LOCALLY COMPACT TIGHT RIESZ GROUPS

ANDREW WIRTH

(Received 12 May 1972)

Communicated by J. B. Miller

1. Introduction

It is known that a strongly archimedean locally compact tight Riesz group without pseudozeros is essentially R^m with the usual topology and tight order. We show that a locally compact tight Riesz group, (G, \leq) , without pseudozeros, is algebraically and topologically isomorphic with $R^m \oplus D$, where D is discrete. $R^m \oplus \{0\}$ is a clopen o-ideal; and we give necessary and sufficient conditions for G to be isomorphic with $R^m \oplus D$ in all respects. Further (G, \leq) contains an o-ideal isomorphic with $R^m \oplus \sum_{k} Z$ and G is isomorphic with it if and only if (G, \leq, \mathcal{H}) is interval-compact.

2. Preliminaries

Let (G, \leq) be an abelian pogroup. Denote the set $\{x: x \geq 0\}$ by P and the set $\{x: x > 0\}$ by P*. We say x is *pseudopositive* if x + p > 0 for all p > 0 and $x \geq 0$. We say x is a *pseudozero* if x and -x are pseudopositive. The intervals

$$(a, b) = \{x : a < x < b\} \ a, b \in G$$

form a subbase for the open-interval topology \mathcal{U} on G.

If (G, \leq) is dense then (G, \mathscr{U}) is a topological group. Also (G, \mathscr{U}) is T_1 if and only if (G, \leq) has no pseudozeros. Denote the closure of $S \subseteq G$ in \mathscr{U} by S^- . We say (G, \leq, \mathscr{U}) is *interval-compact* Cameron and Miller (to appear) if $(a, b)^$ is compact for every a < b.

If (G, \leq) has no pseudozeros we write x > 0 to mean that x > 0 or that x is pseudopositive. Then (G, \preccurlyeq) is a pogroup and \preccurlyeq is called the *associated order*. We write $a \ge b$ if $a \preccurlyeq nb$ for all integers n, and (G, \leq) is said to be *archimedean* if $a \ge b$ implies that b = 0. If (G, \leq) is an *l*-group, we say (G, \leq) is a *complete l*-group if each bounded subset of G has a sup and an inf. Every complete *l*-group is archimedean. If, given a, b > 0 there exists some integer n such that na > b, we say (G, \leq) is *strongly archimedean* (Loy and Miller (1972) call this archimedean). A strongly archimedean *l*-group is archimedean. We say (G, \leq) has the Andrew Wirth

TR(m, n) interpolation property, Cameron and Miller (to appear), if, given $a_1, \dots, a_m, b_1, \dots, b_n \in G$ such that $a_i < b_j$ for $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$ there exists $c \in G$ such that $a_i < c < b_j$ for $i = 1, \dots, m$ and $j = 1, \dots, n$. A tight Riesz group (abbreviated TRG) is a directed abelian pogroup satisfying TR(2, 2). We say a pogroup has small elements if given a > 0 and n, a positive integer, there exists b > 0 such that a > nb. Divisible isolated pogroups and pogroups satisfying TR(1, 2) have small elements.

Let $\{G_i, \preccurlyeq\}_{i \in I}$ be a family of *l*-groups, denote their (small) direct sum by $\sum G_i$ and define \preccurlyeq on $\sum G_i$ by, $(g_i) \ge 0$ if $g_i \ge 0$ for all $i \in I$. Denote the direct sum of two groups G_1 and G_2 by $G_1 \oplus G_2$. If (G, \preccurlyeq) is an *l*-group and S a subset of G denote the set

 $\{x: |x| \land |s| = 0 \text{ for all } s \in S\}$

by S^{\perp} . Let Z, R denote the abelian groups of integers and reals. If $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ we say x > 0 if $x_i > 0$ for $i = 1, \dots, n$. We call this the *tight order*. Then the open-interval topology is precisely the euclidean topology \mathscr{E} , and $x \ge 0$ if $x_i \ge 0$ for $i = 1, \dots, n$.

3. Locally compact and interval-compact TRGs

Let (G, \leq) be a non-trivially ordered abelian pogroup. We recall two results of Loy and Miller (1972), in fact Theorem 1 is the main result of that paper.

LEMMA 1. (Loy and Miller). Let (G, \leq) be a locally compact TRG such that (G, \leq) is an l-group, then (G, \mathcal{U}) is algebraically and topologically isomorphic with $\mathbb{R}^m \oplus D$, where m is a positive integer and D is discrete.

PROOF. This follows immediately from \$4, 6° of Loy and Miller (1972) and a theorem of G. W. Mackey's (see Loy and Miller (1972)).

THEOREM 1. (Loy and Miller) Let (G, \leq, \mathcal{U}) be a strongly archimedean locally compact TRG without pseudozeros, then it is isomorphic in all respects with $(\mathbb{R}^m, \leq, \mathcal{E})$ for some positive integer m.

The result of Lemma 1 can be generalized, without changing the method of proof, to the following Lemma.

LEMMA 2. Let (G, \leq, \mathscr{U}) be an isolated locally compact pogroup with small elements and without pseudozeros, then (G, \mathscr{U}) is algebraically and topologically isomorphic with $\mathbb{R}^m \oplus D$, where m is a non-negative integer and D is discrete.

We also give a modification of Theorem 1 in terms of small elements.

THEOREM 2.Let (G, \leq, \mathcal{U}) be a strongly archimedean locally compact pogroup with small elements such that (G, \preccurlyeq) is an l-group, then it is isomorphic in all respects with $(\mathbb{R}^m, \leq, \mathscr{E})$ for some positive integer m.

PROOF. Firstly we show that (G, \leq) is isolated. If nx > 0 for some positive integer *n*, then for some p > 0, nx > np. So certainly $x \geq p$, since (G, \leq) is isolated, and so x > 0. Now we show that (G, \leq) is TR(1, 2). Let a, b > 0, then for some positive *n*, na > b and for some c > 0, b > nc. So a, b > c > 0, and hence (G, \leq) is TR(1, 2). It can easily be shown that if (G, \leq) is TR(1, 2) and (G, \leq) is an *l*-group then in fact (G, \leq) is TR(2, 2). Clearly (G, \leq) is directed, so it is a TRG. Now apply Theorem 1.

If we remove "strongly archimedean" from the hypothesis of Theorem 1, we can still show that at least an *o*-ideal (convex directed subgroup) of (G, \leq) is isomorphic with \mathbb{R}^m .

THEOREM 3. Let (G, \leq, \mathcal{U}) be an isolated locally compact TRG without pseudozeros, then there exists a clopen o-ideal H and a positive integer m such that:

- (i) (H, \leq, \mathcal{U}) is isomorphic in all respects with $(\mathbb{R}^m, \leq, \mathscr{E})$,
- (ii) if $x \in P^*$ and $y \in H \cap P^*$ then nx > y for some positive integer n,
- (iii) if (G, \ll) is an l-group then (H, \ll) is an l-ideal.

PROOF. Let θ denote the isomorphism indicated in Lemma 2. If $\alpha \in \mathbb{R}^m$ and $\alpha > 0$ then for some $a \in \mathbb{P}^*$, we have

$$\theta\{(-a,a)\}\subseteq (-\alpha,\alpha)\oplus\{0\}.$$

In a TRG $(0, na) = (0, a) + \dots + (0, a)$. (§2, 4° of Loy and Miller (1972)), so $\theta\{(0, na)\} \subseteq R^m \oplus \{0\}$ and $\theta\{(-na, 0)\} \subseteq R^m \oplus \{0\}$. Let

 $H = \{x: -na < x < na \text{ for some positive integer } n\}$, then it is easily shown that $\theta(H) \subseteq R^m \oplus \{0\}$. Also for some positive integer k,

$$\theta\{(-a,a)\} \supseteq \left(-\frac{\alpha}{k}, \frac{\alpha}{k}\right) \oplus \{0\}.$$

So $\theta(H) = R^m \oplus \{0\}$. It is easily shown that H is an o-ideal in (G, \leq) . H is an open subgroup of a topological group and hence closed. Also the induced topology on H is homeomorphic with the open-interval topology on (H, \leq) , hence (H, \leq) has no pseudozeros and is locally compact in its open-interval topology.

If $b \in H \cap P^*$ then for some $\beta \in R^m$, $\beta > 0$, we have

$$\theta\{(-b,b)\} \supseteq (-\beta,\beta) \oplus \{0\},\$$

so $H = \{x: -nb < x < nb$ for some positive integer $n\}$. Hence (H, \leq) is strongly archimedean. So by Theorem 1, (i) follows.

If $x \in P^*$ and $y \in H \cap P^*$ then there exists $z \in H \cap P^*$ such that x, y > z > 0. By (i) nz > y for some positive n, so nx > y. The proof of (iii) is trivial.

We show in Theorem 4 that the result of Theorem 3 can be improved; in fact the condition that (G, \leq) is isolated can be deleted.

If (G, \leq) is a locally compact TRG such that (G, \leq) is an *l*-group, is the isomorphism referred to in Lemma 1 also an order isomorphism? That is, is (D, \leq) an *l*-group such that, if $a \in G$ and $\theta(a) = \langle \alpha, d \rangle$ we have a > 0 if and only if $\alpha > 0$ and $d \geq 0$, and $a \geq 0$ if and only if $\alpha \geq 0$ and $d \geq 0$?

LEMMA 3. Let (G, \preccurlyeq) be an l-group with an l-ideal (H, \preccurlyeq) isomorphic with $(\mathbb{R}^m, \preccurlyeq)$ for some positive integer m. Then $G \equiv H \oplus H^{\perp}$ if and only if there does not exist $x \in G$ and $h \in H$, h > 0 such that $x \gg h$.

PROOF. Certainly the condition is necessary. Now suppose that $x \ge h$ is false for all $x \in G$ and all $h \in H$, h > 0. Let $a \in G$, a > 0, and consider the set $\{a \land h : h \in H\}$. This is a subset of H and so it is bounded above in H since otherwise, $a \ge e_i$, for some *i*, where $e_i = (0, 0, \dots, 0, 1, 0, \dots)$, $e_i \in \mathbb{R}^m \equiv H$. Hence $\bigvee \{a \land h : h \in H\}$ exists for all a > 0, and belongs to H. It follows that $G \equiv H \oplus H^1$ (see proof of Theorem 16, Fuchs (1963; page 91)).

COROLLARY. If (G, \leq) is a locally compact TRG such that (G, \leq) is an *l*-group, then G is isomorphic in all respects with $\mathbb{R}^m \oplus D$, if and only if there does not exist an integer i and $x \in G$ with $x \geq e_i$.

Denote the set $\{x \ge 0; (0, x)^- \text{ is compact}\}$ by C. It is a consequence of a result in Cameron and Miller (to appear) that if (G, \le) is an interval-compact TRG without pseudozeros, then (G, \le) is a complete *l*-group. Below we characterize all such groups completely.

THEOREM 4. Let (G, \leq, \mathcal{U}) be a locally compact TRG without pseudozeros, then:

(i) C is a convex subsemigroup of (P, \leq) ,

(ii) the subgroup $(C - C, \leq)$, generated by C, is an l-group isomorphic in all respects with $\mathbb{R}^m \oplus \Sigma_{\mathbb{R}} \mathbb{Z}$, for some positive integer m and cardinal \mathfrak{R} ,

(iii) the condition in Theorem 3 that (G, \leq) is isolated is redundant.

PROOF. (i) It is obvious that C is convex. In §2, 14° Loy and Miller (1972) it is shown that C is a subsemigroup of P.

(ii) It follows easily that $(C - C, \leq)$ is interval-compact in its open-interval topology. Also $(C - C, \leq)$ is a TRG without pseudozeros, so $(C - C, \leq)$ is a complete *l*-group. We now apply Lemma 3 Corollary. So C - C is isomorphic in all respects with $\mathbb{R}^m \oplus D_1$, for some discrete *l*-group (D_1, \leq) . Further the strictly positive cone of (D_1, \leq) can have no infinite descending chains. For

suppose that $d_1 > d_2 > \cdots > 0$, $d_i \in D_1$, and let $\alpha \in R^m$, $\alpha > 0$, and $a = \theta^{-1} \langle \alpha, d_1 \rangle$. By Lemma 3 Corollary a > 0 so $(0, a)^-$ is compact. Let $b = \theta^{-1} \langle \alpha, 0 \rangle$, and cover $(0, a)^-$ by sets (x - b, x + b) where $x \in (0, a)^{-1}$. Then clearly $\theta^{-1} \langle 0, d_i \rangle$ all belong to different covers, contradicting the compactness of $(0, a)^-$. It follows from Birkhoff (1967; page 299) that (D_1, \preccurlyeq) is isomorphic with $(\sum_{\aleph} Z, \preccurlyeq)$ for some cardinal \aleph .

(iii) Write (H, \leq) for (\mathbb{R}^m, \leq) in (ii).

COROLLARY. Let (G, \leq, \mathcal{U}) be an interval-compact TRG, then G is isomorphic in all respects with $\mathbb{R}^m \oplus \Sigma_* \mathbb{Z}$, for some positive integer m and some cardinal \mathfrak{H} , and conversely.

Acknowledgements

This research was supported by a Commonwealth Postgraduate Award. The author is grateful to Professor J. B. Miller for his helpful advice.

References

- N. Cameron and J. B. Miller (to appear), 'Topology and axioms of interpolation in partially ordered spaces', J. Reine Angew. Math.
- L. Fuchs (1963), Partially ordered algebraic systems (Pergamon, Oxford, 1963).
- R. J. Loy and J. B. Miller (1972), 'Tight Riesz groups', J. Austral. Math. Soc. 13, 224-240.

Department of Mathematics Monash University Clayton Victoria 3168 Australia

G. Birkhoff (1967), Lattice theory (Amer. Math. Soc., Providence, 1967, 3rd. ed.).