
JFP 11 (6): 681–689, November 2001. c© 2001 Cambridge University Press

DOI: 10.1017/S0956796801004129 Printed in the United Kingdom

681

Weaving a web

RALF HINZE

Institut für Informatik III, Universität Bonn,
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Just a little bit of it can bring you up and down.

— Genesis, it

1 Introduction

Suppose, you want to implement a structured editor for some term type, so that

the user can navigate through a given term and perform edit actions on subterms.

In this case you are immediately faced with the problem of how to keep track of

the cursor movements and the user’s edits in a reasonably efficient manner. In a

previous pearl, Huet (1997) introduced a simple data structure, the Zipper, that

addresses this problem – we will explain the Zipper briefly in section 2. A drawback

of the Zipper is that the type of cursor locations depends on the structure of the

term type, i.e. each term type gives rise to a different type of location (unless you

are working in an untyped environment). In this pearl, we present an alternative

data structure, the web, that serves the same purpose, but that is parametric in the

underlying term type. Sections 3–6 are devoted to the new data structure. Before we

unravel the Zipper and explore the web, let us first give a taste of their use.

The following (excerpt of a) term type for representing programs in some func-

tional language serves as a running example:1

data Term = Var String

| Abs String Term

| App Term Term

| If Term Term Term .

In fact, the term type has been chosen so that we have constructors with no, one, two

and three recursive components. Here is an example element of Term , presumably

1 The programs are given in the functional programming language Haskell 98 (Peyton Jones & Hughes,
1999).
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Fig. 1. Navigating through the term K t1 t2 . . . tm.

the right-hand side of the definition of the factorial function:

rhs = Abs "n" (If (App (App (Var "=") (Var "n")) (Var "0"))

(Var "1")

(App (App (Var "+") (Var "n"))

(App (Var "fac") (App (Var "pred") (Var "n"))))).

But ouch, the program contains a typo: in the else branch the numbers are added

rather than multiplied. To correct the program let us use the Zipper library. It

supplies a type of locations, four navigation primitives, a function that starts the

navigation taking a term into a location and a function that extracts the subterm at

the current location:

Loc :: ?

top :: Term → Loc

down , up, left , right :: Loc → Loc

it :: Loc → Term . -- record label

Note that it is a record label so that we can use Haskell’s record syntax to change a

subterm: l{ it = t } replaces the subterm at location l by t . The navigation primitives

have the following meaning: down goes to the leftmost child (or rather, the leftmost

recursive component) of the current node, up goes to the parent, left goes to the

left sibling and right goes to the right sibling. Figure 1 illustrates the navigation

primitives.

The following session with the Haskell interpreter Hugs (Jones & Peterson, 1999)

shows how to correct the definition of the factorial function (a location is displayed

by showing the associated subterm; $$ always refers to the previous value).

> top rhs

Abs "n" (If (App (App (Var "=") (Var "n")) (Var "0")) ( . . . ))

> down $$

If (App (App (Var "=") (Var "n")) (Var "0")) (Var "1") ( . . . )

> down $$

App (App (Var "=") (Var "n")) (Var "0")
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> right $$

Var "1"

> right $$

App (App (Var "+") (Var "n")) (App (Var "fac") (App (Var "pred") (Var "n")))

> down $$

App (Var "+") (Var "n")

> down $$

Var "+"

> $$ { it = Var "*"}
Var "*"

> up $$

App (Var "*") (Var "n")

We go down twice to the first argument of If , then move two times to the right into

the else branch, where we again go down twice. As to be expected, the local change

is remembered when we go up. In a real editor, the edit actions are most likely

more advanced, but such advanced edit actions usually consist of combinations of

primitive actions like those used in the session above.

2 The Zipper

The Zipper is based on pointer reversal. If we follow a pointer to a subterm, the

pointer is reversed to point from the subterm to its parent so that we can go up

again later. A location is simply a pair At t c consisting of the current subterm t

and a pointer c to its parent. The upward pointer corresponds to the context of

the subterm. It can be represented as follows. For each constructor K that has

m recursive components we introduce m context constructors K1, . . . , Km. Now,

consider the location At (K t1 t2 . . . tm) c. If we go down to t1, we are left with

the context K • t2 . . . tm and the old context c. To represent the combined context,

we simply plug c into the hole to obtain K1 c t2 . . . tm. Thus, the new location

is At t1 (K1 c t2 . . . tm). The following picture illustrates the idea (the filled circle

marks the current cursor position).

The implementation of the Zipper for the datatype Term is displayed in figure 2.

Clearly, the larger the term type the larger the context type and the larger the

implementation effort for the navigation primitives.
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data Loc = At{ it :: Term , ctx :: Ctx }
data Ctx = Top

| Abs1 String Ctx

| App1 Ctx Term

| App2 Term Ctx

| If 1 Ctx Term Term

| If 2 Term Ctx Term

| If 3 Term Term Ctx

down , up, left , right :: Loc → Loc

down (At (Var s) c) = At (Var s) c

down (At (Abs s t1) c) = At t1 (Abs1 s c)

down (At (App t1 t2) c) = At t1 (App1 c t2)

down (At (If t1 t2 t3) c) = At t1 (If 1 c t2 t3)

up (At t Top) = At t Top

up (At t1 (Abs1 s c)) = At (Abs s t1) c

up (At t1 (App1 c t2)) = At (App t1 t2) c

up (At t2 (App2 t1 c)) = At (App t1 t2) c

up (At t1 (If 1 c t2 t3)) = At (If t1 t2 t3) c

up (At t2 (If 2 t1 c t3)) = At (If t1 t2 t3) c

up (At t3 (If 3 t1 t2 c)) = At (If t1 t2 t3) c

left (At t Top) = At t Top

left (At t1 (Abs1 s c)) = At t1 (Abs1 s c)

left (At t1 (App1 c t2)) = At t1 (App1 c t2)

left (At t2 (App2 t1 c)) = At t1 (App1 c t2)

left (At t1 (If 1 c t2 t3)) = At t1 (If 1 c t2 t3)

left (At t2 (If 2 t1 c t3)) = At t1 (If 1 c t2 t3)

left (At t3 (If 3 t1 t2 c)) = At t2 (If 2 t1 c t3)

right (At t Top) = At t Top

right (At t1 (Abs1 s c)) = At t1 (Abs1 s c)

right (At t1 (App1 c t2)) = At t2 (App2 t1 c)

right (At t2 (App2 t1 c)) = At t2 (App2 t1 c)

right (At t1 (If 1 c t2 t3)) = At t2 (If 2 t1 c t3)

right (At t2 (If 2 t1 c t3)) = At t3 (If 3 t1 t2 c)

right (At t3 (If 3 t1 t2 c)) = At t3 (If 3 t1 t2 c)

top :: Term → Loc

top t = At t Top

Fig. 2. The zipper data structure for Term .

3 The web

If you use the web, the implementation effort is considerably smaller. All you have

to do is to define a function that weaves a web. For the Term datatype it reads:

weave :: Term →Weaver Term

weave (Var s) = con0 weave (Var s)

weave (Abs s t1) = con1 weave (Abs s) t1

weave (App t1 t2) = con2 weave App t1 t2

weave (If t1 t2 t3) = con3 weave If t1 t2 t3.
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For each constructor K that has m recursive components, we call the combinator

conm supplied by the web library2. It takes m + 2 arguments: the weaving function

itself, a so-called constructor function and the m recursive components of K . Given

m recursive components the constructor function builds a term that has K as the

top-level constructor. So, if K only has recursive components (like App and If ),

then the constructor function is simply K . Otherwise, it additionally incorporates

the non-recursive components of K .

The weaving function can be mechanically generated from a given datatype

definition – so that you can use the web even if you don’t read the following

sections. The equation for a constructor K takes the following general form

weave (K a1 . . . an) = conm weave (λt1 . . . tm → K a1 . . . an) t1 . . . tm,

where the variables {t1, . . . , tm } ⊆ {a1, . . . , an } mark the recursive components of the

constructor K .

The navigation primitives are the same as before except that the type of locations

is now parametric in the underlying term type.

Loc :: ?→ ?

down , up, left , right :: Loc a → Loc a

it :: Loc a → a -- record label

The weaving primitives are

Weaver :: ?→ ?

con0 :: (a →Weaver a)→ (a)→Weaver a

con1 :: (a →Weaver a)→ (a → a)→ a →Weaver a

con2 :: (a →Weaver a)→ (a → a → a)→ a → a →Weaver a

con3 :: (a →Weaver a)→ (a → a → a → a)→ a → a → a →Weaver a

explore :: (a →Weaver a)→ a → Loc a .

To turn a term t into a location one calls explore weave t – this is the only difference

to the Zipper where we used top t .

The implementation is presented in three steps. Section 4 shows how to implement

a web that allows you to navigate through a term without being able to change it.

Section 5 describes the amendments necessary to support editing. Finally, section 6

shows how to implement the interface above.

4 A read-only web

The idea underlying the web is quite simple: given a term t we generate a graph

whose nodes are labelled with subterms of t . There is a directed edge between two

nodes ti and tj if one can move from ti to tj using one of the navigation primitives.

The local structure of the graph is displayed in figure 1. A location is now a node

2 Since Haskell currently has no support for defining variadic functions, the web library only supplies
con0, . . . , conmax where max is some fixed upper bound. This is not a limitation, however, since one
can use as a last resort a function that operates on lists, see Exercise 1.
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together with its outgoing edges; it is represented by the following datatype.

data Loc a = At{ it :: a ,

down :: Loc a ,

up :: Loc a ,

left :: Loc a ,

right :: Loc a }
The function top turns a term into a location.

top :: Term → Loc Term

top t = r where r = At t (weave r t) r r r

If the user goes down, the function weave is invoked, which lazily constructs the

nodes of the web (in fact, this version of the web relies on lazy evaluation). It takes

two arguments, a location and the label of the location, and yields the location of

the first recursive component. If there is none, it simply returns the original location.

Note that since we are working towards a solution, this version of weave does not

yet have the type given in the previous section.

weave :: Loc Term → Term → Loc Term

weave l0 (Var s) = l0
weave l0 (Abs s t1) = l1

where l1 = At t1 (weave l1 t1) l0 l1 l1
weave l0 (App t1 t2) = l1

where l1 = At t1 (weave l1 t1) l0 l1 l2
l2 = At t2 (weave l2 t2) l0 l1 l2

weave l0 (If t1 t2 t3) = l1
where l1 = At t1 (weave l1 t1) l0 l1 l2

l2 = At t2 (weave l2 t2) l0 l1 l3
l3 = At t3 (weave l3 t3) l0 l2 l3

Consider the definition of l2 in the last case: it is labelled with t2, going down

recursively invokes weave, the up link is set to l0, its left neighbour is l1 and its right

neighbour is l3. This scheme generalizes in a straightforward manner to constructors

of arbitrary arity. Note, however, that the definition of the locations is mostly

independent of the particular constructor at hand. So, before we proceed, let us

factor weave into a part that is specific to a particular term type and a part that is

independent of it.

weave l0 (Var s) = loc0 weave l0
weave l0 (Abs s t1) = loc1 weave l0 t1

weave l0 (App t1 t2) = loc2 weave l0 t1 t2

weave l0 (If t1 t2 t3) = loc3 weave l0 t1 t2 t3

loc0 wv l0 = l0

loc1 wv l0 t1 = l1
where l1 = At t1 (wv l1 t1) l0 l1 l1
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loc2 wv l0 t1 t2 = l1
where l1 = At t1 (wv l1 t1) l0 l1 l2

l2 = At t2 (wv l2 t2) l0 l1 l2

loc3 wv l0 t1 t2 t3 = l1
where l1 = At t1 (wv l1 t1) l0 l1 l2

l2 = At t2 (wv l2 t2) l0 l1 l3
l3 = At t3 (wv l3 t3) l0 l2 l3

Note that locm must be parameterized by the weave function so that it can be reused

for different term types.

5 A read-write web

The web introduced in the previous section is read-only since the links are created

statically when top is called. So even if we change the subterm attached to a location,

the change will not be remembered if we move onwards. To make the web reflect

any user edits, we must create the links dynamically as we move. To this end we

turn the components of the type Loc into functions that create locations:

data Loc a = At{ it :: a ,

fdown :: a → Loc a ,

fup :: a → Loc a ,

fleft :: a → Loc a ,

fright :: a → Loc a }.
The navigation primitives are implemented by calling the appropriate link function

with the current subterm.

down , up, left , right :: Loc a → Loc a

down l = (fdown l ) (it l )

up l = (fup l ) (it l )

left l = (fleft l ) (it l )

right l = (fright l ) (it l )

The implementation of weave and locm is similar to what we had before except that

any local changes are now propagated when we move (weave still does not have the

right type).

top = fr where fr t = At t (weave fr) fr fr fr

weave fl0 (Var s) = loc0 weave (fl0 (Var s))

weave fl0 (Abs s t1) = loc1 weave (λt ′1 → fl0 (Abs s t ′1)) t1

weave fl0 (App t1 t2) = loc2 weave (λt ′1 t ′2 → fl0 (App t ′1 t ′2)) t1 t2

weave fl0 (If t1 t2 t3) = loc3 weave (λt ′1 t ′2 t ′3 → fl0 (If t ′1 t ′2 t ′3)) t1 t2 t3

loc0 wv fl ′0 = fl ′0
loc1 wv fl ′0 = fl1

where fl1 t1 = At t1 (wv (upd fl1)) (upd fl ′0) (upd fl1) (upd fl1)

where upd fl t ′1 = fl t ′1
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loc2 wv fl ′0 = fl1

where fl1 t1 t2 = At t1 (wv (upd fl1)) (upd fl ′0) (upd fl1) (upd fl2)

where upd fl t ′1 = fl t ′1 t2

fl2 t1 t2 = At t2 (wv (upd fl2)) (upd fl ′0) (upd fl1) (upd fl2)

where upd fl t ′2 = fl t1 t ′2
loc3 wv fl ′0 = fl1

where fl1 t1 t2 t3 = At t1 (wv (upd fl1)) (upd fl ′0) (upd fl1) (upd fl2)

where upd fl t ′1 = fl t ′1 t2 t3

fl2 t1 t2 t3 = At t2 (wv (upd fl2)) (upd fl ′0) (upd fl1) (upd fl3)

where upd fl t ′2 = fl t1 t ′2 t3

fl3 t1 t2 t3 = At t3 (wv (upd fl3)) (upd fl ′0) (upd fl2) (upd fl3)

where upd fl t ′3 = fl t1 t2 t ′3
To illustrate the propagation of changes consider the definition of fl2 local to loc3:

it takes as arguments the three ‘current’ components t1, t2 and t3 and creates a

location labelled with the second component t2. Now, if its fright function is called

with, say, t ′2, then fl3 is invoked with t1, t ′2 and t3 creating a new location labelled

with t3. If now fup t ′3 is called, fl ′0 is invoked with t1, t ′2 and t ′3 as arguments. It in

turn creates a new term and passes it to fl0, the link function of its parent (see the

definition of weave).

Finally, it is worth noting that all the primitives use constant time since they all

reduce to a few function applications.

6 The web interface

The above implementation works very smoothly but it does not quite implement the

interface given in section 3. The last version of the weaver is defined by equations

of the form

weave fl0 (K a1 . . . an) = locm weave (λt1 . . . tm → fl0 (K a1 . . . an)) t1 . . . tm

whereas we want to let the user supply somewhat simpler equations of the form

weave (K a1 . . . an) = conm weave (λt1 . . . tm → K a1 . . . an) t1 . . . tm.

Now, the second form can be obtained from the first if we flip the arguments

of weave and split λt1 . . . tm → fl0 (K a1 . . . an) into the constructor function

λt1 . . . tm → K a1 . . . an and the link function fl0:

weave (K a1 . . . an) fl0 = conm weave (λt1 . . . tm → K a1 . . . an) t1 . . . tm fl0.

Applying η-reduction we obtain the desired form. Now, the combinators conm must

merely undo the flipping and splitting before they call locm.

newtype Weaver a = W {unW :: (a → Loc a)→ Loc a }
call wv fl0 t = unW (wv t) fl0
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con0 wv k = W (λfl0 → loc0 (call wv ) (fl0 k ))

con1 wv k t1 = W (λfl0 → loc1 (call wv ) (λt1 → fl0 (k t1)) t1)

con2 wv k t1 t2 = W (λfl0 → loc2 (call wv ) (λt1 t2 → fl0 (k t1 t2)) t1 t2)

con3 wv k t1 t2 t3 = W (λfl0 → loc3 (call wv ) (λt1 t2 t3 → fl0 (k t1 t2 t3)) t1 t2 t3)

Note that we have also taken the opportunity to introduce a new type for weavers

that hides the implementation from the user. It remains to define explore:

explore wv = fr where fr t = At t (call wv fr) fr fr fr .

Finally, note that the web no longer relies on lazy evaluation since the only recur-

sively defined objects are functions.

Exercise 1

Write a function con :: (a → Weaver a) → ([a ] → a) → ([a ] → Weaver a) that

generalizes the conm combinators. Instead of taking m components as separate

arguments it takes a list of components.
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