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Abstract

We first define an inscribed center of a bounded convex body in a normed linear space as the center of
a largest open ball contained in it (when such a ball exists). We then show that completeness is a
necessary condition for a normed linear space to admit inscribed centers. We show that every weakly
compact convex body in a Banach space has at least one inscribed center, and that admitting inscribed
centers is a necessary and sufficient condition for reflexivity. We finally apply the concept of inscribed
center to prove a type of fixed point theorem and also deduce a proposition concerning so-called Klee
caverns in Hilbert spaces.

1980 Mathematics subject classification (Amer. Math. Soc): 46 B 20, 46 B 10, 47 H 10.

1. Definitions and terminology

Let A' be a normed linear space and B a bounded convex body in X (that is, B
has a non-empty interior in X). Let us define the {nearest) distance of each point
b G B from the complement cB of B by

d(b,cB)= inf \\b- x\\.
xecB

We define the inscribed radius of B by

p(B) = sup d{b,cB).
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We shall also say that the bounded convex body B has an inscribed center if there
exists some cQ e B such that d(c0, cB) = p(B). When such a c0 exists we call the
open ball B°(c0, p(B)) an inscribed ball of B. If each bounded convex body in X
has at least one inscribed center, we call X a normed linear space admitting
inscribed centers.

2. Results

First of all, we point out that even in Euclidean spaces a bounded convex body
may have lots of inscribed centers. For instance, in the Euclidean plane each
point (x, 0) with -1 < x < 1 is an insc ribed center for the rectangle with vertices
(-2,1), (-2, -1), (2, -1), and (2,1). Also, as an example to show that in general
the notion of "Chebyshev center" for a bounded convex body (see [2] for the
definition) differs from that of "inscribed center", let us choose B to be the right
triangle with vertices (0,0), (2,0), and (0,4) in the Euclidean plane. Then clearly
(1,2) is the Chebyshev center of B, whereas B has (v^ - 1, i/3" - 1) as its
inscribed center.

The following theorem shows that completeness is a necessary condition for a
normed linear space to admit inscribed centers.

THEOREM 1. Let X be an incomplete normed linear space. Then X contains a
closed convex body with no inscribed center.

PROOF. We let D denote the virtual ball of radius 1 in X, as constructed in the
proof of Theorem 1 in [2], that is

D= {x^X:r(x)^ 1 ) ,

where r(x) = limn||.x - an\\, and where {an} is a fixed non-convergent Cauchy
sequence in X with l imj|aj | = 1. Since D equals the intersection with X of the
ball 2?(limnan, 1) in the completion of X, D is dense in BQimnan, 1). Therefore
p(D) = p(B(]imnan,l)), and the only possible inscribed center for D would be
limn an (the inscribed center of B(\imn an, 1)), which is not in X. Hence X admits
no inscribed center for D.

The above theorem confines our attention to Banach spaces for this study of
admitting inscribed centers. The following theorem has the corollary that reflexiv-
ity is a sufficient condition for a Banach space to admit inscribed centers.
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THEOREM 2. Let B be a weakly compact convex body in a Banach space X. Then
B has at least one inscribed center in X.

PROOF. For sufficiently large n let us define C n c l a s follows:

Cn = c[cB+[P(B)-\)u{X)\

where U( X) denotes the closed unit ball of X. Since cB (the complement of B in
A') is open, it follows that each Cn is closed, and since

(1) x*Cn « x

it follows that for each n we have Cn c B. On the other hand, for each n, we have

cB+(p(B) - l)u(B) c cB +(p(5) - -^j^X),

from which we deduce that Cn + 1 c Cn. That is, (Cn) is a decreasing sequence.
We now show that each Cn is convex. To this end, let bx, b2 e Cn and let
0 < t < 1. By (1), for each u e U(X), we have

Therefore, by the convexity of B, for each u e ( / ( X), we have

- £)«] +(1 - t)\b2

Hence tbx + (1 - r)A2 + (p(B) - l/n)U(X) c 5, and, by (1), rf>x + (1 - t)b2

Now each Cn (being closed and convex) is weakly closed [3, Theorem 13, page
422]. Also, by the weak compactness of B and by the fact that Cn c B, it follows
that each Cn is weakly compact. Since {Cn} is a decreasing sequence of weakly
compact subsets of B, we deduce from a theorem of Smullian (cf. [3, Theorem 2,
page 433]) that C = C\nCn is non-empty. If now c0 e C, it follows from (1) that
for each n we have

Therefore each ball B(c0, p(B) — \/n) is contained in B. Therefore

B°(co,p(B)) = {JB(CO,P(B) - i ) c B.
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We deduce that d(co,cB)^ p(B). Hence d(co,cB) = p(B), and the result
follows.

COROLLARY 1. The set consisting of all inscribed centers of a bounded convex
body B in a normed linear space X is closed convex, and nowhere dense in X.

PROOF. We may assume without loss of generality that B is closed. Then it is
enough to observe that the closed convex subsets Cn c B (and hence C = C\nCn)
in the proof of Theorem 2 may be constructed, even if X is an arbitrary normed
linear space. Hence, with the convention that the empty set is convex, the set
C c B is closed and convex. The nowhere density of C is obvious; for otherwise
C would contain a ball B(c, S), and then we would have B(c,p(B) + 8) c B,
which is absurd.

Our next theorem shows that admitting inscribed centers characterises reflexiv-
ity. To prove this we shall use Theorem 2 above, a well known theorem of R. C.
James in [4], and also the following lemma.

LEMMA 1. Let X be a normed linear space and f a continuous linear functional of
norm 1 on X. Then the inscribed radius of the {upper) half unit ball B — U( Â ) O
f~\[0,oo)) equals I

PROOF. We first show that p(B) > 5. To do so, let e > 0 be arbitrary, and
choose z e B such that ||z|| = 1 and such that 1 - e < f(z) < 1. Then

Also we have

(2)

for if y e B(j, i - f), then /(f) - f(y) < ||f - y\\ < \ - f, and hence f(y)
/ ( ! ) - 2 + f > 0. From (1) and (2) we get

Now since e > 0 was arbitrary, we deduce that p(B)^ \. We end the proof of
the lemma by showing that p(B) > j is impossible. If p(B) > j , then there
would exist b e B such that d(b,cB) > | , and hence for some a > 0 we would
have

(3) \ + a<d(b,cB)= i n f | | 6 - z | |
&B
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On the other hand (3) implies that

B{b,\ + a)<z U(X).

Now, observing that

[ ) + «) c U(X),

we get from (3) that

This contradiction shows that we must have p(B) = \.

THEOREM 3. For a Banach space X the following conditions are equivalent:
(i) X is reflexive;

(ii) X admits inscribed centers.

PROOF, (i) => (ii). If X is reflexive, and if B c X is a bounded convex body,
then its norm closure B is weakly closed. By reflexivity of X, B is weakly
compact [3, Corollary 8, page 425]. Hence by Theorem 2, B, and therefore B, has
an inscribed center in X.

(ii) =» (i). To prove this we only need to show that every continuous linear
functional / on X attains its supremum on U{ X) (cf. Theorem 5 in [4]). Let / be
an arbitrary continuous linear functional on X. We assume without loss of
generality that ||/|| = 1. Let B = U(X) nf~\[0, oo)) be the (upper) half unit ball
determined by / . By Lemma 1, p(B) = \, and by hypothesis there exists c e B
such that

We now claim that ||c|| < \. For otherwise (as in the proof of Lemma 1), the
inequality \ < \\c\\ together with the relationships

imply the following contradiction:

l > | | c " | | = | | c | | + i > l .

Hence \\d\\ < \. On the other hand

\ = p(B) = d(c,cB)= inf \\c - z\\ < inf{||c - z\\: z £ / - ' ( ( 0 ) ) n U(X)}
zecB
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Therefore /(c) = ||c|| = \, and /(2c) = ||2c|| = 1 = ||/| |. We deduce that / at-
tains its supremum on U(X), and this completes the proof of the theorem.

COROLLARY 2. In every non-reflexive Banach space X there exists a partition of
the unit ball U(X) into two half balls, neither of which contains a ball of radius \.
These half balls are Bx = U(X) nf-\[0, oo)) and B2 = -Bv where f is a continu-
ous linear functional on X which does not attain its supremum on U( X).

EXAMPLE. In c0, the Banach space of all real sequences (xn) converging to 0,
the subsets B1 = {(xn): ||(jcn)|| < 1; 0 < I^^xjl") and B2 = -Bx are two half
balls which do not contain a largest ball (of radius \). This follows since the
continuous linear functional / defined by f(xn) = Y%=lxn/2" on c0, does not
attain its supremum on U(c0) (see [5, Example 18.8, page 173]).

3. Applications

In this section we point out two applications of the concept of inscribed
centers. The first application is to deduce the following fixed point theorem. In
this theorem Inscr(fi) denotes the set of all inscribed centers of a given bounded
convex body.

THEOREM 4. Let X be a normed linear space, and let B c X be a bounded convex
body with Inscr(5) =*= 0 . Let K:B -* [1, oo) be a given function, and assume that
T:B -» B is a map such that for each x e B andy e cB we have

(1) d(x,cB)^K(x)\\y-Tx\\.

Then T leaves Inscr(5) invariant. In particular, if Inscr(5) is a singleton, then its
only member is a fixed point for T.

PROOF. We only need to prove the first assertion of the theorem. Let z e
Inscr(5) be given. By (1), for each y e cB we have

d(z,cB)<K(z)\\y-Tz\\.

Taking the infimum over cB in the right side of this inequality and noting that
Tz e B, we get

p(B) = d(z,cB) < K(z)d(Tz,cB) < P(B).

Therefore d{Tz, cB) = p{B) and Tz e Inscr(fi). Hence the result follows.

We may recall that under the conditions of the above theorem the map T may
not have a fixed point if Inscr(5) contains more than one point. As an example,
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let B be the rectangle with vertices (-2,1), (-2, -1), (2, -1), and (2,1) in the
Euclidean plane. As we mentioned at the beginning of Section 2, Inscr(fi) =
{(a,0): - 1 < a < 1). If we consider the map T:B -> B defined by 7(0,0) = (1,0),
and T(a, b) = (~a, b/2) for (a, b) * (0,0), then (for K = 1) T satisfies the
conditions of Theorem 4 (since for each (a, b) e B, d((a, b), cB) <
d(T(a, b), cB)), while clearly T has no fixed point in B.

As our next application of the concept of inscribed center, we point out the
following proposition concerning so-called Klee caverns in Hilbert spaces. Recall
that a subset AT of a normed linear space X is called Chebyshev if K admits a
unique nearest point to each point of X. Chebyshev subsets of Hilbert spaces
whose complements are bounded and convex have been called Klee caverns by
Asplund in [1]. Asplund showed that Klee caverns exist, provided that non-con-
vex Chebyshev sets exist (see [1, page 239]).

PROPOSITION \. If a Hilbert space H contains a non-convex Chebyshev subset,
then H contains a Klee cavern whose complement has a unique inscribed center.

PROOF. We adopt the notations and the details stated in [1, pages 238-239].
Thus, let K be a non-convex Chebyshev subset of H and let G be the subset
(with the unique farthest point property) of H obtained from K by Ficken's
method of inversion (see [1, page 238]). Let y denote the unique Chebyshev center
of G. Then the subset C = {JC e H: t(x) > t(y) + 1}, where t(x) =
sup26G||x - z\\, is a Klee cavern. If b is the metric projection onto C, then for
each x £ C the following equality holds:

t(x)+\\x-b(x)\\ = t(y) + l.

The above equation with its constant right hand side reveals that as t(x)
decreases to reach its greatest lower bound over cC (the complement of C),
||JC — b(x)\\ increases to reach its least upper bound. Since the only point at which
t(x) takes its minimum is y, it follows that y is the unique point in cC for which
||x — b(x)\\ takes its maximum. Therefore y is at the same time the Chebyshev
center of G and the unique inscribed center of cC, and the proposition follows
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