (extended) a, so let us first record a formula for I

on the Fourier side:

Lemma 2.1. Let I be defined as in equation (2.6), and recall that �̃ means the temporal Fourier

transform of G; then we have

Ĩ� (g) =
∫
R

(�0 + �1) (g, f)�̃ (f)df,
��m0g,f �3 (g, f)�� .0,� 1

〈g − 3f〉�
1

〈f〉 . (2.8)

Proof. See [17]. �

Now define J= recursively by

J0(C) = j(C) · ain,

J= (C) =

∑
=1+=2+=3==−1

IW
(
J=1

,J=2
,J=3

)
(C), (2.9)

and define

J≤# =

∑
=≤#

J=, R#+1 = a − J≤# . (2.10)

By plugging in equation (2.5), we get that R#+1 satisfies the equation

R#+1 = J∼# + L(R#+1) +Q(R#+1) + C(R#+1), (2.11)

where the relevant terms are defined as

J∼# :=
∑

=1 ,=2 ,=3≤#
=1+=2+=3≥#

IW
(
J=1

,J=2
,J=3

)
, (2.12)

L(E) :=
∑

=1 ,=2≤#

(
2IW

(
J=1

,J=2
, E

)
+ IW

(
J=1

, E,J=2

) )
, (2.13)

Q(E) :=
∑
=1≤#

(
2IW

(
E, E,J=1

)
+ IW

(
E,J=1

, E
) )
, (2.14)

C(E) := IW(E, E, E). (2.15)
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Next we will derive a formula for the time Fourier transform of J=; for this we need some preparation

regarding multilinear forms associated with ternary trees.

Definition 2.2.

1. Let T be a ternary tree. We use L to denote the set of leaves and l their number, N = T \L the set

of branching nodes and n their number, and r ∈ N the root node. The scale of a ternary tree T is

defined as s(T ) = = (the number of branching nodes).9 A tree of scale n has ; = 2= + 1 leaves and a

total of 3= + 1 vertices.

2. (Signs on a tree) For each node n ∈ N, let its children from left to right be n1, n2, n3. We fix the sign

]n ∈ {±} as follows: first ]r = +, then for any node n ∈ N, define ]n1
= ]n3

= ]n and ]n2
= −]n .

3. (Admissible assignments) Suppose we assign to each n ∈ T an element :n ∈ Z3
!
. We say such an

assignment (:n : n ∈ T ) is admissible if for any n ∈ N we have :n = :n1
− :n2

+ :n3
and either

:n ∉
{
:n1
, :n3

}
or :n = :n1

= :n2
= :n3

. Clearly an admissible assignment is completely determined

by the values of : l for l ∈ L. For any assignment, we denote Ωn := Ω
(
:n1
, :n2

, :n3
, :n

)
. Suppose

we also fix10 3n ∈ {0, 1} for each n ∈ N; then we can define @n for each n ∈ T inductively by

@n = 0 if n ∈ L or @n = 3n1
@n1

− 3n2
@n2

+ 3n3
@n3

+Ωn if n ∈ N. (2.16)

Proposition 2.3. For each ternary tree T , define JT inductively by

J•(C) = j(C) · ain, JT (C) = IW
(
JT1

,JT2
,JT3

)
(C), (2.17)

where • represents the tree with a single node and T 1, T 2, T 3 are the subtrees rooted at the three

children of the root node of T . Then we have

J= =

∑
s (T )==

JT. (2.18)

Moreover, for any T of scale s(T ) = = we have the formula(
J̃T

)
:
(g) =

(
U)

!3

)= ∑
(:n :n∈T)

KT (g, :n : n ∈ T )
∏
l∈L

√
=in (: l) ·

∏
l∈L

[
[:l (l)

] ]l
, (2.19)

where the sum is taken over all admissible assignments (:n : n ∈ T ) such that :r = : , and the function

K = KT (g, :n : n ∈ T ) satisfies��m0gK�� .0,� ∑
(3n :n∈N)

〈g − )3r@r〉−� ·
∏
n∈N

〈)@n〉−1 , (2.20)

where @n is defined in equation (2.16).

Proof. First, equation (2.18) follows from the definitions in equations (2.9) and (2.17) and an easy

induction. We now prove formulas (2.19) and (2.20) inductively, noting also that (0: )in =
√
=in (:) ·

[: (l). For T = •, equation (2.19) follows from equation (2.17) with KT (g, :r) = j̃(g) that satisfies

formula (2.20). Now suppose formulas (2.19) and (2.20) are true for smaller trees; then by formulas

(2.7) and (2.17) and Lemma 2.1, up to unimportant coefficients, we can write

(
J̃T

)
:
(g) = 8U)

!3

∑
3∈{0,1}

∗∑
(:1 ,:2 ,:3)

∫
R3

�3 (g, f)
3∏
9=1

[(
J̃T 9

)
: 9

(
g9

) ] ] 9
dg9 ,

where
∑∗ represents summation under the conditions : 9 ∈ Z3! , :1 − :2 + :3 = : and either : ∉ {:1, :3}

or : = :1 = :2 = :3, the signs (]1, ]2, ]3) = (+,−, +), and f = g1 − g2 + g3 + )Ω(:1, :2, :3, :). Now

9By convention, the scale of a single node is 0.
10This assignment is arbitrary but will usually be omitted, since there are finitely many choices.
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applying the induction hypothesis, we can write
(
J̃T

)
:
(g) in the form of equation (2.19) with the

function

KT (g, :n : n ∈ T ) =
∑

3∈{0,1}

∫
R3

�3 (g, g1 − g2 + g3 + )Ωr)
3∏
9=1

[
KT 9

(
g9 , :n : n ∈ T 9

) ] ] 9
dg9 , (2.21)

where r is the root of T with children r1, r2, r3 and T 9 is the subtree rooted at r 9 .

It then suffices to prove that KT defined by equation (2.21) satisfies formula (2.20). By the induction

hypothesis, we may fix a choice 3n for each nonleaf node n of each T 9 , and let 3r = 3. Then plugging

formula (2.20) into equation (2.21), we get

��m0gKT

�� .0,� ∏
r≠n∈N

1

〈)@n〉

∫
R3

1

〈g−3 (g1−g2 + g3 + )Ωr)〉�
1

〈g1−g2 + g3 + )Ωr〉

3∏
9=1

dg9〈
g9−)3r 9 @r 9

〉� ,
which upon integration in g9 gives equation (2.20). This completes the proof. �

2.3. Statement of main estimates

Define the ℎ1 space by

‖0(C)‖ℎ1 =

(∫
R

〈g〉21 |0̃(g) |2 3g
) 1

2

, (2.22)

and similarly the ℎB,1 space for a(C) = (0: (C)):∈Z3
!

by

‖a‖ℎB,1 =
©«
!−3

∑
:∈Z3

!

∫
R

〈g〉21 〈:〉2B |0̃: (g) |2 3g
ª®®¬

1
2

. (2.23)

We shall estimate the solution u in an appropriately rescaled -B,1 space, which is equivalent to estimating

the sequence a(C) = (0: (C)):∈Z3
!

in the space ℎB,1 . Define the quantity

d :=



U) if 1 ≤ ) ≤ !,

U! if ! ≤ ) ≤ !2,

U)!−1 if ) ≥ !2 and V8 is generic.

(2.24)

By the definition of X > 0 in formula (1.4), we can verify that U)1/2 ≤ d ≤ !−X .

Proposition 2.4 (Well-posedness bounds). Let d be defined as in formula (2.24); then L-certainly, for

all 1 ≤ = ≤ 3# , we have

sup
:

〈:〉2B ‖(J=): ‖ℎ1 ≤ ! \+� (1− 1
2 )d=−1

(
U)

1
2

)
≤ ! \+� (1− 1

2 )d=, (2.25)

‖R#+1‖ℎB,1 ≤ d# . (2.26)

Proposition 2.4 follows from the following two bounds, which will be proved in Section 3:

Proposition 2.5 (Bounds of tree terms). We have, L-certainly, that

sup
:

〈:〉2B ‖(JT): ‖ℎ1 ≤ ! \+� (1− 1
2 )d=−1

(
U)

1
2

)
≤ ! \+� (1− 1

2 )d= (2.27)

for any ternary tree of depth n, where 0 ≤ = ≤ 3# .
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Proposition 2.6 (An operator norm bound). We have, L-certainly, that for any trees T 1, T 2 with
��T 9

�� =
3= 9 + 1 and 0 ≤ =1, =2 ≤ # , the operators

P+ : E ↦→ IW
(
JT1

,JT2
, E

)
and P− : E ↦→ IW

(
JT1

, E,JT2

)
(2.28)

satisfy the bounds

‖P±‖ℎB,1→ℎB,1 ≤ ! \ d=1+=2+ 1
2 . (2.29)

Remark 2.7. The bound (2.29) is a result of the probabilistic subcriticality of the problem. Similar

bounds are also used in recent work by the first author, Nahmod and Yue [19] to get sharp probabilistic

local well-posedness of nonlinear Schrödinger equations. The proof in both cases relies on high-order

))∗ arguments, although in [19] one needs to use the more sophisticated tensor norms due to the

different ansatz caused by the inhomogeneity of initial data.

Proof of Proposition 2.4 (assuming Propositions 2.5 and 2.6). Assume we have already excluded an

exceptional set of probability . 4−!
\

. The bound (2.25) follows directly from formulas (2.18) and

(2.27); it remains to bound R#+1. Recall that R#+1 satisfies equation (2.11), so it suffices to prove that

the mapping

E ↦→ J∼# + L(E) +Q(E) + C(E)

is a contraction mapping from the set Z =
{
E : ‖E‖ℎB,1 ≤ d#

}
to itself. We will prove only that it maps

Z into Z, as the contraction part follows in a similar way. Now suppose ‖E‖ℎB,1 ≤ d# ; then by formulas

(2.18) and (2.27), we have

‖J∼# ‖2
ℎB,1 ∼ !−3

∑
:∈Z3

!

〈:〉2B ‖(J∼# ): ‖2
ℎ1 .

(
! \+� (1− 1

2 ) d#+1
)2

· !−3
∑
:∈Z3

!

〈:〉−2B ≪ d2# ,

so ‖J∼# ‖ℎB,1 ≪ d# . Next we may use formula (2.29) to bound

‖L(E)‖ℎB,1 ≤ ! \ d
1
2 · ‖E‖ℎB,1 ≤ ! \ d

1
2 · d# ≪ d# .

As for the terms Q(E) and C(E), we apply the simple bound

‖IW(D, E, F)‖ℎB,1 . ‖IW(D, E, F)‖ℎB,1 . ‖IW(D, E, F)‖ℎB,0 + ‖mCIW(D, E, F)‖ℎB,0

.
U)

!3

∑
cyc

‖D‖ℎB,0 ‖E: (C)‖ℓ1
:
!∞
C
‖F: (C)‖ℓ1

:
!∞
C
. U)!3 ‖D‖ℎB,1 ‖E‖ℎB,1 ‖F‖ℎB,1 (2.30)

(which easily follows from formula (2.7)), where
∑

cyc means summing in permutations of (D, E, F). As

U) ≤ !3 , we conclude (also using Proposition 2.5) that

‖Q(E)‖ℎB,1 + ‖C(E)‖ℎB,1 . U)! \+3+� (1− 1
2 )d2# ≪ d# ,

since d ≤ !−X and # ≫ X−1. This completes the proof. �

3. Proof of main estimates

In this section we prove Propositions 2.5 and 2.6.
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3.1. Large deviation and basic counting estimates

We start by making some preparations, namely the large deviation and counting estimates that will be

used repeatedly in the proof later.

Lemma 3.1. Let {[: (l)} be independent, identically distributed complex random variables, such that

the law of each [: is either Gaussian with mean 0 and variance 1 or the uniform distribution on the unit

circle. Let � = � (l) be defined by

� (l) =
∑

:1 ,...,:=

0:1 · · ·:=

=∏
9=1

[
] 9

: 9
, (3.1)

where 0:1 · · ·:= are constants; then F can be divided into finitely many terms, and for each term there is

a choice of - =
{
81, . . . , 8?

}
and . =

{
91, . . . , 9?

}
, which are two disjoint subsets of {1, 2, . . . , =}, such

that

P

(
|� (l) | ≥ � · " 1

2

)
≤ �4−2�

2
=

(3.2)

holds with

" =

∑
(:ℓ ):ℓ∉-∪.

©«
∑

pairing (:8B ,: 9B ):1≤B≤?

��0:1 · · ·:=
��ª®®¬

2

, (3.3)

where a pairing
(
:8 , : 9

)
means

(
]8 + ] 9 , ]8:8 + ] 9 : 9

)
= 0.

Proof. First assume [: is Gaussian. Then by the standard hypercontractivity estimate for an Ornstein–

Uhlenbeck semigroup (see, e.g., [40]), we know that formula (3.2) holds with M replaced by E |� (l) |2.

Now to estimate E |� (l) |2, by dividing the sum (3.1) into finitely many terms and rearranging the

subscripts, we may assume in a monomial of equation (3.1) that

:1 = · · · = : 91 , : 91+1 = · · · = : 92 , · · · , : 9A−1+1 = · · · = : 9A , 1 ≤ 91 < · · · < 9A = =, (3.4)

and the : 9B are different for 1 ≤ B ≤ A . Such a monomial has the form

A∏
B=1

[
1B
: 9B

(
[: 9B

)2B
, 1B + 2B = 9B − 9B−1 ( 90 = 0),

where the factors for different s are independent. We may also assume 1B = 2B for 1 ≤ B ≤ @ and

1B ≠ 2B for @ + 1 ≤ B ≤ A , and for 1 ≤ 9 ≤ 9@ we may assume ] 9 has the same sign as (−1) 9 . Then we

can further rewrite this monomial as a linear combination of

?∏
B=1

1B!

@∏
B=?+1

(��[: 9B

��21B − 1B!) A∏
B=@+1

[
1B
: 9B

(
[: 9B

)2B

for 1 ≤ ? ≤ @. Therefore, � (l) is a finite linear combination of expressions of the form

∑
: 91

,...,: 9A

0: 91
,...,: 91

,...,: 9A ,...: 9A

?∏
B=1

1B!

@∏
B=?+1

(��[: 9B

��21B − 1B!) A∏
B=@+1

[
1B
: 9B

(
[: 9B

)2B
.

Due to independence and the fact that E
(
|[ |21 − 1!

)
= E

(
[1 ([)2

)
= 0 for a normalised Gaussian [

and 1 ≠ 2, we conclude that
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E |� (l) |2 .
∑

: 9?+1
,...,: 9A

©«
∑

: 91
,...,: 9?

���0: 91
,...,: 91

,...,: 9A ,...: 9A

���ª®¬
2

, (3.5)

which is bounded by the right-hand side of equation (3.3), by choosing - =
{
1, 3, . . . , 9? − 1

}
and

. =
{
2, 4, . . . , 9?

}
, as under our assumptions (:28−1, :28) is a pairing for 28 ≤ 9? .

Now assume [: is uniformly distributed on the unit circle. Let {6: (l)} be independent, identically

distributed normalised Gaussians as in the first part, and consider the random variable

� (l) =
∑

:1 ,...,:=

��0:1 · · ·:=
�� =∏
9=1

6
] 9

: 9
.

We can calculate

E

(
|� (l) |2@

)
=

∑
(
:8
9
,ℓ8

9

)
@∏
8=1

0:8
1
· · ·:8=0ℓ81 · · ·ℓ8=E

©«
@∏
8=1

=∏
9=1

[
] 9

:8
9

[
] 9

ℓ8
9

ª®¬
, (3.6)

where 1 ≤ 8 ≤ @ and 1 ≤ 9 ≤ =, and similarly for H,

E

(
|� (l) |2@

)
=

∑
(
:8
9
,ℓ8

9

)
@∏
8=1

���0:8
1
· · ·:8=

��� ���0ℓ8
1
· · ·ℓ8=

���E ©«
@∏
8=1

=∏
9=1

6
] 9

:8
9

6
] 9

ℓ8
9

ª®¬
. (3.7)

The point is that we always have������E
©«

@∏
8=1

A∏
9=1

[
] 9

:8
9

[
] 9

ℓ8
9

ª®¬
������ ≤ ReE

©«
@∏
8=1

A∏
9=1

6
] 9

:8
9

6
] 9

ℓ8
9

ª®¬
.

In fact, in order for either side to be nonzero, for any particular k we must have

#
{
(8, 9) : : 89 = :, ] 9 = +

}
+ #

{
(8, 9) : ℓ89 = :, ] 9 = −

}
= #

{
(8, 9) : : 89 = :, ] 9 = −

}
+ #

{
(8, 9) : ℓ89 = :, ] 9 = +

}
.

Let both be equal to m; then by independence, the factor that the [±
:
s contribute to the expectation on

the left-hand side will be E |[: |2< = 1, while for the right-hand side it will be E |6: |2< = <! ≥ 1.

This implies that E
(
|� |2@

)
≤ E

(
|� |2@

)
for any positive integer q; since formula (3.2) holds for H,

we have

E

(
|� |2@

)
≤ (�@)=@"@

with an absolute constant C. This gives an upper bound for E
(
|� |2@

)
, and by Chebyshev inequality, we

deduce formula (3.2) for F. �

Lemma 3.2. Let V = (V1, . . . , V3) ∈ [1, 2]3 and 0 < ) ≤ !3 . Assume that V is generic for ) ≥ !2.

Then, uniformly in (:, 0, 1, 2) ∈
(
Z
3
!

)4
and < ∈ R, the sets

(3 =

{
(G, H, I) ∈

(
Z
3
!

)3

: G − H + I = :,
���|G |2V − |H |2V + |I |2V − |: |2V − <

��� ≤ )−1,

|G − 0 | ≤ ! \ , |H − 1 | ≤ ! \ , |I − 2 | ≤ ! \ and : ∉ {G, I}
}
, (3.8)
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(2 =

{
(G, H) ∈

(
Z
3
!

)3

: G ± H = :,
���|G |2V ± |H |2V − |: |2V − <

��� ≤ )−1,

|G − 0 | ≤ ! \ , |H − 1 | ≤ ! \ and G ≠ H if the sign ± is −
}

(3.9)

satisfy the bounds

#(3 . !
23+\)−1, #(2 .



!3+\ if ) ≤ !,

!3+1+\)−1 if ) ∈
[
!, !2

]
,

!3−1+\ if ) ≥ !2 and V8 is generic,

(3.10)

where in the first inequality of formula (3.10) we also assume |: | , |0 | , |1 | ≤ ! \ .

Moreover, with d defined as in formula (2.24), we have

max
(
(#(3)

1
2 , #(2

)
≤ ! \&, & :=

!3d

U)
, (3.11)

without any assumption on (:, 0, 1).

Proof. We first consider (3. Let : − G = ? and : − I = @; then we may write ? =
(
!−1D1, . . . , !

−1D3
)

and similarly for q, where each D8 and E8 is an integer and belongs to a fixed interval of length$
(
!1+\ ) .

Moreover, from (G, H, I) ∈ (3 we deduce that

�����
3∑
8=1

V8D8E8 +
!2<

2

����� ≤ !2)−1

2
.

We may assume D8E8 = 0 for 1 ≤ 8 ≤ A , and f8 := D8E8 ≠ 0 for A + 1 ≤ 8 ≤ 3; then the number of

choices for (D8 , E8 : 1 ≤ 8 ≤ A) is $
(
!A+\

)
. It is known (see [17, 18]) that given f ≠ 0, the number

of integer pairs (D, E) such that u and v each belongs to an interval of length $
(
!1+\ ) and DE = f is

$
(
! \

)
. Therefore, if |: | , |0 | , |1 | ≤ ! \ , then #(3 is bounded by $

(
!A+\

)
times the number of choices

for (fA+1, . . . , f3) that satisfy

��f9

�� ≤ !2+\ (A + 1 ≤ 9 ≤ 3),
3∑

9=A+1

V8f8 = −!
2<

2
+$

(
!2)−1

)
. (3.12)

Using the assumption ) ≤ !3 , it suffices to show that the number of choices for (fA+1, . . . , f3)
satisfying formula (3.12) is at most $

(
1 + !2(3−A )+\)−1

)
. This latter bound is trivial if 3 − A = 1 or

!2)−1 ≥ 1, so we may assume 3 − A ≥ 2, ) ≥ !2 and V8 is generic. It is well known in Diophantine

approximation (see, e.g., [9]) that for generic V8 we have

�����
3∑

8=A+1

V8[8

����� &
(

max
A+1≤8≤3

〈[8〉
)−(3−A−1)−\

if [8 are not all 0,

so the distance between any two points (f8 : A + 1 ≤ 8 ≤ 3) and (f′
8 : A + 1 ≤ 8 ≤ 3) satisfying formula

(3.12) is at least
(
!2)−1

)− 1
3−A−1

−\
. Since all these points belong to a box which has size $ (1) in one

direction and size $
(
!2+\ ) in other orthogonal directions, we deduce that the number of solutions to

formula (3.12) is at most 1 + ! \!2(3−A−1)!2)−1, as desired.

Next, without any assumption on (:, 0, 1), we need to prove formula (3.11). By definition (2.24) we

can check that &2 ≥ !23
(
min

(
), !2

) )−1
, so it suffices to prove the first inequality of formula (3.10),
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assuming ) ≤ !2. But this again follows from formula (3.12), noting that now
��f9

�� ≤ !2+\ is no longer

true, but each f9 still has at most !2+\ possible values.

Finally we consider (2, which is much easier. In fact, formula (3.11) follows from formula (3.10), so

we only need to prove the latter. Now if ) ≤ !, we trivially have #(2 ≤ !3+\ , as y will be fixed once

x is; if ) ≥ !, then we may assume G3 − H3 ≠ 0 if the sign ± is −, and then fix the first coordinates

G 9 (1 ≤ 9 ≤ 3−1) and hence H 9 (1 ≤ 9 ≤ 3−1). Then we have that G3 ± H3 is fixed, and G2
3
± H2

3
belongs

to a fixed interval of length $
(
)−1

)
. Since G3 , H3 ∈ !−1

Z, we know that G3 has at most 1 + !2)−1

choices, which implies what we want to prove. �

3.2. Bounds for J=

In this section we prove Proposition 2.5. We will need to extend the notion of ternary trees to paired,

coloured ternary trees:

Definition 3.3 (Tree pairings and colourings). Let T be a ternary tree as in Definition 2.2. We will pair

some of the leaves of T such that each leaf belongs to at most one pair. The two leaves in a pair are called

partners of each other, and the unpaired leaves are called single. We assume ]l + ]l′ = 0 for any pair

(l, l ′). The set of single leaves is denoted S. The number of pairs is denoted by p, so that |S| = ; − 2?.

Moreover, we assume that some nodes in S ∪ {r} are coloured red, and let R be the set of red nodes.

We shall denote A = |R|.
We shall use red colouring to denote that the frequency assignments to the corresponding red vertex

are fixed in the counting process. We also introduce the following definition:

Definition 3.4 (Strong admissibility). Suppose we fix =m ∈ Z3
!

for each m ∈ R. An assignment

(:n : n ∈ T ) is called strongly admissible with respect to the given pairing, colouring and (=m : m ∈ R)
if it is admissible in the sense of Definition 2.2, and

:m = =m ∀m ∈ R, |: l | ≤ ! \ ∀l ∈ L, : l = : l′ ∀ pairs of leaves (l, l ′). (3.13)

The key to the proof of Proposition 2.5 is the following combinatorial counting bound:

Proposition 3.5. Let T be a paired and coloured ternary tree such that R ≠ ∅, and let (=m : m ∈ R)
be fixed. We also fix fn ∈ R for each n ∈ N. Let ; = |L| be the total number of leaves, p be the number

of pairs and A = |R| be the number of red nodes. Then the number of strongly admissible assignments

(:n : n ∈ T ) which also satisfy

|Ωn − fn | ≤ )−1 ∀n ∈ N (3.14)

is – recalling Q defined in formula (3.11) – bounded by

" ≤
{
! \&;−?−A if R ≠ S ∪ {r},
! \&;−?−A+1 if R = S ∪ {r}. (3.15)

Proof. We proceed by induction. The base cases directly follow from formula (3.11). Now suppose the

desired bound holds for all smaller trees, and consider T . Let r1, r2, r3 be the children of the root node r

and T 9 be the subtree rooted at r 9 . Let ; 9 be the number of leaves in T 9 , ? 9 the number of pairs within

T 9 and ?8 9 the number of pairings between T 8 and T 9 , and let A 9 =
��R ∩ T 9

��; then we have

; = ;1 + ;2 + ;3, ? = ?1 + ?2 + ?3 + ?12 + ?13 + ?23, A = A1 + A2 + A3 + 1r∈R.

Also note that |:n | . ! \ for all n ∈ T .

The proof will be completely algorithmic, with the discussion of a lot of cases. The general strategy

is to perform the following four operations, which we refer to as O 9 (0 ≤ 9 ≤ 3), in a suitable order.
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Here in operation O0 we apply formula (3.11) to count the number of choices for the values among{
:r , :r1 , :r2 , :r2

}
that are not already fixed (this step may be trivial if three of these four vectors are

already fixed –i.e., coloured – or if one of them is already fixed and :r = :r1 = :r2 = :r3). In operations

O 9 (1 ≤ 9 ≤ 3), we apply the induction hypothesis to one of the subtrees T 9 and count the number

of choices for
(
:n : n ∈ T 9

)
. Let the number of choices associated with O 9 (0 ≤ 9 ≤ 3) be " 9 , with

superscripts indicating different cases. In the whole process we may colour new nodes n red if :n is

already fixed during the previous operations, namely when n = r and we have performed O0 before,

when n = r 9 and we have performed O0 or O 9 before or when n is a leaf that has a partner in T 9 and

we have performed O 9 before.

(1) Suppose r ∉ R; then we may assume that there is a red leaf from T 1.11 We first perform O1 and

get a factor

"
(1)
1

:= ! \&;1−?1−A1 .

Now r1 is coloured red, as is any leaf in T 2 ∪ T 3 which has a partner in T 1. There are then two cases.

(1.1) Suppose now there is a leaf in T 2 ∪ T 3, say from T 2, that is red. Then we perform O2 and get

a factor

"
(1.1)
2

:= ! \&;2−?2−A2−?12 .

Now r2 is coloured red, as is any leaf of T 3 which has a partner in T 2. There are again two cases.

(1.1.1) Suppose now there is a red leaf in T 3; then we perform O3 and get a factor

"
(1.1.1)
3

:= ! \&;3−?3−A3−?13−?23 ,

then colour r3 red and apply O0 to get a factor "
(1.1.1)
0

:= 1. Thus

" ≤ "
(1)
1
"

(1.1)
2

"
(1.1.1)
3

"
(1.1.1)
0

= !;−?−A+\ ,

which is what we need.

(1.1.2) Suppose after step (1.1) there is no red leaf in T 3; then A3 = ?13 = ?23 = 0. We perform O0

and get a factor "
(1.1.2)
0

:= ! \&1 (perhaps with slightly enlarged \; the same applies later). Now we

may colour r3 red and perform O3 to get a factor

"
(1.1.2)
3

:= ! \&;3−?3−1.

Thus

" ≤ "
(1)
1
"

(1.1)
2

"
(1.1.2)
0

"
(1.1.2)
3

= ! \&;−?−A ,

which is what we need.

(1.2) Now suppose that after step (1) there is no red leaf in T 2 ∪ T 3; then A2 = A3 = ?12 = ?13 = 0.

There are two cases.

(1.2.1) Suppose there is a single leaf in T 2 ∪ T 3, say from T 2. Then we will perform O0 and get a

factor "
(1.2.1)
0

:= ! \&2. Now we may colour r2 and r3 red and perform O3 to get a factor

"
(1.2.1)
3

:= ! \&;3−?3−1.

Now any leaf of T 2 which has a partner in T 3 is coloured red, so we may perform O2 and get a factor

"
(1.2.1)
2

:= ! \&;2−?2−?23−1.

11Strictly speaking, the roles of T 1 and T 2 are not exactly symmetric, due to the sign difference, but this will not affect the
proof, because formula (3.11) includes all choices of signs.
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Thus

" ≤ "
(1)
1
"

(1.2.1)
0

"
(1.2.1)
3

"
(1.2.1)
2

= ! \&;−?−A ,

which is what we need.

(1.2.2) Suppose there is no single leaf in T 2∪T 3; then all leaves in T 2∪T 3 are paired to one another,

which implies that :r2 = :r3 and that r2 and r3 have opposite signs, and hence by the admissibility

condition we must have :r = :r1 = :r2 = :r3 . This allows us to perform O0 and colour r2 and r3 red with

"
(1.2.2)
0

:= 1, then perform O3 and colour red any leaf of T 2 which has a partner in T 3, then perform

O2 (for which we use the second bound in formula (3.15)). This leads to the factors

"
(1.2.2)
3

:= ! \&;3−?3−1, "
(1.2.2)
2

≤ ! \&;2−?2−?23−1+1,

and thus

" ≤ "
(1)
1
"

(1,2,2)
0

"
(1.2.2)
3

"
(1.2.2)
2

= ! \&;−?−A−1,

which is better than what we need.

(2) Now suppose r ∈ R; then A = A1 + A2 + A3 + 1. There are two cases.

(2.1) Suppose there is one single leaf that is not red, say from T 1. There are again two cases.

(2.1.1) Suppose there is a red leaf in T 2 ∪ T 3, say T 2. Then we perform O2 and get a factor

"
(2.1.1)
2

:= ! \&;2−?2−A2 .

We now colour red r2 and any leaf in T 1 ∪ T 3 which has a partner in T 2. There are a further two cases.

(2.1.1.1) Suppose now there is a red leaf in T 3; then we perform O3 and get a factor

"
(2.1.1.1)
3

:= ! \&;3−?3−A3−?23 .

Now we perform O0 and get a factor "
(2.1.1.1)
0

:= 1, then colour red r1 as well as any leaf of T 1 which

has a partner in T 3, and perform O1 to get a factor

"
(2.1.1.1)
1

:= ! \&;1−?1−A1−?12−?13−1.

Thus

" ≤ "
(2.1.1)
2

"
(2.1.1.1)
3

"
(2.1.1.1)
0

"
(2.1.1.1)
1

= ! \&;−?−A ,

which is what we need.

(2.1.1.2) Suppose after step (2.1.1) there is no red leaf in T 3; then A3 = ?23 = 0. We perform O0 and

get a factor "
(2.1.1.2)
0

:= ! \&1. Then we colour r1 and r3 red and perform O3 to get a factor

"
(2.1.1.2)
3

:= ! \&;3−?3−1.

Finally we colour red any leaf of T 1 which has a partner in T 3, and perform O1 to get a factor

"
(2.1.1.2)
1

:= ! \&;1−?1−A1−?12−?13−1.

Thus

" ≤ "
(2.1.1)
2

"
(2.1.1.2)
0

"
(2.1.1.2)
3

"
(2.1.1.2)
1

= ! \&;−?−A ,

which is what we need.
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(2.1.2) Suppose in the beginning there is no red leaf in T 2 ∪ T 3; then A2 = A3 = 0. There are again

two cases.

(2.1.2.1) Suppose there is a leaf in T 2 ∪ T 3, say from T 2, that is either single or paired with a leaf

in T 1. Then we perform O0 and get a factor "
(2.1.2.1)
0

:= ! \&2. After this we colour r1, r2, r3 red and

perform O3 to get a factor

"
(2.1.2.1)
3

:= ! \&;3−?3−1.

We then colour red any leaf of T 1 and T 2 which has a partner in T 3, and perform O2 to get a factor

"
(2.1.2.1)
2

:= ! \&;2−?2−?23−1.

Finally we colour red any leaf of T 1 which has a partner in T 2, and perform O1 to get a factor

"
(2.1.2.1)
1

:= ! \&;1−?1−A1−?12−?13−1.

Thus

" ≤ "
(2.1.2.1)
0

"
(2.1.2.1)
3

"
(2.1.2.1)
2

"
(2.1.2.1)
1

= ! \&;−?−A ,

which is what we need.

(2.1.2.2) Suppose there is no leaf in T 2 ∪ T 3 that is either single or paired with a leaf in T 1; then in

the same way as in case (1.2.2), we must have :r = :r1 = :r2 = :r3 . Moreover, we have ?12 = ?13 = 0.

Then we perform O0 and get a factor "
(2.1.2.2)
0

:= 1. After this we colour r1, r2, r3 red and perform O3

to get a factor

"
(2.1.2.2)
3

:= ! \&;3−?3−1.

We then colour red any leaf of T 2 which has a partner in T 3 and perform O2 to get a factor

"
(2.1.2.2)
2

≤ ! \&;2−?2−?23−1+1.

Finally, we perform O1, again using the second part of estimate (3.15), to get a factor

"
(2.1.2.2)
1

:= ! \&;1−?1−A1−1.

Thus

" ≤ "
(2.1.2.2)
0

"
(2.1.2.2)
3

"
(2.1.2.2)
2

"
(2.1.2.2)
1

= ! \&;−?−A−1,

which is better than what we need.

(2.2) Now suppose that in the beginning all single leaves are red – that is, R = S ∪ {r}. Then we

can argue in exactly the same way as in case (2.1), except that in the last step where we perform O1, it

may happen that the root r1 as well as all leaves of T 1 are red at that time, so we lose one power of Q

in view of the weaker bound from the induction hypothesis. However, since R = S∪ {r}, we are in fact

allowed to lose this power, so we can still close the inductive step, in the same way as in case (2.1). This

completes the proof. �

Corollary 3.6. In Proposition 3.5, suppose R = {r}. Then formula (3.15) can be improved to

" ≤ ! \&;−?−3!23)−1. (3.16)
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Proof. In the proof of Proposition 3.5, we are now in case (2.1.2). In each subcase, either (2.1.2.1) or

(2.1.2.2), we perform the operation O0 first. In case (2.1.2.1), by formula (3.10) – noting that the extra

conditions are satisfied – we can replace the bound "
(2.1.2.1)
0

by " ′
0

:= ! \!23)−1, so we get

" ≤ " ′
0"

(2.1.2.1)
3

"
(2.1.2.1)
2

"
(2.1.2.1)
1

= ! \&;−?−3!23)−1.

In case (2.1.2.2) we get an improvement: we have " ≤ ! \&;−?−2, which also implies formula (3.16),

since we can check & ≤ !23)−1 ≤ &2 by definition. �

Now we are ready to prove Proposition 2.5.

Proof of Proposition 2.5. We start with equation (2.19). Let |T | = 3= + 1. Due to the rapid decay of√
=in, we may assume in the summation that |: l | ≤ ! \ for any l ∈ L, and so |: | ≤ ! \ also. For any

fixed value of g, we may apply Lemma 3.1 to the L-certain estimate
(
J̃T

)
:
(g). Namely, L-certainly, we

have, for some choice of pairing and with colouring R = {r} and =r = : ,

〈:〉4B
���(J̃T

)
:
(g)

���2 ≤ ! \

(
U)

!3

)2= ∑
(:l :l∈S)


∗∗∑

(:l :l∈L\S)
|KT (g, :n : n ∈ T ) |


2

, (3.17)

where
∑∗∗ represents summation under the condition that the unique admissible assignment determined

by (: l : l ∈ S) and (: l : l ∈ L\S) is strongly admissible. Next we would like to assume formula (3.17)

for all g, which can be done by the following trick. First, due to the decay factor in formula (2.20) and

the assumption |: l | ≤ ! \ , we may assume |g | ≤ !3+\ ; moreover, choosing a large power D, we may

divide the interval
[
−! \ , ! \

]
into subintervals of length !−� and pick one point g9 from each interval.

Due to the differentiability of KT (see formula (2.20)), we can bound the difference��KT (g, :n : n ∈ T ) −KT

(
g9 , :n : n ∈ T

) ��
by a large negative power of L, provided g is in the same interval as g9 . Therefore, as long as formula

(3.17) is true for each g9 , we can assume it is true for each g up to negligible errors. Since the number

of g9s is at most $
(
!2�

)
and formula (3.17) holds L-certainly for each fixed g9 , we conclude that,

L-certainly, formula (3.17) holds for all g.

Now, by expanding the square in formula (3.17), it suffices to bound the quantity

∫
R

〈g〉21
∑

(:l :l∈S)

∗∗∑
(:l :l∈L\S)

∗∗′∑
(:′l :l∈L\S)

|KT (g, :n : n ∈ T ) | ·
��KT

(
g, : ′n : n ∈ T

) �� dg,
where (:n : n ∈ T ) is the unique admissible assignment determined by (: l : l ∈ L) and (: l : l ∈ L\S),
and

(
: ′n : n ∈ T

)
is the one determined by (: l : l ∈ L) and

(
: ′
l

: l ∈ L\S
)
. The conditions in the

summations
∑∗∗ and

∑∗∗′ correspond to these two assignments being strongly admissible. By formula

(2.20), we have (for some choice of 3n)

〈g〉21 |KT (g, :n : n ∈ T ) | ·
��KT

(
g, : ′n : n ∈ T

) ��
. 〈g〉21 〈g − )3r@r〉−10

〈
g − )3r@′r

〉−10
∏
n∈N

〈)@n〉−1
〈
)@′n

〉−1
,

where @n and @′n are defined from the assignments (:n) and
(
: ′n

)
, respectively, via equation (2.16).

Thus the integral in g gives

max
(
〈)@r〉,

〈
)@′r

〉)−2+21 〈
)

(
@r − @′r

)〉−5
∏

r≠n∈N
〈)@n〉−1

〈
)@′n

〉−1
,
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and it suffices to bound

∑
(:l :l∈S)

∗∗∑
(:l :l∈L\S)

∗∗′∑
(:′l :l∈L\S)

max
(
〈)@r〉,

〈
)@′r

〉)−2+21 〈
)

(
@r − @′r

)〉−5
∏

r≠n∈N
〈)@n〉−1

〈
)@′n

〉−1
.

Since all the qs are bounded by ! \ , and ) ≤ !3 , we may fix the integer parts of each )@n and )@′n for

each n ∈ N, and reduce the foregoing sum to a counting bound, at the price of losing a power !� (1− 1
2 ) .

Now by definition (2.16), each @n is a linear combination of Ωns, and conversely, each Ωn is a linear

combination of @ns. So once the integer parts of each )@n and )@′n are fixed, we have also fixed fn ∈ R
and f′

n ∈ R, such that

|Ωn − fn | ≤ )−1,
��Ω′

n − f′
n

�� ≤ )−1. (3.18)

Therefore we are reduced to counting the number of (: l : l ∈ S), (: l : l ∈ L\S) and
(
: ′
l

: l ∈ L\S
)

such that the assignments (:n) and
(
: ′n

)
are both strongly admissible and satisfy formula (3.18). Now

let |L| = ; = 2= + 1 and p be the number of pairs; then |S| = 2= + 1 − 2?. First we count the number

of choices for (: l : l ∈ S) and (: l : l ∈ L\S), where we apply Corollary 3.6 with R = {r} and get the

factor " := ! \&2=−?−2!23)−1; then, with : l fixed for all l ∈ S, we count the number of choices for(
: ′
l

: l ∈ L\S
)

by applying Proposition 3.5 with R = S ∪ {r} and get the factor " ′ := ! \&? . In the

end we have, L-certainly,

sup
:

〈:〉4B
���(J̃T

)
:
(g)

���2 ≤ ! \+� (1− 1
2 )

(
U)

!3

)2=

"" ′

≤ ! \+� (1− 1
2 )

(
U)

!3

)2=

&2=−2!23)−1
= ! \+� (1− 1

2 )d2=−2
(
U2)

)

by the definition of Q in formula (3.11), as desired. �

3.3. Bounds for P±

In this section we prove Proposition 2.6. The proofs for both P± are similar, so we consider only P+.

Proof of Proposition 2.6. There are three steps.

Step 1: First reductions. We start with some simple observations. The operator P+(E) =

IW
(
JT 1

,JT 2
, E

)
, where I and W are defined in formulas (2.6) and (2.7). Now in formula (2.7) we may

assume |:1 |, |:2 | ≤ ! \ , for the same reason as in the proof of Proposition 2.5. We thus have

!−\ ≤ 〈:〉B
〈:3〉B

≤ ! \ ,

so instead of ℎB,1 bounds we only need to consider ℎ0,1 bounds. Next notice that if I is defined by

equation (2.6) and I1 is defined by I1� = j · (sgn ∗ (j · �)), then we have the identity 2I� (C) =

I1� (C) − j(C)I1� (0), so for 1 > 1
2

we have ‖I�‖ℎB,1 . ‖I1�‖ℎB,1 . Therefore, in estimating P+ we may

replace the operator G that appears in the formula for I by I1. The advantage is that I1 has a formula

Ĩ1� (g) =
∫
R

�1(g, f)�̃ (f)df,

where �1 is as in Lemma 2.1, so we may get rid of the �0 term. From now on we will stick to the renewed

definition of I. Next, by Proposition 2.5 we have the trivial bound
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‖P+E‖ℎ0,1 ∼ ‖P+E‖ℓ2
:
!2
C
+ ‖mCP+E‖ℓ2

:
!2
C

. ‖E‖ℓ2
:
!2
C
· U)
!3

∑
:1 ,:2

(JT1

)
:1


!∞
C

(JT2

)
:2


!∞
C

. U)!3+\+� (1− 1
2 ) d=1+=2 · ‖E‖ℎ0,0 .

Note also that U) ≤ !3 and d ≤ !−Y , so by interpolation it suffices to L-certainly bound the ℎ0,1 →
ℎ0,1−1 norm of (the renewed version of) P+ by ! \ d=1+=2+1.

Now, using Lemma 2.1 and noticing that the bound (2.8) is symmetric inf and g, we have the formula

(
P̃+E

)
:
(g) = 8U)

!3
〈g〉−1

∗∑
(<1 ,<2 ,:

′)

∫
R3

� (g, f1 − f2 + g′ + )Ω(<1, <2, :
′, :))

×
(
J̃T1

)
<1

(f1)
(
J̃T2

)
<2

(f2) · Ẽ:′ (g′)df1df2dg′, (3.19)

where � = � (g, [) and all its derivatives are bounded by 〈g − [〉−10. By elementary estimates we have

‖F̃: (g)‖!1
gℓ

2
:
.

〈g〉1 F̃: (g)

ℓ2
:
!2
g
,

〈g〉1−1 〈g〉−1 F: (g)

ℓ2
:
!2
g
. ‖F̃: (g)‖!∞

g ℓ
2
:
, (3.20)

and thus it suffices to L-certainly bound the ℓ2 → ℓ2 norm of the operator

X : (XE): =
U)

!3

∗∑
(<1 ,<2 ,:′)

E:′ ·
∫
R2

� (g, f1 − f2 + g′ + )Ω(<1, <2, :
′, :))

×
(
J̃T1

)
<1

(f1)
(
J̃T2

)
<2

(f2)df1df2 (3.21)

uniformly in g and g′.
Step 2: Second reductions. At this point we apply similar arguments as in the proof of Proposition 2.5.

Namely, we first restrict |g |, |g′ | ≤ ! \−1

(otherwise we can gain a power of either |g | 1
2 (1− 1

2 ) or |g′ | 1
2 (1− 1

2 )
from the extra room when applying formula (3.20), which turns into a large power of L and closes the

whole estimate), and then divide this interval into subintervals of length !−\
−1

and apply differentiability

to reduce to $
(
!�\−1

)
choices of (g, g′). Therefore, it suffices to fix g and g′ and L-certainly bound

‖X‖ℓ2→ℓ2 . Let g − g′ = Z be fixed.

Now use equation (2.19) for the JT 9
factors, assuming also |: l | ≤ ! \ in each tree, and integrate in

(f1, f2). This leads to further reduced expression for X, which can be described as follows. First let the

tree T be defined such that its root is r and three subtrees from left to right are T 1, T 2 and a single node

r′. Then we have

(XE): =

∑
:′

X::′E:′ ,

where the matrix coefficients are given by

X::′ =

(
U)

!3

)=1+=2+1 ∑
(:n :n∈T)

K
(
|: |2V − |: ′ |2V , : l : r′ ≠ l ∈ L

)
· 1

〈)@r − Z〉5

∏
n∈N\{r }

1

〈)@n〉
∏

l∈L\{r′ }
[
]l
:l
,

where the sum is taken over all admissible assignments (:n : n ∈ T ) which satisfy :r = : , :r′ = :
′ and

|:n | ≤ ! \ for n ∉ {r, r′}, and the coefficient satisfies |K| ≤ ! \ and |mK| ≤ ! \) . Moreover, we observe

that K and @r depend on the variables :r = : and :r′ = :
′ only through the quantity |: |2V − |: ′ |2V .

Next we argue in the same way as in the proof of Proposition 2.5 and fix the integer parts of )@n for

n ∈ N \ {r}, as well as the integer part of )@r − Z , at a cost of (log !)$ (1) . All these can be assumed to
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be ≤ ! \−1

due to the decay 〈)@r − Z〉−5 and the bounds on g and g′. This is equivalent to fixing some

real numbers fn = $
(
! \−1

)
and requiring the assignment (:n : n ∈ T ) to satisfy |Ωn − fn | ≤ )−1

for each n ∈ N. Let this final operator, obtained by all the previous reductions, be G. Schematically, the

operator G can be viewed as ‘attaching’ two trees T 1 and T 2 to a single node r′.
Step 3: The high-order GG∗ argument. For this, we consider the adjoint operator G∗. A similar

argument gives a formula for G∗, which is associated with a tree T ∗ formed by attaching the two trees

T 2 and T 1 (with T 2 on the left of T 1) to a single node r′, in the same way that G is associated with

T . Given a large positive integer D, we will consider (GG∗)� , which is associated with a tree T � . The

precise description is as follows.

First, T � is a tree with root node r0 = r, and its first two subtrees (from the left) are T 1 and T 2. The

third subtree has root r1, and its first two subtrees (from the left) are T 2 and T 1. The third subtree has root

r2, and its first two subtrees (from the left) are T 1 and T 2, and so on. This process repeats and eventually

stops at r2� = r′, which is a single node, finishing the construction of T � . As usual, denote by L� and

N� the set of leaves and branching nodes, respectively. Then the kernel of (GG∗)� is given by(
(GG∗)�

)
::′

=

∑
(:n :n∈T�)

K(�)
(��:r 9 ��2V −

��:r 9+1

��2
V

: 0 ≤ 9 ≤ 2� − 1, : l : r′ ≠ l ∈ L�
)

×
(
U)

!3

)2� (=1+=2+1) ∏
r′≠l∈L�

[
]l
:l
, (3.22)

where
��K(�) �� ≤ ! \ and

��mK(�) �� ≤ ! \) , and the sum is taken over all admissible assignments(
:n : n ∈ T �

)
that satisfy (:r , :r′) = (:, : ′), |: l | ≤ ! \ for r′ ≠ l ∈ L and |Ωn − fn | ≤ )−1 for

n ∈ N� , where fn = $
(
! \−1

)
are fixed. Moreover, K(�) depends on the variables :r = : and :r′ = :

′

only through the quantities
��:r 9 ��2V −

��:r 9+1

��2
V

for 0 ≤ 9 ≤ 2� − 1.

Now note that each
(
(GG∗)�

)
::′ is an explicit multilinear Gaussian expression. Since for fixed k (or

: ′) the number of choices for : ′ (or k) is $
(
!3+\ ) , by Schur’s estimate we know

(GG∗)�

ℓ2→ℓ2 . !

3+\ sup
:,:′

���((GG∗)�
)
::′

��� .
So it suffices to L-certainly bound

�� ((GG∗)�
)
::′

�� uniformly in k and : ′. We first consider this estimate

with fixed (:, : ′). Applying Lemma 3.1, we can fix some pairings of T � and the set S� of single leaves,

and argue as in the proof of Proposition 2.5 to conclude L-certainly that

���((GG∗)�
)
::′

���2 . ! \

(
U)

!3

)4� (=1+=2+1) ∑
(:l :l∈S�)

∗∗∑
(:l :l∈L�\S�)

∗∗′∑
(:l′ :l∈L�\S�)

1,

where the condition for summation, as in the proof of Proposition 2.5, is that the unique admis-

sible assignment
(
:n : n ∈ T �

)
determined by

(
: l : l ∈ S�

)
and

(
: l : l ∈ L�\S�

)
satisfies all the

conditions already listed, and the same happens for
(
: ′n : n ∈ T �

)
corresponding to

(
: l : l ∈ S�

)
and(

: ′
l

: l ∈ L�\S�
)
. We know that T � is a tree of scale 2� (=1+=2+1)„ and so

��L�
�� = 4� (=1+=2+1)+1;

let the number of pairings be p, and then
��S�

�� = 4� (=1 + =2 +1) −2?. By Proposition 3.5 we can bound

the number of choices12 for
(
: l : l ∈ S�

)
and

(
: ′
l

: l ∈ L�\S�
)

by " = ! \&4� (=1+=2+1)−? , and bound

the number of choices for
(
: ′
l

: l ∈ L�\S�
)

given
(
: l : l ∈ S�

)
by " ′ = ! \&? . In the end, for any

12Strictly speaking, we need to modify Proposition 3.5 a little, as we do not assume |:′ | ≤ !\ . But this will not affect the
proof, which relies on the translation-invariant inequality (3.11).
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fixed (:, : ′), we have that L-certainly,

!3+\ sup
:,:′

���((GG∗)�
)
::′

��� ≤ !3+\
(
U)

!3

)2� (=1+=2+1)
("" ′)1/2 ≤ !3+\ d2� (=1+=2+1) .

Finally we need to L-certainly make this bound uniform in all choices of (:, : ′). This is not obvious,

since we impose no upper bound on |: | and |: ′ |, so the number of exceptional sets we remove in the

L-certain condition could presumably be infinite. However, note that the coefficient K depends on k and

: ′ only through the quantities |: |2V −
��:r 9 ��2V . Let D = L\{r′}; then |: l | ≤ ! \ for l ∈ D, and the condition

for summation creates the restriction that

���|: |2V −
��:r 9 ��2V

��� ≤ ! \−1

. The reduction from infinitely many

possibilities for k (and hence : ′) to finitely many is done by invoking the following result, whose proof

will be left to the end:

Claim 3.7. Let : ∈ Z3
!
, and consider the function

5(:) : < ↦→ |: |2V − |: + < |2V , Dom
(
5(:)

)
=

{
< ∈ Z3! : |< | ≤ ! \ ,

���|: |2V − |: + < |2V
��� ≤ ! \−1

}
.

Then there exist finitely many functions 51, . . . , 5�, where � ≤ !�\−1

, such that for any : ∈ Z3
!

there

exists 1 ≤ 9 ≤ � such that
�� 5(:) − 5 9

�� ≤ !−\
−1

on Dom
(
5(:)

)
.

Remark 3.8. We may view Claim 3.7 as a ‘finiteness’ or ‘compactness’ lemma. Similar results are also

used in [18] and [19] for similar purposes.

Now it is not hard to see that Claim 3.7 allows us to obtain a bound of the form proved that is uniform

in (:, : ′), after removing at most $
(
!�\−1

)
exceptional sets, each with probability . 4−!

\

. This then

implies (GG∗)�

ℓ2→ℓ2 . !

3+\ d2� (=1+=2+1) ,

hence

‖G‖ℓ2→ℓ2 . !
3+\
2� d=1+=2+1.

By fixing D to be a sufficiently large positive integer, we deduce the correct operator bound for G, and

hence for X and P+. This completes the proof of Proposition 2.6. �

Proof of Claim 3.7. We will prove the result for any linear function 6(<) = G · < + - , where G ∈ R3
and - ∈ R are arbitrary. We may also assume < ∈ Z3 instead of Z3

!
; the domain Dom(6) will then be

the set E of m such that |< | ≤ !1+\ and |6(<) | ≤ !2+\−1

.

Let the affine dimension dim(�) = A ≤ 3; then E contains a maximal affine independent set{
@ 9 : 0 ≤ 9 ≤ A

}
. The number of choices for these @ 9 is at most !3+1, so we may fix them. Let L

be the primitive lattice generated by
{
@ 9 − @0 : 1 ≤ 9 ≤ A

}
, and fix a reduced basis

{
ℓ 9 : 1 ≤ 9 ≤ A

}
of L. For any < ∈ � there is a unique integer vector : = (:1, . . . , :A ) ∈ ZA such that |: | . !1+\ ,

< − @0 = :1ℓ1 + · · · + :AℓA , and as a linear function we can write 6(<) = H · : + . , where H ∈ RA and

. = 6(@0) ∈ R.

Now let the : ∈ ZA corresponding to < = @ 9 be : ( 9) , where 1 ≤ 9 ≤ A; then since @0 ∈ � and

@ 9 ∈ � , we conclude that
��H · : ( 9) �� ≤ !3+\−1

. As the : ( 9) are linear independent integer vectors in ZA

with norm bounded by !1+\ , we conclude that |H | ≤ !�+\−1

, and consequently |. | ≤ !�+\−1

. We may

then approximate 6(<) for < ∈ � by H 9 · : + . 9 , where H 9 and . 9 are one of the !�\−1

choices that

approximate y and Y up to error !−\
−1

, and choose 6( 9) = H 9 · : + . 9 . �
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Figure 5. A tree of scale s(T ) = 6 and ? = 6 − 1 = 5 pairings. The pairings force |H − I | = |=5 − ℓ5 | =
|=4 − ℓ4 | = · · · = |: − G |.

3.4. The worst terms

In this section we exhibit terms JT that satisfy the lower bound (1.9). These are the terms corresponding

to trees T and pairings (see Remark 3.9) as shown in Figure 5, where T is formed from a single node by

successively attaching two leaf nodes, and the ‘left’ node attached at each step is paired with the ‘right’

node attached in the next step. Let the scale s(T ) = A; then T has exactly A − 1 pairings. For simplicity

we will consider the rational case V 9 = 1 and ) ≤ !2−X ; the irrational case is similar.

Here it is more convenient to work with the time variable t (instead of its Fourier dual g). To show

formula (1.9), since 1 > 1/2, we just need to bound (JT ): (C) from below for some k and some C ∈ [0, 1];
moreover, since j ≡ 1 on [0, 1], and using the recursive definition (2.17), we can write

(JT): (C) =
(
U)

!3

)A ∑
G−H+I=:

©«
∑

ℓ1 ,...,ℓA−1

B ·
A−1∏
9=1

=in (ℓ 9 )
��[ℓ 9 ��2ª®¬

· [G[H[I ·
√
=in(G)=in (H)=in (I), (3.23)

where (due to admissibility) the variables in the summation satisfy

: − G = =1 − ℓ1 = =2 − ℓ2 = · · · = =A−1 − ℓA−1 = H − I := @

and the coefficient B is given by

B =

∫
C>C1> · · ·>CA>0

42c8) (C1Ω1+···+CAΩA )dC1 · · · dCA , (3.24)

with Ω 9 being the resonance factors, namely

Ω1 = 2@ · (: − =1),Ω2 = 2@ · (=1 − =2), . . . ,ΩA−1 = 2@ · (=A−2 − =A−1),ΩA = 2@ · (=A−1 − I).

In equation (3.23) we may replace
��[ℓ 9 ��2 by 1, so the factor in the big parentheses, which we denote

by A:GHI , involves no randomness. Therefore, with high probability,

| (JT): (C) |2 ∼
(
U)

!3

)2A ∑
G−H+I=:

��A:GHI

��2 .
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In the sum, we may fix @ ∈ Z3
!

with 0 < |@ | . !−1, which has $ (1) choices, and write

A:GHI =

∫
C>C1> · · ·>CA>0

44c8) @ · [C1 (:−@)+CA (@−I) ]

×


∑
ℓ1 ,...,ℓA−1

44c8) [ (C2−C1)@ ·ℓ1+···+(CA−CA−1)@ ·ℓA−1 ]
A−1∏
9=1

=in

(
ℓ 9

)
dC1 · · · dCA .

By Poisson summation, and noticing that
��)C 9@�� . !1−X , we conclude that up to constants,

∑
ℓ1 ,...,ℓA−1

44c8) [ (C2−C1)@ ·ℓ1+···+(CA−CA−1)@ ·ℓA−1 ]
A−1∏
9=1

=in

(
ℓ 9

)
= ! (A−1)3

A−1∏
9=1

=̂in

(
)@

(
C 9+1 − C 9

) )
+$ (!−∞) .

By making change of variables B 9 = C 9 − C 9+1(1 ≤ 9 ≤ A − 1) and B0 = C − C1, BA = CA , we can reduce to

A:GHI ≈ ! (A−1)3
∫
B0+···+BA=C

44c8) [ (C−B0)@ · (:−@)+BA@ · (@−I) ]
A−1∏
9=1

=̂in

(
)@B 9

)
dB1 · · · dBA .

By choosing some particular (:, @, I), we may assume @ · (: − @) = @ · (@ − I) = 0, and if we also

choose =in such that =̂in is positive, say =in(:) = 4−|: |
2

, and C = min
(
1, !)−1

)
, then we have��A:GHI

�� ∼ ! (A−1)3 min
(
1, !)−1

)A
,

and hence, with high probability,

sup
:,C

| (JT): (C) | & !−3 min(U), U!)A = !−3dA

for any fixed r – thus formula (1.9).

Remark 3.9. Here, strictly speaking, we are further decomposing JT into the sum of terms JT ,P,

where P represents the pairing structure of T . In the proof of Proposition 2.5, we are actually making

the same decomposition (by identifying the set of pairings) and proving the same bound for each JT ,P.

On the other hand, the example here shows that individual terms JT ,P can be very large in absolute

value. Thus to get any improvement on the results of this paper, one would need to explore the subtle

cancellations between the JT ,P terms with different T or different P.

4. Proof of the main theorem

In this section we prove Theorem 1.3 (which also implies Theorem 1.1). Since we may alter the value

of T, in proving Theorem 1.3 we may restrict to the case )/2 ≤ C ≤ ) .

First note that E |D̂(:, C) |2 = E |0: (B) |2, where B := C
)

∈ [1/2, 1]. By mass conservation, we have

!−3/2
∑

:∈Z3
!
|0: |2 = $ (1) and hence ‖0: ‖ℓ∞ . !3/2. Therefore, if we denote by Γ the intersection of

all the L-certain events in Propositions 2.4 and 2.5, we have, for 0 ≤ B ≤ 1 (denoting by EΓ� = E1Γ�),

E |D̂(:, )B) |2 = EΓ

[
| (J0): (B) |2 + |(J1): (B) |2 + 2Re(J0): (B)(J1): (B) + 2Re(J0): (B)(J2): (B)

]
+

∑
3≤=≤#

2EΓRe(J0): (B)(J=): (B) +
∑

1≤=1 ,=2≤# ;=1+=2≥3

EΓ

(
J=1

)
:
(B)

(
J=2

)
:
(B)

+
∑
=≤#

2EΓRe(R#+1): (B)(J=): (B) + EΓ | (R#+1): (B) |2 +$
(
4−!

\
)
. (4.1)
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By using Proposition 2.4, we can bound the last three terms by

���EΓ (
J=1

)
:
(B)

(
J=2

)
:
(B)

��� ≤ ! \+2 (1−1/2) d=1+=2−2
(
U2)

)
≤ !−X/10

)

)kin

,���EΓRe(R#+1): (B)(J=): (B)
��� + EΓ | (R#+1): (B) |2 ≤ ! \+� (1−1/2) d# ≤ !−103 .

As with the first term on the second line of equation (4.1), since (J0): (B) = j(C)
√
=in · [: (l), by direct

calculations and similar arguments as in the proof of Proposition 2.5 we can bound, for any tree T with

s(T ) = =,
���E(J0): (B)(JT): (B)

��� ≤ ! \

(
U)

!3

)=
",

where M is the quantity estimated in Proposition 3.5 (i.e., the number of strongly admissible assignments

satisfying formula (3.14)), with all but one leaf of T being paired, and R = {r}. By Corollary 3.6 we

have

���E(J0): (B)(JT): (B)
��� ≤ ! \

(
U)

!3

)=
&=−2!23)−1 ≤ ! \ d=−2

(
U2)

)
≤ !−X/10

)

)kin

.

It then suffices to calculate the main term, which is the first line of equation (4.1). Up to an error of size

$
(
4−!

\
)
, we can replace EΓ by E; also, we can easily show that ReE(J0): (B)(J1): (B) = 0. For |B | ≤ 1,

clearlyE | (J0): (B) |2 = =in; as for the other two terms, namelyE | (J1): (B) |2 and 2ERe(J0): (B)(J2): (B),
we compute as follows: Recall that (0in): =

√
=in(:)[: (l) and

(J1): (B) = −U)
!3


×∑

(:1 ,:2 ,:3);Ω≠0

(0in):1
(0in):2

(0in):3

42c8)ΩB − 1

2c)Ω

+8B
×∑

(:1 ,:2 ,:3);Ω=0

(0in):1
(0in):2

(0in):3
− 8B | (0in): |2 (0in):


,

and therefore we have

E | (J1): (C) |2 =
U2B2)2

!23


×∑

(:1 ,:2 ,:3);Ω≠0

2(=in):1
(=in):2

(=in):3

���� sin cΩ)BcΩ)B

����
2

+
×∑

(:1 ,:2 ,:3);Ω=0

(=in):1
(=in):2

(=in):3
+ |(=in): |2 (=in):


= 2

U2C2

!23

×∑
(:1 ,:2 ,:3);Ω≠0

(=in):1
(=in):2

(=in):3

���� sin cΩCcΩC

����
2

+$
(
)

)kin

!−X
)
,

where we used ) < !23−X for the third term and estimated the second term by !23−2+\ for general V 9

and by !3+\ if V 9 are irrational (e.g., using Lemma 3.2 with < = 0 and ) = !2 and !3 , respectively).

A similar computation for 2ERe(J0): (B)(J2): (B) (see [7]) gives

E

[
| (J1): (C) |2 + 2Re(J0): (C)(J2): (C)

]
=

2U2C2

!23
·�C (=in) +$

(
)

)kin

!−X
)
,
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where

�C (q) :=
∑
:8 ∈Z3!

:−:1+:2−:3=0

q:q:1
q:2

q:3

[
1

q:
− 1

q:1

+ 1

q:2

− 1

q:3

] �������
sin

(
cCΩ

(
®:
))

cCΩ
(
®:
)

�������
2

, (4.2)

with Ω

(
®:
)
= Ω(:, :1, :2, :3) = |:1 |2V − |:2 |2V + |:3 |2V − |: |2V . Therefore, we conclude that

E |D̂(:, C) |2 = =in +
2U2C2

!23
�C (=in) +$

(
)

)kin

!−X/10

)
.

In the following section, we derive the asymptotic formula for the sum �C – namely, we show that

�C (q) = 
C (q) +$
(
C−1!23−\ ) for some \ > 0, where 
C is given by


C (q) := !23

∫
b1−b2+b3=b

q(b)q(b1)q(b2)q(b3)
[

1

q(b) −
1

q(b1)
+ 1

q(b2)
− 1

q(b3)

]

×

�������
sin

(
cCΩ

(
®b
))

cCΩ
(
®b
)

�������
2

3b13b23b3. (4.3)

Finally, the proof is complete by using the fact that for a smooth function f,

C

∫ ���� sin(cCG)cCG

����
2

5 (G)dG = 5 (0) +$
(
C−1

)
. �

5. Number-theoretic results

The purpose of this section is to prove the asymptotic formula for �C defined in formula (4.2). The sum

�C should be regarded as a Riemann sum that approximates the integral 
C in formula (4.3). However,

this approximation is far from trivial, because of the highly oscillating factor

�����
sin

(
cCΩ

(
®b
))

cCΩ
(
®b
)

����� 2, which makes

the problem intimately related to the equidistribution properties of the values of the quadratic form Ω.

Theorem 5.1. Set q ∈ S
(
R
3
)

with 3 ≥ 3. For any X > 0, there exists \ > 0 such that the asymptotic

holds:

1. (General tori) For any V8 ∈ [1, 2]3 and any C < !2−X ,

�C = 
C +$
(
!23−\ C−1

)
.

2. (Generic tori) For generic V8 ∈ [1, 2]3 and any C < !3−X ,

�C = 
C +$
(
!23−\ C−1

)
.

It is not hard to see that 
C = $
(
!23

)
C−1, which justifies the sufficiency of the error-term bound.

Remark 5.2. It is interesting that in the case of the rational torus for which V 9 = 1, this asymptotic

ceases to be true at the end point C = !2. This corresponds to ` = 1 in formula (5.1), whose asymptotic

was studied in [24, 6] and yields a logarithmic divergence when 3 = 2 and a different multiplicative

constant for 3 ≥ 3 compared to the asymptotic in our theorem.
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Proof of Theorem 5.1. The proof of part (2) is contained in [7], we will focus only on the first part,

which is less sophisticated. To simplify the notation, we will drop the subscript t from �C and 
C .

We use a refinement of [7] which basically covers the case C < !1−X . First, observe that Ω
(
®:
)
=

−2Q(:1−:, :3−:), whereQ(G, H) :=
∑3

9=1 V 9G 9 H 9 . Therefore, changing variables #1 = !(:1−:) ∈ Z3
and #2 = !(:3 − :) ∈ Z3 , we write the sum � in the form

� =

∑
#=(#1 ,#2) ∈Z23

,

(
#

!

)
6(4`Q(#)), 6(G) :=

���� sin cGcG

����
2

, ` :=
1

2
C!−2 < !−X , (5.1)

where, ∈ S
(
R

23
)
. Thus we have


 = !23

∫
(I1 ,I2) ∈R23

, (I1, I2)6(4`I1 · I2)3I13I2. (5.2)

Step 1: Truncating in N. We first notice that the main contribution of the sum � (resp., the integral


) comes from the region |# | . !1+X1
(
resp., | (b1, b2) | . ! X1

)
, where X1 =

X
100

. This uses the fact that

W is a Schwartz function with sufficient decay. We can therefore without loss of generality include in

the sum � (resp., the integral K) a factor j
(

#

!1+X1

) (
resp., j

(
I

!1+X1

))
, where j ∈ �∞

2

(
R
3
)

is 1 on the

unit ball �
(
0, 1

10

)
and vanishes outside �

(
0, 2

10

)
.

Step 2: Isolating the main term. We now use the fact that the Fourier transform of g is given by the

tent function 6̂(G) = 1 − |G | on the interval [−1, 1] and vanishes otherwise to write (using the notation

4(G) := 42c8G)

� =

∑
#=(#1 ,#2) ∈Z23

,

(
#

!

)
j

(
#

!1+X1

) ∫ 1

−1

6̂(g)4(4`gQ(#))3g

=`−1
∑

#=(#1 ,#2) ∈Z23

,

(
#

!

)
j

(
#

!1+X1

) ∫ `

−`
6̂

(
g

`

)
4(4gQ(#))3g

=�� +��,

where A is the contribution of |g | ≤ !−1−X1 and B is the contribution of the complementary region,

which could be empty if ` < !−1−X1 , in which case we assume � = 0. This decomposition can be

understood as the analogue of the classical minor versus major arc splitting in the circle method. For

the major arc ��, we use Poisson summation to replace the sum in N by an integral which will give the

needed asymptotic up to acceptable errors:

�� = `−1

∫
|g | ≤min(`,!−1−X1 )

6̂

(
g

`

) ∑
2∈Z23

∫
I∈R23

,
( I
!

)
j

( I

!1+X1

)
4(4gQ(I) − 2 · I)3I3g

= `−1!23

∫
|g | ≤min(`,!−1−X1 )

6̂

(
g

`

) ∫
I∈R23

, (I)j
( I

! X1

)
4
(
4g!2Q(I)

)
3I3g

+ `−1!23

∫
|g | ≤min(`,!−1−X1 )

6̂

(
g

`

) ∑
2∈Z23

2≠0

∫
I∈R23

, (I)j
( I

! X1

)
4
(
4g!2Q(I) − !2 · I

)
3I3g

= `−1!23

∫
|g | ≤`

6̂

(
g

`

) ∫
I∈R23

, (I)j
( I

! X1

)
4
(
4g!2Q(I)

)
3I3g

+ `−1!23

∫
min(`,!−1−X1 )< |g | ≤`

6̂

(
g

`

) ∫
I∈R23

, (I)j
( I

! X1

)
4
(
4g!2Q(I)

)
3I3g
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+ `−1!23

∫
|g | ≤min(`,!−1−X1 )

6̂

(
g

`

) ∑
2∈Z23

2≠0

∫
I∈R23

, (I)j
( I

! X1

)
4
(
4g!2Q(I) − !2 · I

)
3I3g

= 
 +��1 +��2,

where ��1 and ��2 are respectively the second and third terms in the second-to-last equality.

The remainder of the proof is to show that ��1,��2 and �� are error terms.

Step 3: Showing that ��1 and ��2 are error terms. To estimate ��1, we use the stationary phase

estimate ����
∫
I∈R23

, (I)j
( I

! X1

)
4
(
4g!2Q(I)

)
3I

���� .
(
g!2

)−3

and the fact that the term is only nonzero if ` > !−1−X1 to bound

|��1 | . `−1

∫
!−1−X1< |g | ≤`

����6̂
(
g

`

)���� |g |−3 3g . `−1! (1+X1) (3−1)
= C−1!3+1+X1 (3−1) ≪ !23−X C−1.

For ��2, we use nonstationary phase techniques relying on the fact that the phase function Φ(I) =
4g!2Q(I)−!2 · I satisfies |∇IΦ(I) | = |!(4g!(I2, I1)−2) | & ! |2 | for 2 ≠ 0, since |I | ≤ !X1

5
. Therefore,

one can integrate by parts in z sufficiently many times and show that |��1 | ≪ !23−X C−1 as well.

Step 4: Showing that �� is an error term. Here we assume without loss of generality that !−1−X1 <

` ≤ !−X (otherwise �� = 0). Therefore,

�� = `−1

∫
!−1−X1< |g | ≤`

6̂

(
g

`

)
� (g)3g, � (g) =

∑
#=(#1 ,#2) ∈Z23

,

(
#

!

)
j

(
#

!1+X1

)
4 (4gQ(#)) .

Recall that Q(#) = ∑3
9=1 V 9 (#1) 9 (#2) 9 , so we perform the following change of variables:

(#1) 9 =
? 9 + @ 9

2
, (#2) 9 =

? 9 − @ 9

2
, ? 9 = @ 9 (mod 2).

Therefore, the sum in (#1) 9 , (#2) 9 ∈ Z2 becomes a sum

∑
(? 9 ,@ 9)∈Z2

−
∑

? 9 ∈2Z,@ 9 ∈Z
−

∑
? 9 ∈Z,@ 9 ∈2Z

+2
∑

(? 9 ,@ 9)∈2Z2

.

We will estimate the contribution of the first sum, and it will be obvious from the proof that the

other sums are estimated similarly. Also, by symmetry, we only need to consider the sums for which

? 9 , @ 9 ≥ 0, which reduces us to

� (g) =
∑

? 9 ,@ 9 ≥0

9=1,...,3

,̃

( (?, @)
!

)
j̃

( (?, @)
!1+X1

) 3∏
9=1

4
(
gV 9 ?

2
9

)
4
(
−gV 9@

2
9

)
.

Let� (B, =) = ∑=
?=0 4

(
B?2

)
be the Gauss sum, and abusing notation, also denote by� (B, G) = � (B, [G])

for G ∈ R, where [G] is the floor function. Then

� (g) =
∫
G 9 ,H 9 ≥0

9=1,...,3

,̃

( (G, H)
!

)
j̃

( (G, H)
!1+X1

) 3∏
9=1

� ′ (gV 9 , G 9
)
� ′ (gV 9 , H 9

)
.
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Integrating by parts in all the variables (or equivalently, performing an Abel summation), one obtains

� (g) =
∫
G 9 ,H 9 ≥0

9=1,...,3

mG1
· · · mH3,̃

( (G, H)
!

)
j̃

( (G, H)
!1+X1

) 3∏
9=1

�
(
gV 9 , G 9

)
�

(
gV 9 , H 9

)
+ l.o.t.,

where ‘l.o.t.’ is lower-order terms that can be bounded is a similar or simpler way than the main term.

Here and in what follows, mG1
· · · mH3,̃

(
(G,H)
!

)
is understood as mG1

· · · mH3
(
,̃

(
(G,H)
!

))
.

We now recall the Gauss sum estimate for� (B, =): let 0 ≤ 0 < @ ≤ = be integers such that (0, @) = 1

and

���B − 0
@

��� < 1
@=

(for any s and n, such a pair exists by Dirichlet’s approximation theorem); then

|� (B, =) | ≤ =

√
@

(
1 + =

B − 0
@

1/2) ≤ =√
@
.

Here B = gV 9 , with g ∈
[
!−1−X1 , !−X

]
, V 9 ∈ [1, 2]. This means that either |=| < !2X or 0

@
. !−X

(⇒ @ & ! X), and in either case we get |� (B, =) | . !(1+X1− X
2 ) , since |=| . !1+X1 (note that this argument

works when 0 > 0; if 0 = 0 we have the better bound |� (B, =) | . |B |−1/2 ≤ !2/3).

As a result, we have

|� (g) | . !(1+X1− X
2 ) (23−4)

∫
G 9 ,H 9 ≥0

9=1,...,3

����mG1
· · · mH3,̃

( (G, H)
!

)
j̃

( (G, H)
!1+X1

)����
×

2∏
9=1

��� (
gV 9 ,

[
G 9

] )�� ��� (
gV 9 ,

[
H 9

] )�� .
This gives

|�� | . !(1+X1− X
2 ) (23−4)`−1

∫
G 9 ,H 9 ≥0

9=1,...,3

����mG1
· · · mH3,̃

( (G, H)
!

)
j̃

( (G, H)
!1+X1

)����
×

∫
|g | ≤`

2∏
9=1

��� (
gV 9 ,

[
G 9

] )�� ��� (
gV 9 ,

[
H 9

] )�� 3g.

Now using Hua’s lemma (compare [30]), we have
� (

g, = 9
)

!4 [0,1] . =
1/2+X1

9
. ! (1+X1) ( 1

2
+X1) ,

which gives

|�� | . !(1+X1− X
2 ) (23−4)`−1! (1+X1) (2+4X1) = !23C−1!−X (3−2)+X1 (23−2+4X1) ≪ !23−\ C−1,

provided that \ < min
(
1,

(3−2) X
23

)
and recalling that X1 =

X
100
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