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Abstract

A comparison theorem is stated for Markov processes in Polish state spaces. We consider
a general class of stochastic orderings induced by a cone of real functions. The main result
states that stochastic monotonicity of one process and comparability of the infinitesimal
generators imply ordering of the processes. Several applications to convex type and to
dependence orderings are given. In particular, Liggett’s theorem on the association of
Markov processes is a consequence of this comparison result.
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1. Introduction

This paper is motivated by Liggett’s (1985) characterization of (positive) association in
Markov processes, which is the main tool used to establish this strong dependence notion. This
result is the basis of many important applications and it has been modified and extended in
various ways. For its role in connection with several interesting models in applied probability,
see, in particular, Szekli (1995, Chapter 3).

Liggett’s theorem is based on the notion of stochastic monotonicity and on the infinitesimal
generator A of the Markov process X. The main result of this paper is the comparison of two
Markov processes X and Y with respect to a general class of stochastic orderings ‘≺F ’, induced
by some cone F of real functions on the state space E. Stochastic monotonicity and ordering
of the infinitesimal generators A and B are the basic ingredients of the comparison result.

Positive dependence of a random vector Z = (Z1, . . . , Zd) is typically defined by a
comparison with its copy Z⊥ with independent components with respect to some class of
(positive) dependence functions. Therefore, as a consequence of the comparison result, we
also obtain several results on positive dependence orderings. In particular, Liggett’s association
theorem is a consequence of this comparison result.

Ordering conditions for Markov processes in terms of infinitesimal generators have been
given in several papers. Massey (1987), Herbst and Pitt (1991), Chen and Wang (1993), Chen
(2004), and Daduna and Szekli (2006) described stochastic ordering for discrete-state spaces,
for diffusions, and for diffusions with jumps in terms of generators. For bounded generators
and in the case of discrete-state spaces, Daduna and Szekli (2006) gave a comparison result
for stochastic ordering in terms of a comparison of the generators. For an infinite-dimensional
system of interacting diffusions, a comparison result for directionally convex ordering has been
established in Cox et al. (1996) and Greven et al. (2002) under the condition that the diffusion
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coefficients are comparable. For Lévy processes, Bäuerle et al. (2006) and Bergenthum and
Rüschendorf (2007) derived a comparison of the supermodular as well as of further orderings
in terms of the corresponding ordering of the infinitesimal generator.

The proof of the main comparison result in the present paper is given in the same framework
as Liggett’s result and uses a similar idea as in Liggett’s characterization of association (see
Szekli (1995, Chapter 3.7)). The same idea of proof has also been used before in the papers of
Cox et al. (1996) and Greven et al. (2002) mentioned above for directionally convex ordering
of interacting diffusions. The author of this paper is grateful to a reviewer for a hint to these
papers.

Motivated by the comparison results for option prices, an alternative approach to comparison
theorems has been developed based on stochastic analysis (Itô’s formula and Kolmogorov’s
backward equation) which allows us to go beyond the frame of Markov processes to semimartin-
gales (see Bergenthum and Rüschendorf (2007) for recent developments on this approach).
For the case of Markov processes, the results of Bergenthum and Rüschendorf (2007) are
comparable to the results of this paper. However, in comparison, the approach via generators
in this paper is more direct and simple.

2. The comparison result

For a homogeneous Markov process X = (Xt )t≥0 with values in a compact partially ordered
set E, Liggett (1985) established an important criterion for the positive dependence notion of
the association of Xt, t ≥ 0. Let X be a strongly continuous Feller process with corresponding
semigroup S = (St )t≥0 of transition operators on Cb(E). Let A denote the infinitesimal
generator of S with domain DA. Then DA ∩ F +

i is dense in F +
i , the class of bounded,

nondecreasing, nonnegative functions on E (see Szekli (1995)).
We call X associated in time if, for all 0 ≤ t1 < · · · < tk , the vector (Xt1 , . . . , Xtk ) is

associated, i.e.

E
k∏

i=1

fi(Xti ) ≥
k∏

i=1

E fi(Xti ) for all fi ∈ F +
i . (2.1)

If (2.1) holds for all t1 ≤ · · · ≤ tk then we call X associated in time and space, which combines
the association in time with the association of Xt in space.

Theorem 2.1. (Liggett (1985).) Assume that

(a) X is stochastically monotone, i.e. f ∈ F +
i implies that Ttf ∈ F +

i ;

(b)
Afg ≥ f Ag + gAf for all f, g ∈ DA ∩ F +

i ; (2.2)

and

(c) µ = PX0 is associated.

Then X is associated in time and space; in particular, µt = PXt is associated for all t ≥ 0.

Theorem 2.1 was stated in Liggett (1985) for compact partially ordered metric spaces and
in Szekli (1995) for products of normally ordered Polish spaces. Stochastic monotonicity in
the finite-discrete case has been characterized by Harris (1977) and Cox (1984). The proof of
Liggett’s result is essentially based on a representation of a solution of a Cauchy problem for
F : [0, ∞) → C(E) with F(t) ∈ DA for all t ≥ 0 and F ′(t) = AF(t), F (0) = f ∈ DA. In
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the following we derive, in a similar framework to Liggett’s theorem, a comparison theorem
between two Markov processes with values in a Polish space E. The ordering on the set of
probability measures M1(E) on E is defined by a cone F of real-valued functions on E by

µ ≤F ν if
∫

f dµ ≤
∫

f dν for all f ∈ F .

Similarly, we define X ≤F Y for random variables X and Y in E. The order generating
class is not uniquely defined and typically there are many bounded or smooth and bounded
order generating classes. Typical examples of orderings described in this way are the usual
stochastic order, various convex orderings, and dependence orderings such as concordance,
supermodular, and directionally convex ordering (for definitions and properties, see Müller and
Stoyan (2002)).

Let X and Y be homogeneous, strongly continuous Markov processes with values in a Polish
space E which have the Feller property. Denote the corresponding semigroups by S = (St ) and
T = (Tt ), and the infinitesimal generators by A and B with domains DA and DB , respectively.
Let F ⊂ Cb(E) be a cone of bounded, continuous, real functions on E, and denote by ‘<F ’
the corresponding ‘stochastic’ order on M1(E). We assume that

F ⊂ DA ∩ DB. (2.3)

Theorem 2.2. (Conditional ordering result.) Let X and Y be homogeneous Markov processes
such that

(a) X is stochastically monotone, i.e. Stf ∈ F for all f ∈ F ; and

(b)
Af ≤ Bf [PX0 ] for all f ∈ F . (2.4)

Then
Stf ≤ Ttf [PXo ], f ∈ F . (2.5)

Proof. Define, for f ∈ F , F : [0, ∞) → Cb(E) by F(t) := Ttf −Stf . Then F(t) satisfies
the differential equation

F ′(t) = BTt f − AStf

= B(Ttf − Stf ) + (B − A)(Stf ).

Note that, by assumption, Stf ∈ F and, thus, H(t) := (B − A)(Stf ) is well defined and
H(t) ≥ 0 by (2.4). Thus, F solves the Cauchy problem,

F ′(t) = BF(t) + H(t), F (0) = 0. (2.6)

The solution of (2.6) is uniquely determined and is given by (see Liggett (1985, Theorem 2.15)
and Szekli (1995, p. 157))

F(t) = TtF (0) +
∫ t

0
Tt−sH(s) ds

=
∫ t

0
Tt−sH(s) ds as F(0) = 0.

H(s) ≥ 0 implies that F(t) ≥ 0 for all t and, thus, the statement in (2.5) holds.
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Remark 2.3. (a) As mentioned in the introduction, the same idea of proof was used for the case
of directionally convex ordering of certain interacting diffusions in Cox et al. (1996) and Greven
et al. (2002). Theorem 2.2 can be considered to be a general formulation of this comparison
argument.

(b) The notion of generator can be generalized to extended generator allowing for a larger class
of not necessarily bounded, continuous functions in their domain DA. This is defined by the
property that f ∈ DA if

M
f
t := f (Xt ) − f (X0) −

∫ t

0
Af (Xs) ds ∈ M,

where M is the class of martingales (see Jacod (1979, Chapter 13)). This property is closely
connected to the strong Markov property of X. It naturally leads to considering similar ordering
properties for the more general class of semimartingales (see Bergenthum and Rüschendorf
(2007)).

(c) For several classes of examples, in particular, for Lévy processes, diffusion processes, and
jump processes, the propagation of the ordering condition has been studied (see Bergenthum
and Rüschendorf (2007)).

Define the componentwise ordering (also called product ordering) of processes X and Y by

(X) ≤F (Y ) if E h(Xt1 , . . . , Xtk ) ≤ E h(Yt1 , . . . , Ytk )

for all functions h that are componentwise in F . In particular, (X) ≤F (Y ) implies that

Xt ≤F Yt for all t ≥ 0.

As a consequence of the conditional ordering result in Theorem 2.2 and the separation
theorem for the ordering Markov processes (see Bergenthum and Rüschendorf (2007, Propo-
sition 3.1)), we obtain the following ordering result for the processes.

Corollary 2.4. (Comparison result.) If the conditions of Theorem 2.2 hold true and if addi-
tionally X0 ≤F Y0, then the componentwise ordering (X) ≤F (Y ) of the processes X and Y

holds.

3. Association and applications

Next we derive Liggett’s association result (2.4) as a consequence of Theorem 2.2 and
Corollary 2.4 in Section 2. Let E = R

d , and let X = (Xt ) be a Markov process with values in
E, as in the introduction. Then µt = PXt is associated if and only if

(Xt , Yt ) ≤F (Xt , Xt ),

where Y is a conditionally independent copy of X, i.e. Y0 = X0, Y and X are conditionally
independent given X0, and Y | Y0 = x and X | X0 = x are identically distributed. Further-
more, F is defined by F = {f ⊗ g; f, g ∈ F +

i }, where f ⊗ g(x, y) = f (x)g(y). Let
(St ) and A respectively denote the semigroup and the infinitesimal generator of X (denoted by
X ∼ ((St ), A)). Then (Xt , Xt ) ∼ ((S̃t ), Ã) and (Xt , Yt ) ∼ ((T̃t ), B̃), where

T̃t f ⊗ g(x, y) = Stf (x)Stg(y), (3.1)

S̃t f ⊗ g(x, y) = Stfg(x), (3.2)

B̃f ⊗ g(x, y) = Af (x)g(y) + f (x)Ag(y), (3.3)
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and
Ãf ⊗ g(x, y) = Afg(x). (3.4)

For (3.3) and (3.4), we use the assumption that X0 = Y0.

Corollary 3.1. (Association (Liggett (1985)).) Under conditions (a)–(c) of Theorem 2.1, it
holds that X is associated in time and space.

Proof. By Theorem 2.1(a), X is stochastically monotone with respect to F +
i and, therefore,

for f ⊗ g ∈ F , we find, from (3.1) and (3.2), that (Xt , Xt ) and (Xt , Yt ) are both stochastically
monotone with respect to F = F +

i ⊗ F +
i . Furthermore, Liggett’s condition Afg ≥ f Ag +

gAf for f, g ∈ F +
i implies that

Ãf ⊗ g ≥ B̃f ⊗ g[P(X0,Y0)].
Thus, by Theorem 2.2 we obtain S̃t f ⊗ g ≥ T̃t f ⊗ g[P(X0,Y0)], which is equivalent to

Stfg ≥ Stf Stg[PX0 ].
Thus, Xt is conditionally associated given X0. Condition (c) of Theorem 2.1 and Corollary 2.4
imply that X is associated in time and space.

Remark 3.2. (a) Bäuerle et al. (2006) showed that the Liggett condition (2.2) yields, for the
case of Lévy processes, the characterization of association by Samorodnitsky (1995). This
characterization states that association of a Lévy process is equivalent to the property that the
support of the Lévy measure is contained in the union of the positive and negative orthant of
R

d , i.e. all jumps are in the same direction.

(b) Theorem 2.2(b) is also a necessary condition for stochastic ordering since, for f ∈ F ,
Stf ≤ Ttf implies that

Af (x) = lim
t↓0

Stf (x) − f (x)

t
≤ lim

t↓0

Ttf (x) − f (x)

t
= Bf (x).

Condition (a) of Theorem 2.2 is in general not a necessary condition.

Example 3.3. In several cases the local comparison condition for the infinitesimal generators
is easy to characterize explicitly.

(a) For pure diffusion processes X and Y in R
d with diffusion matrices (aij ) = (aij (x)) and

(bij ) = (bij (x)), respectively, the infinitesimal generators are given by

Af (x) = 1

2

∑
ij

aij (x)
∂2f

∂xi∂xj

and Bf (x) = 1

2

∑
ij

bij (x)
∂2f

∂xi∂xj

.

Thus, for convex ordering, the comparison condition Af (x) ≥ Bf (x), f ∈ Fcx ∩ C2,
is equivalent to

C := A − B ≥psd 0,

in the sense of positive semidefiniteness. The stochastic monotonicity needs some strong
conditions in dimension d ≥ 2, while in d = 1 it is satisfied generally (see Bergenthum
and Rüschendorf (2007) for details). Note that the application to convex ordering needs
an extension to unbounded functions if the space is not compact. For directionally convex
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ordering ‘≥dcx’, the corresponding ordering of the infinitesimal generator is given by the
more simple comparison

aij (x) ≤ bij (x) for all i, j and for all x.

Cox et al. (1996) and Greven et al. (2002) established, for some class of (infinite-
dimensional) interacting diffusions, that the stochastic monotonicity condition (as defined
in Theorem 2.2) is fulfilled for the case in which F = Fdcx, the class of directionally
convex functions.

(b) For integrable Lévy processes without drift and diffusion, X ∼ (0, 0, ν) and Y ∼
(0, 0, ν∗), where ν and ν∗ are the corresponding Lévy measures, the infinitesimal gener-
ator are respectively given by

Af (x) =
∫

Rd

�f (x, y) dν(y) and A∗f (x) =
∫

Rd

�f (x, y) dν∗(y),

where �f (x, y) = f (x + y) − f (x) − y∇f (x). For convex and directionally convex
orderings, with respective generating functions Fcx and Fdcx, the stochastic monotonicity
condition is satisfied as Stf (x) = ∫

f (Xt + x) dP . Thus, we find that the conditions

X0 ≤cx Y0, X0 ≤dcx Y0,

ν ≤cx ν∗, ν ≤dcx ν∗,
(3.5)

imply that X ≤cx Y and X≤dcxY . A similar result holds for supermodular ordering ‘≤sm’.
For (3.5), note that we have to pose some integrability condition on f . As a consequence
of Remark 3.2, this implies that convex, directionally convex, and supermodular orderings
of two Lévy processes X and Y are equivalent to the corresponding orderings of the Lévy
measures µ and ν.

A similar conclusion also holds for the stochastic order ‘≤st’, the upper orthant order
‘≤uo’, and the lower orthant order ‘≤lo’. Note that upper orthant ordering is generated by
the class F� of �-monotone functions (see Rüschendorf (1980)) and, thus, the stochastic
monotonicity condition is satisfied for Lévy processes. This is similarly true for lower
orthant ordering and, thus, for the combination of both orderings, concordance ordering
‘≤c’. For the case of supermodular and concordance orderings, this result is stated in
Bäuerle et al. (2006) as well as in Bergenthum and Rüschendorf (2007).

The proof of Corollary 3.1 extends to further positive dependence orderings. Let F +
ism ⊂ F +

i

denote the class of increasing, nonnegative, supermodular functions on R
d . Define a random

vector Z = (Z1, . . . , Zd) to be positive supermodular associated (PSA) if

E f (Z)E g(Z) ≤ E f (Z)g(Z)

for all f, g ∈ F +
ism. PSA is a weakening of the notion of association. Christofides and

Vaggelatou’s (2004) association of Z implies positive supermodular dependence, i.e.

Z⊥ ≤sm Z,

where Z⊥ is a copy of Z with independent components Z⊥
i such that Z⊥

i

d= Zi , where ‘
d=’

denotes equality in distribution. Obviously, the positive supermodular association of Z implies
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positive upper orthant dependence and positive concordance dependence, the combination of
positive upper and lower orthant dependence.

Let F s denote the cone
F s = {f ⊗ g; f, g ∈ F +

ism}.
Then f, g ∈ F +

ism implies that fg ∈ F +
ism. Thus, by the representation of the semigroups and

generators, as in the case of association (see (3.1)–(3.4)), we obtain the following variant of
Corollary 3.1.

Corollary 3.4. (Positive supermodular association.) Let X be a Markov process as in Section 2
and assume that

1. X is stochastically monotone with respect to F +
ism;

2.
Afg ≥ f Ag + gAf for all f ∈ DA ∩ F +

ism; (3.6)

and

3. µ = PX0 is PSA.

Then X is PSA in time and space; in particular, µt = PXt is PSA for all t ≥ 0.

Remark 3.5. (a) A similar result to Corollary 3.4 also holds if we replace the class F +
ism

by the classes F+
idcx of nonnegative, increasing, directionally convex functions or by F +

� ,
the class of (increasing) �-monotone functions. As a consequence, we obtain sufficient
conditions for positive, increasing, directionally convex dependence and for positive upper
orthant dependence. For this conclusion, note that f, g ∈ F +

� implies that fg ∈ F +
� , as can

be seen for differentiable f and g by considering kth derivatives. In a similar way we obtain
sufficient conditions for positive lower orthant dependence (PLOD) in space. As a consequence,
we obtain sufficient conditions for positive concordance dependence. For a discussion of these
dependence and ordering concepts, we refer the reader to Müller and Stoyan (2002, Chapter 3.8).

(b) As a particular consequence of Liggett’s theorem and Corollary 3.4, consider a Lévy process
Xt with X1

d= N(0, �) starting in X0 = 0. Then

Af (x) = 1

2
�i,j σij

∂2f

∂xi∂xj

,

where � = (σij ). Liggett’s condition (2.2), Afg ≥ (Af )g + f Ag for f, g ∈ F +
i , is

equivalent to

∑
i,j

σij

(
∂f

∂xi

∂g

∂xj

+ ∂f

∂xj

∂g

∂xi

)
≥ 0 for all f, g ∈ F +

i ∩ C2
b ,

and is thus equivalent to σij ≥ 0 for all i, j , which is the well-known characterization of
association of normal vectors (due to Pitt (1982)). The same condition also holds for the PSA
condition (3.6). Thus, for a normally distributed random vector X ∼ N(0, �),

X is associated ⇐⇒ X is PSA

⇐⇒ σij ≥ 0 for all i, j.

However, since the PSA dependence is between the association concept and the PLOD, this
conclusion is obvious.
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