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Abstract

The mobility of a Kähler metric is the dimension of the space of metrics with which
it is c-projectively equivalent. The mobility is at least two if and only if the Kähler
metric admits a nontrivial hamiltonian 2-form. After summarizing this relationship, we
present necessary conditions for a Kähler metric to have mobility at least three: its
curvature must have nontrivial nullity at every point. Using the local classification of
Kähler metrics with hamiltonian 2-forms, we describe explicitly the Kähler metrics with
mobility at least three and hence show that the nullity condition on the curvature is
also sufficient, up to some degenerate exceptions. In an appendix, we explain how the
classification may be related, generically, to the holonomy of a complex cone metric.

Introduction

This paper weaves together two threads in Kähler geometry which have been running in parallel
for 40–60 years with remarkably little interaction, given their common themes.

The first thread concerns a notion of projective equivalence between Kähler metrics. The
classical notion is too strong when applied to Kähler metrics: if two metrics that are hermitian
with respect to the same almost complex structure have the same geodesics, they have the
same Levi-Civita connection. In 1954, Otsuki and Tashiro [OT54] introduced a complex, but
nonholomorphic, version of projective equivalence, which acquired the unfortunate name of
‘holomorphically projective’ or ‘h-projective’ equivalence in the literature. We prefer the term
‘c-projective’, which is intended to suggest ‘complex projective’, without implying that the
geometry is holomorphic.

Definition 1. Let (M,J) be a complex manifold of real dimension 2m > 4. Then two
J-hermitian Kähler metrics g, g̃ onM , with Levi-Civita connections∇, ∇̃, are called c-projectively
equivalent if there is a 1-form Φ such that

∇̃XY −∇XY = Φ(X)Y + Φ(Y )X − Φ(JX)JY − Φ(JY )JX (1)

for all vector fields X,Y .

This notion has been extensively studied by Russian and Japanese schools (see [Mik98] for
a list of references up to 1998). One common theme has been the relationship between special
curvature properties of a Kähler metric and the existence of metrics c-projectively equivalent to
it (e.g. [IT61]).
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The second thread concerns the explicit construction of ‘optimal’ Kähler metrics on complex
manifolds, generalizing the constant curvature metrics used in the uniformization of Riemann
surfaces. The idea of seeking such metrics goes back to Calabi’s famous conjectures in the 1950s
(e.g., [Cal57]), but the problem was attacked primarily using analytical methods until the late
1970s. Then Calabi provided fresh impetus by introducing the notion of an extremal Kähler
metric and constructing explicit examples on total spaces of complex projective line bundles
[Cal79, Cal82]. Calabi’s construction has been refined and extended considerably by many
authors (e.g., [Abr98, HS02]), providing a rich supply of Kähler metrics with special curvature
properties (such as extremal Kähler metrics). These generalizations have in common that they
introduce first order structure to simplify the second (and higher) order partial differential
equations (PDEs) that describe curvature. A single source for this structure was identified
in [ACG06], where it was observed that Calabi’s construction and its generalizations reflect
the presence of a nontrivial solution to an overdetermined linear differential equation, called a
hamiltonian 2-form.

Definition 2. Let (M, g, J, ω) be a Kähler manifold of real dimension 2m > 4. Then a (real)
J-invariant 2-form φ on M is hamiltonian if

∇Xφ = 1
2(d trω φ ∧ JX[ − Jd trω φ ∧X[) (2)

for all vector fields X, where X[ = g(X, ·), JX[ = −X[ ◦ J = (JX)[, and trω φ = g(ω, φ) is the
trace of φ with respect to the Kähler form ω.

Kähler manifolds with hamiltonian 2-forms are classified locally in [ACG06] and globally
in [ACGT04], with applications to extremal Kähler metrics in [ACGT08].

The origins of the present paper are somewhat serendipitous. In April 2011, the first author
was asked to referee the paper [MR12] by the second and third authors, which proves that the
only compact c-projective manifold with a one-parameter subgroup of ‘essential’ symmetries
is complex projective space. This drew the first author’s attention to the ‘main equation’ of
c-projective equivalence ((4) below), which is manifestly equivalent to the equation for
hamiltonian 2-forms (see Remark 1).

As noted in the published version of [MR12], this equivalence has two main ramifications.
First, the organizing principle observed in [ACG06] to underpin explicit constructions of
Kähler metrics coincides with the notion of a c-projectively equivalent metric, a topic studied
independently for many years previously. Secondly, the classification results in [ACG06, ACGT04]
solve open problems in the theory of c-projective equivalence, as well as providing new examples.

Our interest here is in a third ramification: although the methodologies employed in the
theories of c-projective equivalence and hamiltonian 2-forms have a large overlap (e.g., as both
depend upon the theory of overdetermined PDEs of finite type), they have quite different flavours
which might be combined with profit to prove new results. This paper is a first attempt to exploit
both theories in this way.

We focus on the mobility D(g, J) of a Kähler metric g on (M,J), which is the dimension of the
space Sol(g, J) of solutions of (4), or equivalently (2). Since the identity map Id (corresponding
to the Kähler form ω) is always a solution, D(g, J) > 1, and the presence of an independent
solution (or a nontrivial hamiltonian 2-form) means equivalently that D(g, J) > 2.

Our plan is to study the case D(g, J) > 3, using [FKMR12, Theorem 5], quoted as Theorem 1
below, which states that any such Kähler metric g is CC(B) (for some B ∈ R) in the sense of
Definition 4 (unless all solutions of (4) are parallel). The converse is not true: it is straightforward
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to construct CC(B) metrics with mobility two (e.g., using the cone construction described in the
appendix; see §A.4). In Theorems 2 and 3 we establish necessary and sufficient conditions for
a Kähler metric to be CC(B), and then, in Theorem 6, describe the additional conditions such
that a CC(B) metric g has mobility D(g, J) > 3.

Whereas Theorem 2 draws upon curvature conditions from the theory of c-projective
equivalence, Theorem 3 uses hamiltonian 2-form methods. It follows, in Corollary 2, that an
extremal Kähler metric with mobility at least three must have constant scalar curvature.

Our results are closely related to the cone construction of [MR15] (cf. [Arm08a, Arm08b,
Mik98]) discussed in the appendix. More precisely, for CC(B) metrics with B < 0 (and we may
assume B = −1 by rescaling), this construction gives an explicit isomorphism between Sol(g, J)
and the space of parallel hermitian endomorphisms on a complex cone (M̂, ĝ, Ĵ) over (M, g, J),
which we summarize in §A.1. The cone is a Kähler manifold of dimension dimCM + 1, and
(M, g, J) may be recovered from it by taking a Kähler quotient. It is known, at least since
Eisenhart [Eis23], that the existence of a parallel hermitian endomorphism Â on M̂ is (locally)
equivalent to a decomposition of M̂ into a direct product of Kähler manifolds.

In §A.2, we derive a formula for the Kähler quotient metric g in terms of radial and angular
coordinates on M̂ coming from the decomposition of M̂ induced by Â. In §A.3, we (partially)
rederive the local classification formula (9) for g relative to A ∈ Sol(g, J) corresponding to Â; this
yields another proof of (one direction of) Theorem 3 by a direct calculation; see Proposition A.1.
In §A.4 we use the cone construction to give an alternative proof of Theorem 6 for a CC(−1)
metric.

1. C-projective equivalence and hamiltonian 2-forms

1.1 C-projective equivalence and CC(B) metrics
Let (M,J) be a complex manifold of real dimension 2m > 4. For J-hermitian metrics g, g̃
on M , we introduce the nondegenerate (g, J)-hermitian (i.e., g-symmetric, J-complex-linear)
endomorphism

A(g, g̃) :=

(
det g̃

det g

)1/2(m+1)

g̃−1g, (3)

where we view g, g̃ : TM → T ∗M as bundle isomorphisms. A fundamental observation by Mikeš
and Domashev [MD78] is that g and g̃ are c-projectively equivalent if and only if there is a vector
field Λ such that A = A(g, g̃) satisfies the ‘main equation’

∇XA = X[ ⊗ Λ+ Λ[ ⊗X + JX[ ⊗ JΛ+ JΛ[ ⊗ JX. (4)

Conversely, a nondegenerate solution A of (4) determines a Kähler metric

g̃ = (detA)−1/2gA−1 (5)

(obtained by solving (3) with respect to g̃) c-projectively equivalent to g. Since Id is always
a solution of (4), we can add a multiple of Id to any solution A to obtain (at least locally) a
solution which is nondegenerate. In this sense, the solutions A of (4) are (locally, generically) in
bijection with Kähler metrics g̃ that are c-projectively equivalent to g.

Definition 3. The space of hermitian endomorphisms A satisfying (4) will be denoted by
Sol(g, J). The mobility1D(g, J) of (M, g, J) is the dimension of Sol(g, J).

1 In the classical c-projective literature, this is known as the ‘degree of mobility’.
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Remark 1. Obviously, two metrics g, g̃ are affinely equivalent (∇̃ = ∇) if and only if the
endomorphism A = A(g, g̃) is parallel. By (4), if the metrics are c-projectively equivalent, they
are affinely equivalent if and only if the vector field Λ is identically zero.

Taking the trace on both sides of (4) shows that

Λ = 1
4 gradg trA, (6)

hence (4) is a linear PDE system on A, which is equivalent to (2) for a hamiltonian 2-form φ by
writing g(AX,Y ) = φ(X, JY ).

In [ACG06, MR12], the nonconstant eigenvalues ξ1, . . . , ξ` of A, considered as functions on M ,
are shown to be continuous, and smooth on a dense open subset M0. Moreover, their (complex)
multiplicity on this subset is one. Thus we can express Λ on M0 as

Λ =
1

2

∑̀
i=1

gradg ξi. (7)

For each nonconstant eigenvalue ξi of A, gradg ξi lies in the corresponding eigenspace (see
[ACG06, MR12]). Hence the vanishing of Λ is equivalent to all eigenvalues of the endomorphism
A (considered as functions on the manifold) being constant.

An important standard result in c-projective geometry is the fact that JΛ is Killing.

Lemma 1. Let (M, g, J) be a Kähler manifold of real dimension 2m > 4. Then for any
A ∈ Sol(g, J), the corresponding vector field Λ is holomorphic, and JΛ is a Killing vector field;
equivalently ∇Λ is (g, J)-hermitian.

Proof. This is well known: see [MD78, (13)], [ACG06, Proposition 3] and [FKMR12, Corollary 3].
2

As the introduction explains, our study builds on the following theorem.

Theorem 1 [FKMR12]. Let (M, g, J) be a connected Kähler manifold of real dimension 2m > 4
and mobility D(g, J) > 3. Then there is a unique B ∈ R such that for every A ∈ Sol(g, J), with
corresponding vector field Λ, there is a function µ such that the system

∇XA = X[ ⊗ Λ+ Λ[ ⊗X + JX[ ⊗ JΛ+ JΛ[ ⊗ JX,
∇Λ = µ Id +BA,

∇µ = 2BΛ[
(8)

holds at every point of M .

Remark 2. If for A ∈ Sol(g, J), A 6= const · Id, with corresponding vector field Λ, there exists a
function µ such that (A,Λ, µ) solves (8) for a certain constant B, then this holds for any other
element Ã ∈ Sol(g, J). This is clear if Ã is a linear combination of Id and A and follows from
Theorem 1 if Id, A, Ã are linearly independent.

Definition 4. Let B be a real number. A Kähler metric (g, J) is called2CC(B) if it admits a
solution (A,Λ, µ) to the system (8) with Λ not identically zero.

2 Here ‘CC’ suggests constant/curvature/cone and complex/c-projective, and replaces the term ‘Kn(B)’, often used
in the classical c-projective literature, in which Kn denotes a Kähler n-manifold.
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Remark 3. In Definition 4 we require B to be a constant. If B is initially assumed to be a
function, it turns out that this function must be (locally) constant provided there exists at
almost every point a nonzero vector contained in the B-nullity of the curvature; see Definition 5
and Theorem 2 below.

Remark 4. Neither (2) nor (4) provides the most natural formulation of c-projective equivalence
and mobility because they treat the metrics g and g̃ asymmetrically. This can be remedied by
observing that the definition (1) for c-projective equivalence is really an equivalence relation
between complex affine connections (connections ∇ on TM with ∇J = 0). A c-projective
structure on a complex manifold (M,J) is a c-projective equivalence class of such complex
affine connections. Equation (4) can be rewritten without reference to a background metric g by
replacing A with the metric h on T ∗M defined by h(α, β) = g(α ◦A, β). Then (4) becomes

∇Xh = X ⊗ Λ+ Λ⊗X + JX ⊗ JΛ+ JΛ⊗ JX

(for all vector fields X) and this equation for h depends only on the c-projective class of ∇
provided that h is viewed as a section of L∗ ⊗ S2TM , where L⊗(m+1) = ∧2mTM .

This viewpoint is developed in detail in a forthcoming survey [CEMN] on c-projective
geometry; see also [Yos78]. For the present paper, we shall always have in mind a background
metric, and so we do not pursue this reformulation any further.

1.2 The classification of hamiltonian 2-forms
According to [ACG06], a Kähler metric (g, J, ω) admitting a hamiltonian 2-form (or equivalently
an A ∈ Sol(g, J)) is locally a bundle over a product of Kähler 2mη-manifolds indexed by the
constant eigenvalues η of A (mη being the multiplicity of η), whose ‘orthotoric’ fibres are totally
geodesic with the nonconstant eigenvalues ξ1, . . . , ξ` of A as coordinates. On a dense open set,
we may write

g =
∑
η

pnc(η)gη︸ ︷︷ ︸
base metric

+
∑̀
i=1

∆j

Θj(ξj)
dξ2

j +
∑̀
j=1

Θj(ξj)

∆j

(∑̀
r=1

σr−1(ξ̂j)θr

)2

︸ ︷︷ ︸
fibre metric

, (9)

ω =
∑
η

pnc(η)ωη +
∑̀
r=1

dσr ∧ θr, with dθr =
∑
η

(−1)rη`−rωη, (10)

where pnc(t) =
∏`
i=1(t−ξi), σr is the rth elementary symmetric function of {ξ1, . . . , ξ`}, σr−1(ξ̂j)

is the (r − 1)th such function of {ξk : k 6= j}, ∆j =
∏
k 6=j(ξj − ξk), and

Jdξj =
Θj(ξj)

∆j

∑̀
r=1

σr−1(ξ̂j) θr, Jθr = (−1)r
∑̀
j=1

∆j

Θj(ξj)
ξ`−rj dξj . (11)

For any metric of this form,

φ :=
∑
η

η pnc(η)ωη +
∑̀
j=1

ξj dξj ∧
(∑̀
r=1

σr−1(ξ̂j)θr

)

=
∑
η

η pnc(η)ωη +
∑̀
r=1

(σrdσ1 − dσr+1) ∧ θr

is a hamiltonian 2-form. The extension of this local classification to pseudo-riemannian metrics
is the subject of the forthcoming paper [BMR15].
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Curvature properties of the metric g in (9) are also computed in [ACG06], to which we refer
for details and explanations. Let pc(t) =

∏
η(t−η)mη be the (monic) polynomial whose roots are

the constant eigenvalues η of φ, counted with multiplicity.

(i) g is Bochner flat if and only if the functions Θj(t) are equal, given by a polynomial Θ(t) of
degree at most `+ 2, with Θ(η) = 0 for all constant eigenvalues η, and the base metrics gη
have constant holomorphic sectional curvature (CHSC), given by −Θ′(η). The metric g is
itself CHSC if and only if in addition deg Θ(t) 6 `+ 1.

(ii) g is weakly Bochner flat if and only if the functions (pcΘj)
′(t)/pc(t) are equal, given by

a polynomial Ψ(t) of degree at most ` + 1, and the base metrics gη are Kähler–Einstein,
with (1/mη)Scalgη = −Ψ(η). The metric g is Kähler–Einstein if and only if in addition
deg Ψ(t) 6 `.

In particular (applying (1) fibrewise, using the case that there are no constant eigenvalues),
the orthotoric fibres have CHSC if and only if the functions Θj(t) are equal to a common
polynomial of degree at most `+ 1.

It will also be useful to recall from [ACG06] that there is a ‘Gray–O’Neill’ formula [Gra67,
O’Ne66] for the Levi-Civita connection of g in terms of the fibre and base metrics, where the
Gray–O’Neill tensor of the horizontal distribution is given by

2C(X,Y ) =
∑̀
r=1

(
Ωr(X,Y )JΛr − Ωr(JX, Y )Λr

)
(12)

for Ωr =
∑

η(−1)rη`−rωη and Λr = gradg σr.

2. Curvature nullity and the extended system

Let R ∈ Ω2(M, gl(TM)) denote the curvature of the Kähler manifold (M, g, J),

R(X,Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z,

and let

K(X,Y ) = 1
4(Y [ ⊗X −X[ ⊗ Y + JY [ ⊗ JX − JX[ ⊗ JY + 2g(X, JY )J) (13)

be the algebraic curvature tensor of constant holomorphic sectional curvature.

Lemma 2. Let (M, g, J) be a Kähler manifold of real dimension 2m> 4. Then everyA ∈ Sol(g, J)
satisfies the identity

[R(X,Y ), A] = −4[K(X,Y ),∇Λ] (14)

at every point for all tangent vectors X,Y .

Proof. Equation (14) is well known in the theory of c-projectively equivalent metrics; see, for
example, [MD78, Mik98]. To prove it, consider the identity

[R(X,Y ), A] = ∇X(∇A)Y −∇Y (∇A)X (15)

which holds for any endomorphism A ∈ Γ(gl(TM)). Assuming that A ∈ Sol(g, J), we can replace
the covariant derivatives of A in (15) with (4), to derive an integrability condition for (4). A
straightforward calculation yields the desired (14). We note that we have to use the fact that
∇Λ commutes with J (see Lemma 1). 2
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Definition 5. For p ∈M and B ∈ R, the B-nullity space of the curvature R at p is the linear
space

N(B)p = {Z ∈ TpM : NB(X,Y )Z = 0 ∀X,Y ∈ TpM}, (16)

where NB(X,Y ) = R(X,Y ) + 4BK(X,Y ).

Remark 5. Since g(NB(·, ·)·, ·) is a section of S2(∧2T ∗M), N(B)p is the set of Z ∈ TpM whose
contraction into any entry of g(NB(·, ·)·, ·) is zero. Note also that N(B)p is J-invariant, i.e., a
complex linear subspace of TpM .

Remark 6. The real number B in the definition of the nullity is unique: if Z ∈ N(B)p and Z ′ ∈
N(B′)p are nonzero vectors, then B = B′. To see this, we replace X by Z ′ in the nullity condition
for Z, and apply the nullity condition for Z ′ to obtain (B −B′)K(Z,Z ′) = 0. Hence, B = B′ or
K(Z,Z ′) = 0. The last equation implies Z ′ is a multiple of Z. Thus (B −B′)K(X,Y )Z = 0 for
all vectors X,Y , which, for Z nonzero, forces B = B′.

However, B may depend on the point p, and (of course) the metric g.

Proposition 1. Let (M, g, J) be a Kähler manifold of real dimension 2m > 4, and let A ∈
Sol(g, J) with corresponding vector field Λ. Then for any functions B,µ, we have

[K(X,Y ),∇Λ−BA− µ Id] + 1
4 [NB(X,Y ), A] = 0 (17)

and, if B and µ are smooth,

∇X(∇Λ−BA− µ Id) + JNB(X,JΛ) + (∇Xµ− 2Bg(Λ,X)) Id +dB(X)A = 0. (18)

Proof. Equation (17) is immediate from Lemma 2 (identity (14)). Recall from Lemma 1 that
JΛ is a Killing vector field, and hence ∇X∇Λ = −J∇X∇JΛ = −JR(X, JΛ) (by the standard
formula ∇X∇K = R(X,K), X ∈ TM , which holds for any Killing vector field K; see [Kos55]).
Equation (18) follows from this by expanding ∇X(∇Λ − BA − µ Id) and substituting for ∇XA
from (4). 2

Lemma 3. Let Q be a hermitian endomorphism and Z a nonzero tangent vector at p ∈M such
that [K(X,Z), Q] = 0 for all X ∈ TpM . Then Q is a multiple of the identity.

Proof. We may assume Q is trace-free and prove it vanishes. By definition (13) of K,

[Z[ ⊗X −X[ ⊗ Z + JZ[ ⊗ JX − JX[ ⊗ JZ,Q] = 0. (19)

Let e1, . . . , e2m be an orthonormal frame of TpM . We take a trace by applying (19) to ei with
X = ei and summing over i. Since Q and Q ◦ J = J ◦ Q are trace-free, and Q is hermitian, we
obtain (with summation understood)

0 = g(Z,Qei)ei − g(Z, ei)Qei + g(ei, ei)QZ + g(JZ,Qei)Jei − g(JZ, ei)QJei = 2mQZ.

Thus QZ = 0, which we substitute into (19) to obtain

Z[ ⊗QX + (QX)[ ⊗ Z + JZ[ ⊗Q(JX) +Q(JX)[ ⊗ JZ = 0.

For any Y ∈ span{Z, JZ}⊥ this yields (using the fact that Q is hermitian)

0 = g(QX,Y )Z + g(Q(JX), Y )JZ = g(X,QY )Z + g(JX,QY )JZ.

Since Z 6= 0, Q vanishes on span{Z, JZ}⊥. But Q vanishes on span{Z, JZ}, so Q = 0. 2
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Theorem 2. Let (M, g, J) be a connected Kähler manifold of real dimension 2m > 4. Then for
any A ∈ Sol(g, J) with corresponding vector field Λ such that A is not parallel (equivalently,
Λ 6= 0) the following statements are equivalent.

(i) There is a constant B such that [NB(X,Y ), A] = 0 for all vector fields X,Y .

(ii) There is a constant B and a smooth function µ such that ∇Λ = BA+ µ Id.

(iii) There is a constant B and a smooth function µ such that A satisfies the extended system (8).

(iv) There is a constant B such that Λ is in the B-nullity space N(B)p at every p ∈ M ;
equivalently NB(X, JΛ) = 0 for all X ∈ TM .

(v) At every point p of a dense subset, there is a real number B = B(p) such that the B-nullity
space N(B)p is nonzero.

(vi) There is a constant B such that, for any open subset U of M and any eigenvalue ξ of A
smoothly defined on U, gradg ξ is in the B-nullity of the curvature on U .

If for given B, these conditions hold for some nonparallel A ∈ Sol(g, J), then they hold for
all A ∈ Sol(g, J) (with the same constant B). In particular, the metric g is CC(B).

Proof. (1) ⇔ (2) by (17): if ∇Λ − BA commutes with K(X,Y ) for all X,Y ∈ TpM , then it
commutes with all skew-hermitian endomorphisms of TpM and is hence a multiple of the identity
at p.

(2) ⇔ (3) by (18), which reduces to

g(NB(X, JΛ)Y,Z) = (∇Xµ− 2Bg(Λ,X))g(JY, Z)

for all X,Y, Z: the left-hand side satisfies the Bianchi identity in X,Y, Z while the right-hand
side does not (for n > 1), so they must vanish independently.

(3) ⇒ (4) by (18) again: the extended system (8) implies NB(X, JΛ) = 0.
(4) ⇒ (5) is immediate: if Λ is not identically zero, it is nonzero on an open dense subset,

because JΛ is a Killing vector field by Lemma 1.
(5) ⇒ (3). Given a nonzero Z ∈ N(B)p, substitute Y = Z and µ = 0 in (17) to obtain

[K(X,Z),∇Λ−BA] = 0. Hence by Lemma 3 there is a scalar µ = µ(p) such that ∇Λ−BA = µ Id
at p. This holds at every point of a dense subset for functions µ,B defined on this subset.
Moreover, A is not proportional to the identity at every point of a dense open set (this
is straightforward to show using (4): for a proof, see [FKMR12, Lemma 4]). Then on a
neighbourhood U of any point in this dense open set, B and µ are smooth functions (being
solutions of an inhomogeneous linear system of maximal rank with smooth coefficients). We
need to show that B is constant and τ := dµ − 2Bg(Λ, ·) is identically zero on U . For this,
suppose that a nonzero vector Z is in the B-nullity of the curvature and insert ∇Λ = µ Id +BA
into (18) to obtain

JNB(X,JΛ) + τ(X) Id +dB(X)A = 0, (20)

and hence, by applying this identity to Z, τ(X)Z + dB(X)AZ = 0. If Z is not an eigenvector
of A, we have τ(X) = dB(X) = 0 for all X ∈ TU , which is what we wanted to show. We may
thus assume AZ = ξZ for some function ξ, so that τ = −ξdB and

NB(X,Λ) = dB(JX)(A− ξ Id)J

= ((A− ξ Id)X)[ ⊗ (dB)] − dB ⊗ (A− ξ Id)X, (21)

where α] denotes the metric dual of a 1-form α, and the second line follows from the Bianchi
symmetry satisfied by g(NB(X,Λ)Y,W ) = g(NB(Y,W )X,Λ). Comparing the second and third
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lines, it follows that A − ξ Id has complex rank at most one. It remains to show the following
lemma.

Lemma 4. Suppose that A ∈ Sol(g, J) and that, on an open subset U , A is not parallel with
exactly two (distinct) eigenvalues, both smooth, and Z is an eigenvector of A in the B-nullity of
g for smooth B. Then dB = 0 on U .

Given this lemma, proven below, we obtain also τ = −ξdB = 0 on U , and hence the system
(8) holds in a neighbourhood of every point of an open dense subset for a (local) constant B and
a smooth function µ. On the other hand, it was proven in [FKMR12, § 2.5] that the constants
B are the same for each such neighbourhood. Taking the trace of the second equation in (8), we
obtain 2mµ = tr∇Λ−B tr(A), so that the functions µ coincide on overlaps and patch together
to a globally defined function. Hence the system (8) holds everywhere on M for a constant B
and a smooth function µ.

(1)–(5) ⇒ (6). Since NB(X,Y )Λ = 0, (7) implies

0 =
l∑

i=1

NB(X,Y ) gradg ξi, (22)

where ξ1, . . . , ξl are the eigenvalues of A. It was shown in [ACG06, Proposition 14] and [MR12,
Proposition 1] that the gradient gradg ξi is contained in the eigenspace of A corresponding to
ξi. Since [NB(X,Y ), A] = 0, NB(X,Y ) leaves the eigenspaces of A invariant. Then at any point
where NB(X,Y ) gradg ξi is nonzero, it is an eigenvector of A corresponding to the eigenvalue ξi
and (22) shows that NB(X,Y ) gradg ξi = 0.

(6) ⇒ (5). It was shown in [ACG06, Proposition 14] that every nonconstant eigenvalue ξ of
A ∈ Sol(g, J) has nonvanishing differential on an open and dense subset.

The final observation of the theorem follows because condition (5) is independent of A ∈
Sol(g, J), and if A is ∇-parallel (i.e., the corresponding Λ is zero), then (17) and Lemma 3 imply
that A is a multiple of the identity or B = 0. 2

Proof of Lemma 4. Since A is nonparallel (i.e., Λ 6= 0), it has at least one nonconstant eigenvalue.
We consider first the case that A has one nonconstant eigenvalue ξ and one constant eigenvalue,
which we may assume to be zero. The ξ-eigenspace is therefore spanned by Λ, and if this is in the
nullity, then (20) implies dB = 0. Thus we may assume AZ = 0, hence dµ = 2Bg(Λ, ·) = B dξ,
so that µ and B are functions of ξ. For any X with AX = 0 we have

ξµX = −(A− ξ Id)µX = −(A− ξ Id)∇XΛ = (∇XA− dξ(X))Λ = g(Λ,Λ)X

since ∇Λ = µ Id +BA, dξ(X) = 0 and ∇A is given by (4). Hence ξµ = g(Λ,Λ).
On the other hand, using the Gray–O’Neill formulae [ACG06, Gra67] or the explicit form

g = −ξg0 +
dξ2

Θ(ξ)
+ Θ(ξ)θ2

of the metric, we obtain that

−4BK(X,Y )Z = R(X,Y )Z = R0(X,Y )Z − 4g(Λ,Λ)

ξ2
K(X,Y )Z, (23)

for X,Y in the zero eigenspace of A, where R0 denotes the curvature of g0 (the Kähler quotient
by JΛ), lifted to the zero eigenspace. Thus R0(X,Y )Z = 4(Bξ−µ)K0(X,Y )Z, where K0 =−K/ξ
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is the algebraic constant holomorphic sectional curvature tensor of g0. Taking the trace over X

(on the zero eigenspace), Ric0(Z) = 2(m−1)(Bξ−µ)Z and so Bξ−µ is independent of ξ, hence

constant. This combines with dµ = B dξ to give dB = 0 as required.

We now turn to the case where A has two nonconstant eigenvalues ξ1 and ξ2. Note that in

this case, M is necessarily real four-dimensional. Let V1 = gradg ξ1, V2 = gradg ξ2 and suppose

that V2 is contained in the B-nullity of the curvature R. To compute B and µ, we apply V1 and

V2 to the equation ∇Λ = µ Id + BA to obtain the linear system m1 = µ + ξ1B, m2 = µ + ξ2B,

where m1, m2 are the eigenvalues of ∇Λ, i.e., ∇V1Λ = m1V1 and ∇V2Λ = m2V2. Hence,

µ =
ξ2m1 − ξ1m2

ξ2 − ξ1
, B =

m1 −m2

ξ1 − ξ2
.

To calculate m1,m2, we recall that Λ = (1/2)(V1 + V2) and so ∇ΛΛ = (1/2)(m1V1 +m2V2), or,

dually, d(g(Λ,Λ)) = m1dξ1 +m2dξ2. The classification of hamiltonian 2-forms from § 1.2 shows

that, in a neighbourhood of almost every point, g takes the form

g =
ξ1 − ξ2

F1(ξ1)
dξ2

1 +
ξ2 − ξ1

F2(ξ2)
dξ2

2 +
F1(ξ1)

ξ1 − ξ2
(dt1 + ξ2dt2)2 +

F2(ξ2)

ξ2 − ξ1
(dt1 + ξ1dt2)2

in local coordinates ξ1, ξ2, t1, t2. From this, we obtain g(Λ,Λ) in terms of the functions F1, F2.
Calculating d(g(Λ,Λ)) and comparing coefficients, we obtain

B =
m1 −m2

ξ1 − ξ2
=

(F ′1(ξ1) + F ′2(ξ2))(ξ1 − ξ2)− 2(F1(ξ1)− F2(ξ2))

4(ξ1 − ξ2)3
. (24)

Replacing X in (21) by the vector JV2 in the nullity, we see that dB(V2) = 0, i.e., B does not
depend on the variable ξ2. Using (24), it is straightforward to show that the condition dB/dξ2 = 0
is equivalent to

0 = F ′′2 (ξ2)(ξ1 − ξ2)2 + 2(F ′1(ξ1) + 2F ′2(ξ2))(ξ1 − ξ2)− 6(F1(ξ1)− F2(ξ2)). (25)

Taking three derivatives of this equation with respect to ξ1 yields F
(4)
1 (ξ1) = 0, hence F1(ξ1) is

a polynomial of degree at most three. Inserting this condition back into (25), a straightforward

calculation shows F1 = F2. Inserting these polynomials into (24) shows that B is a constant.

This also follows from [ACG06] where it is shown that (g, J) has constant holomorphic sectional

curvature (and hence B is constant) if F1 = F2 is a polynomial of degree at most three. 2

Remark 7. Recall from Remark 1 that A not being parallel is necessary for (5). All other

conditions are automatically fulfilled for parallel A, in which case we have µ = B = 0.

To relate this result to the local classification of metrics with hamiltonian 2-forms (see § 1.2),

observe that at each point in a dense open set, the J-linear span of the gradients of the eigenvalues

of A is the tangent space to the orthotoric fibres of the metric g.

Corollary 1. A ∈ Sol(g, J) satisfies the extended system (8) for B ∈ R if and only if A is

parallel (in which case, we may assume B = 0) or the orthotoric fibres of A are in the B-nullity

of g. In particular, since these fibres are totally geodesic, they have constant holomorphic sectional

curvature −4B.
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By Definition 4, a Kähler metric is CC(B) for a constant B if one of the conditions in
Theorem 2 is satisfied for some nonparallel A ∈ Sol(g, J). We next describe the conditions on
the parameters in formula (9) under which a Kähler metric is CC(B).

For this, we first observe that the extended system (8) is equivalent to the special case
τ0 = 0, τ1 = −4B, τ2 = −4µ of the system [ACG06, § 2.3, Equation (30)], with the term ‘WK(φ)’
omitted. Hence (the proof of) [ACG06, Proposition 5] applies to show that the polynomial

F (t) = −4(Bt+ µ)pA(t)− g(K,K(t)) (26)

has constant coefficients, where pA(t) is the characteristic polynomial of A, K = J gradg σ1 and
K(t) = J gradg pA(t) (thus K coincides with the Killing vector field 2JΛ). To interpret this
fact geometrically, we next observe that any triple (A,Λ, µ) ∈ gl(TM)⊕ TM ⊕M × R, with A
hermitian, defines a hermitian (bundle) metric on {(σ, ρ) ∈ Hom(TM,C) ⊕M × C : σ(JX) =
iσ(X)}, via the expression[

ρ
σ

]† [
µ Λ
Λ A

] [
ρ′

σ′

]
:= µρρ′ + σ(Λ)ρ′ + ρσ′(Λ) + g(σ ◦A, σ′). (27)

When B = −1, this bundle may be identified with the (holomorphic) tangent bundle of the
complex cone over (M, g, J) studied in [MR15], which we discuss in the appendix. For any B ∈ R,
the bundle carries a connection D defined by

DX
[
ρ
σ

]
=

[
∇Xρ+ σ(X)

∇Xσ +Bg(X + iJX, ·)ρ

]
. (28)

This connection induces the extended system (8) in the following sense (cf. [FKMR12, §§ 4.1–4.2]
in the case B 6= 0).

Lemma 5. For any sections (A,Λ, µ) and (σ, ρ) as above, we have

∂X

([
ρ
σ

]† [
µ Λ
Λ A

] [
ρ′

σ′

])
−
(
DX

[
ρ
σ

])† [
µ Λ
Λ A

] [
ρ′

σ′

]
−
[
ρ
σ

]† [
µ Λ
Λ A

]
DX

[
ρ′

σ′

]

=

[
ρ
σ

]† [ ∇Xµ− 2Bg(Λ,X) ∇XΛ− µX −BAX
∇XΛ− µX −BAX ∇XA−

( X[⊗Λ+Λ[⊗X
+JX[⊗JΛ+JΛ[⊗JX

)] [ρ′
σ′

]
.

The proof is a straightforward computation. Up to a normalization constant, the function
F (t) is the (complex) determinant of the hermitian form on Hom(TM,C) ⊕M × C defined by
(A − t Id, Λ, µ + Bt), so its roots are the relative eigenvalues of the hermitian forms defined
by (A,Λ, µ) and (Id, 0,−B). This gives another proof that F (t) has constant coefficients when
(A,Λ, µ) solves (8), and further shows that the relative eigenspaces are D-parallel subbundles of
Hom(TM,C)⊕M × C.

Theorem 3. Let (g, J, ω) be a Kähler metric with a nonparallel hamiltonian 2-form, given
explicitly by (9) on a dense open set. Then g is CC(B) if and only if Θj(t) = Θ(t), a polynomial
of degree at most ` + 1 (independent of j) with leading coefficient −4B, and Θ(η) = 0 for all
constant eigenvalues η.

Proof. If g is CC(B) then the (totally geodesic) orthotoric fibres have CHSC. The hamiltonian
2-form restricts to a hamiltonian 2-form on each fibre whose characteristic polynomial is
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pA(t)/pc(t). Applying [ACG06, Proposition 18] fibrewise, we thus have Θj(t) = Θ(t) := F (t)/pc(t)
for all j (where we recall that pc(t) is the monic polynomial whose roots are the constant
eigenvalues η of A). It remains to show that any root η of pc(t) is a root of Θ(t), i.e., the
multiplicity of η as a root of F (t) is greater than its multiplicity as a root of pc(t). The latter
is the dimension of the kernel of A− η Id in Hom(TM,C) which is a subspace U of the relative
η-eigenspace, i.e., the kernel of the hermitian form defined by (A − η Id, Λ, µ + Bη). However,
by (28), U cannot be D-parallel, so the dimension of the relative η-eigenspace is strictly larger,
hence so is the multiplicity of η as a root of F (t).

Conversely, if Θj(t) = Θ(t) as stated, then the orthotoric fibres belong to the B-nullity of g. To
see this, observe that the Gray–O’Neill curvature formulae [Gra67, O’Ne66] (with Gray–O’Neill
tensor (12)) imply that all components of the curvature of g, apart from the purely horizontal
part, depend on the base metrics gη in (9) only to first order at each point. Hence, to compute
R(X,Y )Z for Z vertical, we may use a metric g̃ which agrees with g at a given point, but where
we replace the base metrics gη with metrics g̃η which have CHSC equal to Θ′(η) at that point.
By [ACG06, Proposition 17], g̃ has CHSC given by a multiple of B, hence the fibres are in the
B-nullity. Consequently, the same holds for g. 2

Corollary 2. Let (g, J) be a CC(B) Kähler metric (e.g., with D(g, J) > 3) which is weakly
Bochner flat (or is Bochner flat). Then g is Kähler–Einstein (or has constant holomorphic
sectional curvature, respectively).

Recall from [ACG06] that a Kähler metric (g, J) of dimension 2m is orthotoric if it admits a
hamiltonian 2-form having m nonconstant eigenvalues ξ1, . . . , ξm (these metrics are also ‘Kähler–
Liouville’; see [KT11]).

Corollary 3. Let (g, J) be a CC(B) Kähler metric (e.g., with D(g, J) > 3) which is orthotoric.
Then g has constant holomorphic sectional curvature.

Remark 8. An analogue of the corollary in real projective geometry, which is also true under
more general assumptions, can be found in [BKM09].

Theorem 3 has the following global consequence.

Theorem 4. Let M be a closed connected 2m-orbifold (2m > 4) and suppose (g, J) is a CC(B)
Kähler metric on M . Then (M, g, J) is an orbifold quotient of CPm with a Fubini–Study metric.

Proof. By assumption, M admits a hamiltonian 2-form of order ` > 1. The theory of [ACGT04,
§ 2], which extends to orbifolds following [LT97], shows that the universal orbifold cover of M
has a blow-up M̂ which is a bundle of (connected) toric orbifolds over an orbifold S which
is a complete Kähler product over the constant eigenvalues η of A. Since blow-up does not
change the orbifold fundamental group, M̂ is a simply connected orbifold, hence so is S (since
the fibres of M̂ → S are connected). Now, since every constant eigenvalue η is a root of the
function Θ of Theorem 3, it follows from [ACGT04, Proposition 6] (or rather, its proof, extended
straightforwardly to orbifolds) that S is a Kähler product of complex projective spaces where
the Kähler metric on the factor corresponding to a root η has CHSC −Θ′(η) (see [ACGT04,
Theorem 5(iv)–(v)]). As discussed in § 1.2(i), these are precisely the conditions (given that Θ is
a polynomial of degree at most `+ 1 vanishing on the constant eigenvalues η) which ensure that
the metric on M has CHSC [ACG06]. (This is not a coincidence: the Fubini–Study metric on
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CPm admits hamiltonian 2-forms of any order 0 6 ` 6m.) Since K = JΛ is a nonparallel Killing
vector field on M (it is hamiltonian, hence has zeros), the curvature of g must be positive by
Bochner’s argument. Hence the universal cover of M is isometric to CPm with a Fubini–Study
(positive CHSC) metric. 2

Corollary 4. Let (M, g, J) be a closed connected Kähler orbifold of dimension 2m > 4 and
mobility D(g, J) > 3. Then either M is an orbifold quotient of CPm with a Fubini–Study metric,
or every Kähler metric c-projectively equivalent to g is affinely equivalent to g.

Remark 9. This corollary is immediate from Theorems 4 and 1 (i.e., [FKMR12, § 2]). In the
manifold case, it is the main result of [FKMR12], where it was established for metrics of
arbitrary signature. Indeed, on manifolds, the analogue of Theorem 4 for metrics of arbitrary
signature was obtained in [FKMR12, Remark 12]. Furthermore, the proof in [FKMR12] proceeds
by first reducing to the case that −Bg is positive definite, and this part of the argument extends
straightforwardly to orbifolds. Hence Theorem 4 is actually valid in all signatures.

On the other hand, in the remaining case, where (without loss of generality) B = −1 and g
is positive definite, [FKMR12, Lemma 8] shows that the extended system (8) yields a nontrivial
solution of the kählerian Tanno equation, and so the manifold case of Theorem 4 follows from
[Tan78, Theorem 10.1]. In fact, as shown in [FR11, § 3, see (4)], the Tanno equation is equivalent
to the extended system in this case, and so Theorem 4 may be regarded as providing a natural
generalization of [Tan78, Theorem 10.1] to orbifolds of arbitrary signature. Note that our method
of proof for Theorem 4 is very different from [Tan78].

The corollary is a rigidity result for closed connected Kähler orbifolds (M, g, J) which are
not quotients of CPm, but admit a c-projectively equivalent metric which is not affine equivalent
(i.e., a hamiltonian 2-form of order ` > 0). This has several consequences. First, as observed
in [FKMR12], the isometry group of g has codimension at most one in the group of c-projective
transformations of M : this is because the latter group acts on the projectivization of Sol(M, g),
with the isometry group of g as a point stabilizer. Secondly, since the hamiltonian 2-form is
essentially unique (i.e., A ∈ Sol(M, g) is unique up to a linear combination with the identity
solution), the `-torus action it defines must be central.

3. Classification of metrics with c-projective mobility at least three

Let us recall the following result.

Theorem 5 [ACGT04, FKMR12]. Let (M, g, J) be a connected Kähler manifold of real
dimension four. Then D(g, J) > 3 if and only if the holomorphic sectional curvature is constant.

Remark 10. In [ACGT04, Proposition 10] and [FKMR12, Lemma 7], it was shown that a Kähler
manifold of real dimension four and of mobility at least three has constant holomorphic sectional
curvature. The fact that every CHSC Kähler manifold of any dimension 2m has mobility (m+
1)2 > 3 is a standard result; see, for example, [ACG06, Mik98].

By Theorem 1, the condition D(g, J) > 3 implies either that all A ∈ Sol(M, g) are parallel,
or that the metric is CC(B), i.e., the equivalent conditions of Theorem 2 hold. Conversely, we
now find the metrics satisfying D(g, J) > 3 among those that are CC(B).

Theorem 6. Let (M, g, J) be a connected Kähler manifold of real dimension 2m > 4 which is
CC(B). Suppose in addition that there exists A ∈ Sol(g, J) such that:
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• either the number of nonconstant eigenvalues of A is two or more;
• or the number of constant eigenvalues of A is three or more.

Then D(g, J) > 3.

Proof. Let us choose A ∈ Sol(g, J) satisfying one of the two conditions on the eigenvalues.
First suppose that the corresponding vector field Λ is identically zero. Then A is covariantly

constant and all eigenvalues of A are constant (see Remark 1). The endomorphism Ã = A2 is
covariantly constant and hence contained in Sol(g, J). It follows that Ã, A and Id are linearly
independent and therefore D(g, J) > 3, since otherwise, A would be annihilated by a polynomial
with constant coefficients of order two or lower, and this contradicts the assumption that the
number of constant eigenvalues is at least three. We have proven Theorem 6 under the assumption
Λ ≡ 0.

Let us now suppose that Λ is not identically zero.
First case: B = 0. A straightforward computation (using the equations in (8)) shows

Ã = Λ[ ⊗ Λ+ JΛ[ ⊗ JΛ

is contained in Sol(g, J), where the corresponding vector field is Λ̃ = µΛ and µ is a constant.
Clearly, Ã is not proportional to Id (since it is multiplication with g(Λ,Λ) on span{Λ, JΛ}

and multiplication with zero on span{Λ, JΛ}⊥). If D(g, J) = 2, we have A = αÃ+β Id for certain
constants α and β, but this contradicts the assumptions on the eigenvalues of A. Theorem 6 is
proven in the case B = 0.

Second case: B 6= 0. Let us multiply the metric with −B, such that the system (8) for the
new metric (which we again denote by the symbol g) holds with B = −1. Note that the mobility
remains unchanged by this procedure. A straightforward computation (one may also compare
[Mik98, p. 1338], [FKMR12, Equation (88) in the proof of Lemma 10] or the cone construction
[MR15, Theorem 9]; see the appendix below) using the equations in (8) shows

Ã = A2 + Λ[ ⊗ Λ+ JΛ[ ⊗ JΛ

is contained in Sol(g, J) with corresponding vector field Λ̃ = (A+µ Id)Λ. Assuming D(g, J) = 2,
we obtain (up to rescaling) A = Ã+α Id for a certain constant α. Taking the covariant derivative
of this equation shows Λ = (A + µ Id)Λ. Hence, Λ is an eigenvector of A corresponding to the
nonconstant eigenvalue 1 − µ. Equation (7) (together with the fact that for each nonconstant
eigenvalue ξi of A, gradg ξi is contained in the corresponding eigenspace) implies that A has
exactly one nonconstant eigenvalue. Restricting A = Ã + α Id to the orthogonal complement
U := span{Λ, JΛ}⊥ shows that the restriction A|U is annihilated by a quadratic polynomial.
Then the number of nonconstant eigenvalues is at most two. We obtain a contradiction to any
of the two conditions on the eigenvalues of A. Hence, D(g, J) > 3 and Theorem 6 is proven. 2

Appendix. Cone construction for CC(−1) metrics

A.1 The cone construction
If g is a CC(−1) Kähler metric then the space Sol(g, J) is isomorphic to the space of solutions
(A,Λ, µ) of the PDE system

∇XA = X[ ⊗ Λ+ Λ[ ⊗X + JX[ ⊗ JΛ+ JΛ[ ⊗ JX,
∇Λ = µ Id−A,
∇µ = −2Λ[.

(A.1)
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The cone construction [MR15, Theorem 9] (see also the formulae in [Mik98, pp. 1338–1339] for
the same statement, though the formula for Â appearing there seems to have a misprint) asserts
that the space of solutions (A,Λ, µ) of this system is isomorphic to the space of parallel hermitian
endomorphisms Â ∈ End(TM̂) on the cone

M̂ = R>0 × R×M, ĝ = dr2 + r2(φ2 + g), Ĵ =
1

r
∂t ⊗ dr − r∂r ⊗ φ+ J, (A.2)

where φ = dt − τ and τ is a 1-form on M satisfying dτ = 2ω (ω = g(J ·, ·) denotes the Kähler
form on M). The construction is local, but this is sufficient for our purposes. The correspondence
between solutions (A,Λ, µ) of (A.1) and parallel hermitian endomorphisms Â ∈ End(TM̂) is given
by

ĝ(Â·, ·) = µdr2 − rdr � Λ[ + r2(µφ2 + φ� Λ[(J ·) + g(A·, ·)). (A.3)

Further, we view the manifold N = R ×M with metric h = φ2 + g as naturally embedded
into M̂ as the hypersurface N = {r = 1}. The manifold (M, g, J) is recovered from (M̂, ĝ, Ĵ)
as the Kähler quotient with respect to the action of the hamiltonian Killing vector field K :=
(1/2)Ĵ gradĝ r

2 on the level set N , where the function (1/2)r2 serves as the moment map for the
(local) hamiltonian S1-action induced by K.

A.2 The Kähler quotient in the presence of a decomposition of the cone into a direct
product

By the decomposition theorem for riemannian manifolds [Eis23], the parallel hermitian
endomorphisms on a manifold are classified by all the ways the manifold can be decomposed into
a direct product of Kähler manifolds. Let (M̂, ĝ, Ĵ) be the cone over a Kähler manifold (M, g, J)
given by (A.2). Suppose ĝ decomposes into a direct product

M =
∏
i

Mi, ĝ =
∑
i

ĝi, Ĵ =
∑
i

Ĵi (A.4)

of Kähler manifolds (M̂i, ĝi, Ĵi). Recall that the cone structure on (M̂, ĝ, Ĵ) gives rise to the cone
vector field C = r∂r satisfying ∇̂C = Id. Conversely, a vector field satisfying this equation induces
a cone structure by defining the radial coordinate to be

r :=
√
ĝ(C, C).

The decomposition C =
∑`

i=0 Ci of the cone vector field with respect to (A.4) defines cone vector

fields Ci on each component (M̂i, ĝi, Ĵi) making them into cones over certain Kähler manifolds
(Mi, gi, Ji). Hence, having a decomposition as in (A.4), we may write

ĝ =
∑̀
i=0

(dr2
i + r2

i (φ
2
i + gi))︸ ︷︷ ︸

=ĝi

. (A.5)

Here we allow some of the gi to be zero, meaning that the corresponding cone (M̂i, ĝi, Ĵi) is
(complex) one-dimensional over a base of dimension zero. In particular, ĝi is flat.

As a Kähler riemannian cone, ĝ is of the form (A.2). Using C =
∑`

i=0 Ci and Ci = ri∂ri , we
see that

r,K = 1
2 Ĵ gradĝ r

2, ∂r, dr and φ
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relate to the corresponding objects on the components ĝi of ĝ in (A.5) by the equations

r2 =
∑
i

r2
i , K =

∑
i

Ki, ∂r =
1

r

∑
i

ri∂ri ,

dr =
1

r

∑
i

ridri and φ =
1

r2

∑
i

r2
i φi. (A.6)

Next we describe the Kähler quotient of the direct product metric ĝ in (A.5) with respect
to the action of the hamiltonian Killing vector field K := (1/2)Ĵ gradĝ r

2 on the level set r = 1.

Theorem A.1. The Kähler quotient metric g of the metric ĝ is given by the formula

g =
∑̀
i=0

dr2
i +

1

2

∑̀
i,j=0

r2
i r

2
j (φi − φj)2 +

∑̀
i=0

r2
i gi. (A.7)

Remark A.1. The forms φi − φj are basic, i.e., they can be written as the pullback of forms
defined on the quotient. Indeed, these forms vanish upon insertion of ∂r and K, they do not
depend on r and they are K-invariant (that is, invariant with respect to the (local) S1-action).

Remark A.2. Recall that the metrics gi in (A.7) are zero if ĝi = dr2
i + r2

i (φ
2
i + gi) is (complex)

one-dimensional.

Proof of Theorem A.1. Restricted to the level set r = 1, the quotient metric g is given by

g = ĝ − φ2 =
∑̀
i=0

dr2
i +

∑̀
i=0

r2
i φ

2
i − φ2 +

∑̀
i=0

r2
i gi. (A.8)

Using (A.6), we obtain

∑̀
i=0

r2
i φ

2
i − φ2 =

∑̀
i=0

r2
i φ

2
i −

∑̀
i,j=0

r2
i r

2
jφi ⊗ φj =

1

2

∑̀
i,j=0

r2
i r

2
j (φi − φj)2

which gives us formula (A.7). 2

In what follows, let Â be a parallel hermitian endomorphism for ĝ with distinct eigenvalues
C0 < · · ·< C` of multiplicities m0, . . . ,m`. Let (A.5) be the decomposition of ĝ with respect to the
parallel eigenspace distributions of Â. If we consider Â as a parallel symmetric (0, 2)-tensor field
(by lowering one index with respect to the metric ĝ), it is given by the formula

Â =
∑̀
I=0

CI(dr
2
I + r2

I (φ
2
I + hI)). (A.9)

Let us relate the (constant) eigenvalues C0, . . . , C` of Â to the (generically nonconstant)
eigenvalues ξ1, . . . , ξ` of A ∈ Sol(g, J) corresponding to Â.

Lemma A.1. Let Â be given by (A.9) for numbers C0 < · · · < C` and let the cone metric ĝ over
g be given by (A.5). Let A ∈ Sol(g, J) correspond to Â via the isomorphism (A.3). Then the
function pA : M̂ × R → R, given by

pA(t) =
1

r2

∏̀
i=0

(t− Ci)mi−1
∑̀
i=0

r2
i

∏
j 6=i

(t− Cj), (A.10)
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is the characteristic polynomial of A. Moreover, we have

C0 6 ξ1 6 C1 6 · · · 6 ξ` 6 C`, (A.11)

where ξi are the ordered nonconstant eigenvalues of A. In particular, ` is the number of
nonconstant eigenvalues of A ∈ Sol(g, J) on the base M and the eigenvalues of Â occurring
with multiplicity two or higher are the constant eigenvalues of A.

Remark A.3. The calculations in the proof of Lemma A.1 below are analogous to the derivation
of elliptic separation coordinates on the n-sphere; see [Sch14, § 7].

Proof. Recall that A is the horizontal part of Â. Its action on the horizontal distribution

H = {X ∈ TM̂ : ĝ(X, ∂r) = ĝ(X, Ĵ∂r) = 0}

is then given by
AX = ÂX − ĝ(ÂX, ∂r)∂r − ĝ(ÂX, Ĵ∂r)Ĵ∂r.

In particular, if ξ is an eigenvalue of A, i.e., AX = ξX for some nonzero X ∈ H, we have
(Â− ξ Id)X = 〈ÂX, ∂r〉∂r, where 〈·, ·〉 = ĝ − iĝ(Ĵ ·, ·) denotes the hermitian inner product
associated to ĝ. Thus, ξ is an eigenvalue of A if and only if there exists X 6= 0 such that

〈X, ∂r〉 = 0 and (Â− ξ Id)X = c∂r for some c ∈ C.

If ξ is not an eigenvalue of Â, this condition is equivalent to 〈(Â − ξ Id)−1∂r, ∂r〉 = 0. Inserting
Â given by (A.9) and ∂r =

∑`
i=0 (ri/r)∂ri , this equation becomes equal to

∑̀
i=0

r2
i

Ci − ξ
= 0. (A.12)

We obtain that each eigenvalue ξ of A which is not an eigenvalue of Â must be a solution to this
equation. For fixed r0, . . . , r`, the function h(ξ) =

∑`
i=0 r

2
i /(Ci − ξ) has `+ 1 poles at C0, . . . , C`

and is monotonously increasing within the intervals (Ci, Ci+1). Hence, it has ` zeros ξ1, . . . , ξ`
which are the ` nonconstant eigenvalues of A depending on r0, . . . , r`. We have just seen that
these eigenvalues have to satisfy the relation (A.11).

On the other hand, if an eigenvalue Ci of Â has multiplicity mi > 2, the corresponding
eigenspace must have an (mi − 1)-dimensional intersection with H, hence, Ci is also a constant
eigenvalue of A of multiplicity mi − 1. The number of eigenvalues of A found so far is

`+
∑̀
i=0

(mi − 1) = −1 +
∑̀
i=0

mi = −1 + dim M̂ = dimM.

Thus, we have certainly found all eigenvalues of A.
Multiplying (A.12) with

∏`
i=0(Ci − ξ), we obtain

∑`
i=0 r

2
i

∏
j 6=i(Cj − ξ) = 0. The left-hand

side is a polynomial in ξ of degree `, and, since the nonconstant eigenvalues ξ1, . . . , ξ` are the
roots of this polynomial, we obtain

pnc(t) =
1

r2

∑̀
i=0

r2
i

∏
j 6=i

(t− Cj),

where pnc(t) =
∏`
i=1(t − ξi) is the nonconstant part of the characteristic polynomial of A. The

characteristic polynomial of A is then given by formula (A.10). 2
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Denote by ξ1, . . . , ξ` the nonconstant eigenvalues of A and by η its constant eigenvalues of
multiplicity mη. The characteristic polynomial pA(t), expressed in terms of the radial coordinates
ri, is given by (A.10); hence, we obtain the relation

∏̀
i=1

(t− ξi) =
1

r2

∑̀
I=0

r2
I

∏
J 6=I

(t− CJ), (A.13)

between the two sets of functions {ξ1, . . . , ξ`} and {r0, . . . , r`}. Inserting t = CI into formula
(A.13), we obtain the functions rI explicitly as functions of the ξi:

r2
I =

∏`
i=1(CI − ξi)∏
J 6=I(CI − CJ)

. (A.14)

Differentiating yields

2rIdrI = −
∑̀
i=1

∏
j 6=i(CI − ξj)∏
J 6=I(CI − CJ)

dξi. (A.15)

A.3 A local description of CC(−1)-metrics
We rederive the part of Theorem 3 stating necessary conditions on the parameters from formula
(9) for g being CC(−1).

Proposition A.1. Consider a CC(−1) metric g given by formula (9) with respect to some A ∈
Sol(g, J) with nonconstant eigenvalues ξ1, . . . , ξ`. Let C0 < · · · < C` be the distinct eigenvalues of
the corresponding parallel hermitian endomorphism Â on the cone. Then Θj(t) =−4

∏`
I=0(t−CI)

for j = 1, . . . , `.

Proof. The part of the metric g in (9) involving the dξi corresponds to the part
∑`

I=0 dr2
I of g

in (A.7). Using (A.14) and (A.15), we obtain

4dr2
I =

∑`
i1,i2=1

∏
j1 6=i1(CI − ξj1)

∏
j2 6=i2(CI − ξj2)dξi1 ⊗ dξi2∏

J 6=I(CI − CJ)
∏`
i=1(CI − ξi)

. (A.16)

Let 4
∑`

I=0 dr2
I =: Ai1i2dξi1 ⊗ dξi2 . For i1 6= i2, (A.16) implies that

Ai1i2 =
∑̀
I=0

∏
j 6=i1,i2(CI − ξj)∏
J 6=I(CI − CJ)

.

The numerator of each term in this sum is a polynomial of degree ` − 2 in CI , hence, applying
a Vandermonde identity (see, for instance, the appendix of [ACG06]) in the ` + 1 variables
C0, . . . , C`, we see that Ai1i2 = 0 for i1 6= i2. For the case i = i1 = i2, we obtain

Aii =
∑̀
I=0

∏
j 6=i(CI − ξj)∏

J 6=I(CI − CJ)(CI − ξi)
. (A.17)

The numerator of each term in this sum is a polynomial of degree ` − 1 in CI . Applying
Vandermonde identities with respect to the `+ 2 variables C0, . . . , C`, ξi, we obtain that

Aii = −
∏
j 6=i(ξi − ξj)∏`
I=0(ξi − CI)

.
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Thus we have ∑̀
i=0

dr2
i = −

∑̀
i=1

∏
j 6=i(ξi − ξj)

4
∏`
I=0(ξi − CI)

dξ2
i .

Comparing this with (9), we see that Θi(t) = −4
∏`
I=0(t− CI) as we claimed. 2

A.4 CC(−1)-metrics with mobility at least three
The cone construction provides a more geometric explanation why the conditions on the
eigenvalues in Theorem 6 imply that the mobility is at least three: since for a CC(−1) metric g
the space Sol(g, J) is isomorphic to the space of parallel hermitian endomorphisms on the cone
(M̂, ĝ, Ĵ), the decomposition theorem for riemannian manifolds [Eis23] implies that the mobility
D(g, J) = dim Sol(g, J) is given by

D(g, J) = f2 + i, (A.18)

where f is the complex dimension of the flat part and i is the number of irreducible (nonflat)
components of ĝ (see also [MR15]). Let C0 6 · · · 6 Cn denote the (not necessarily distinct)
eigenvalues of a parallel hermitian endomorphism Â on M̂ , and let A be the corresponding
element of Sol(g, J). Lemma A.1 shows that each repeated eigenvalue Ci−1 = Ci of Â gives rise
to a constant eigenvalue of A, while each gap Cj−1 < Cj gives rise to a nonconstant eigenvalue
of A taking values in the interval [Cj−1, Cj ]. This explains the assumptions in Theorem 6: if the
number of nonconstant eigenvalues of A is two or more or the number of constant eigenvalues of A
is three or more, then the number of distinct eigenvalues of Â must be three or more. Now, given
a parallel hermitian endomorphism Â on the cone with at least three distinct eigenvalues, the
decomposition theorem, together with formula (A.18), shows that the mobility is at least three.
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