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ON THE UNIFORM APPROXIMATION OF
SMOOTH FUNCTIONS BY JACOBI POLYNOMIALS

J. PRASAD AND H. HAYASHI

1. Introduction. Let w,(x) denote the Jacobi polynomials with the weight
function

plix) = 1 —x)2A 4+ x)a> —1land g > —1.

If we denote the corresponding normalized Jacobi polynomials by a&,(x) we
have

oy _|entet+s+ DT+ DTG +a+8+ 1]
(1’1) wn(x) - [ 2a+ﬁ+lr|(n+a + I)F(n +B+ 1) ] wn(x)'

Now let

be the nth partial sum of the Fourier series of Jacobi polynomials of a function
f(x). In the second of three volumes on Constructive function theory Natanson
proved the following:

TueorREM 1 [1]. Let ¢ = max(e, 8) = —3% and let p be a positive integer
which is not less than 20 + 2. Then on the interval [—1, 1] every function f(x)
with a continuous pth derivative can be expanded in a uniformly convergent
Fourier series of Jacobi polynomials @, (x).

As far as we know this is the latest result on this topic. In our note we
improve Natanson’s result by proving the following:

THEOREM 2. If f(x) has p continuous derivatives on [—1, 1] and f @ (x) € Lip u
O<pu<l),thenforpt+u=oc+%and —1 =x =1,

(1.2) |f(x) = Sa@)| £ er* In n/mrtr—o;
forp+pz i,
(13) (1 — )l (1 4 2)X8] f(w) — S, ()] S &% In m/mP*;
and forp +pu o+ 2r+ Sandr = 1,
(1.4) [fO @) — S, ()] £ eo* In n/mptw—om2rh,
where o = max(a, 8),a = 0,8 = 0.

It is worthwhile to point out that the recent results of Suetin [4] and that
of Saxena [3] are particular cases of Theorem 2.
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2. Jacobi polynomials. We state in this section some well-known results
which will be required later.
From [1] we have for y > —1 and A > —1,

Tn+~v+2+1)
'n++y+1)

where d; is a positive constant. Hence we obtain that

@ tatB+DI+atf+DTE+1) _

(2.1) < dm,

@.2) 2Ty tat DI+ B +1) =™

Also from [5] we have for —1 = x = 1,

(2.3) |, (x)] < dan,

where ¢ = max(a, 8) = — % and d; is a constant depending on « and 8 and
(2.4) (1 — x)kCetD (1 + £)I8D|g, (x)| < dun~?

fora = — 1,8 =2 — 1. Then from (1.1), (2.2), (2.3) and (2.4) it follows that
for —1 2 x =1,

(2.5) |on ()] < dsnott
and
(2.6) (1 — x)iCatD (1 + x)38D|g, (x)| < ds

fora = — 1,8 = — %. Further upon applying Markov’s inequality [1] to (2.3)
and (2.5) we obtain

2.7 |, ()| < dy*not?r
and
(2.8) |@, (x)| £ ds*not2r+i,

3. Some lemmas. In order to prove Theorem 2 we need the following
lemmas.

LeMMA L If —1 =x=<landa = —3%,B8 = — § then

Z &k(x)&k(t)ldt é Cs*ﬂﬂ—l,

k=0

3.1 f_ll 1 — %1 + )
(3.2) (1 — x)IeHD (1 4 x)¥®+D

xL (1 — 8+

3 &),,(x)dk(t)ldt < ce*n?
k=0
and

(3.3) J 11 (1 — %L + 1)

where ¢ = max(a, 3).

2741
dt £ et

?: 3 () 0)
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Proof. First of all, we evaluate the integral

f_ 11 (1 — %1 + 8)%ds.

The substitution ¢ = 2u — 1, yields

1 1
e Bt = oethtl — )%, B,
(3.4) 'J‘ ) A=A +0%dt =2 J; 1 — u)*u"du

= 2" B+ 1,8+ 1)

_ 2" T+ HPE + 1)
lat+pg+2)

Now, if ¢ = max(a, 8) = —%, we get by making use of (2.5),

n

(3.5) f_ 11 (1 -1+ t)ﬁ[ > &:k(t)ék(x)rdt

k=0

n

Z la’k(x)\z

k=0

n

12041

CIZ k o
%=0

2042

IIA

=< com

Finally, with the help of Cauchy’s inequality and (3.4), (3.5) we obtain

n

D () e (x)

k=

[ f_ll a—n%1 + t)"{f &k(t)&k(x)}zdtr[ f_ll (1 — "1+ f)Bdi]

£=0

dt

f_ll (1—0*Q+0°

1
2

IIA

1
4 3’)’1/'”— y

IIA

from which (3.1) follows. By similar arguments (2.6) will yield (3.2), while
(2.8) will yield (3.3).

LEMMA 2. If —1 Sx=1,a20,8=20and p + u = 3 then

1 n
(3.6) f (1 — A —pn*a+ 0% > &k(x)&k(t)ydt < cs*nHnn,
—1 k=0

(37) (1 — x)%(2a+1)(1 + x)%(2ﬂ+l)
2 ék(x)cbk@)l dt < cs*n n,

k=0

< fl (1 _ 12)%(174—#)(1 _ t)a(l + t)ﬂ
and
<w)jia—ﬁwwa—wa+m

> @' () &k(t)‘ dt < e n g,

k=t

X
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Proof. We denote by A, (x) the part of [—1, 1] on which [x — ¢ £ 1/x# and
by 8,(x) the rest of the interval. Consider now

n

> @(x)@(t)ldt

k=0

o,
An(z) on(z)

Ji+ T

(3.9) f (1 — WA — (1 4 1)

Il

Since

n

k=0

dt

Ji= f 1 — A A — )1+ 1)
An(z)

IIA

e f W AR S (1 (1 R, ) o),
An(z) k=0
making use of (2.5) and (2.6) we obtain

n
1
¢, kP f
k=0 A

n

—1 1
cen Y kTR

k=0

Ji

IIA

dt,forp +u=1/2
)

n(z’

IA

(3.10) < om™,
To find an estimate for the integral over §,(x) we make use of the Christoffel
formula [5]:

no T+ 2T +a+ B+ 2)27P
G X a®a0) = T T I D+ D@t aF B+ D
y [w,,+1<x>w,.<t> = wn<x>wn+1<z>] _

x —1

Since |x — ¢| > 1/n for t € 8,(x), we have therefore, making use of (2.1),
(2.3), (2.4) and (3.11),

n

2 ot au(x)

%=0

dt

Fe= [ @ - mema
dn(2)

< o fb L A=A -
« [|wn+1<x>uwn<t>i+|wn<x>uwn+l<t)|]dt

e — 1

1 _1 « dt
é anrﬁ'%f (1 . tz)z(P*H‘) 4(1 _ t) /2<1 _l__ t)ﬁﬂ :
sn(z) lx — ¢

IIA

o4l dt
Clon+’f — forp+pu=3
8

W [ =t
(3.12) < e n .
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From (3.9), (3.10) and (3.12) we obtain (3.6). The proof of (3.7) can be
given in same manner, using (2.1), (2.4), (2.6) and (3.11).
The proof of (3.8) is as follows:

Zn: ar(t) @” (x) | dt

k=0

=f +f = T+ T
An(z) dn(z)

(3.13) f_ll (1 — I (1 — (1 4 1)

Making use of (2.6) and (2.8) we obtain

(3.14) J* éf - t2)§(7+n)—}(1 _ t)aIZ(l + t)ﬂ/z
An(z)

X zi: [(1 _ t)‘}(2a+1) (1 + t)}(2/3+1)lc—ok(l)”lc-l-’k(r)(x)ldt

Sy, k”“’“‘%f dt,forp +u =3
k=0 A

n(z)

2
< e,

To estimate the integral over §,(x) we differentiate both sides of (3.11)
r times to obtain

x — 1t

22.: a) " (x) = 97.[ @0 () 0s1” () — @y () " (x)]

k=1

r—1 7—v ») )
(=D on@wnr” () = wnr1)on” (x)]
+ onyZ::O v'(x . t)r—v+1 ’
where

_ T(n+ 2T (n 4o+ g+ 2)27°7
T Tnta+ DI+ +1)2n+a+B+2)°

Hence we have

(3.15)

P Sam [ (U= BRI R PR — O (L O
on(z)

0n

dt
e — 2

X Jon@onn® @) 4+ @ = DA 4 FP 0,100 @]

+ cun f (1 — @D — )1 4 )P
Sn(z)

dti

+ (1= (4 Dy Ol @ sy
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With the help of (2.4) and (2.7) and bearing in mind that for ¢ € §,(x),
| — ¢ > 1/n, we get

(3.16) u < clsn”+2’+%f a Jforp+u=1
on(z) [x [

2
< e .

Again using (2.4) and (2.7) we have for u,
r—1 Zv

< oty J
(3-17) U2 = C1M VZ Sat) ([x _ tl)r_v+l ’ fOI'P + M

r—1 r

< o™ Z
c gn'+"+%z—: n’

r=0

IA

2
< Cigh r+a+%.

Thus from (3.13), (3.14), (3.15), (3.16) and (3.17) we obtain (3.8).

LEMMA 3 [2]. Let f@(x) € Lipp (0 < p < 1), wn [—1, 1]; then there is a
polynomial Q,(x) of degree at most n possessing the following properties:

(3.18) 176) ~ Q)] = S5 [(1 xS ;f;]

and

(19) /76 - 0.O@)] = -2 [(1 — ahler nqi,_,]
uniformly in [—1,1] andr = 1,2,...,4q.

4. The proof of Theorem 2. We shall confine ourselves to proving (1.2).
The proof of (1.3) and (1.4) can be given along the same lines.

Since f®(x) € Lipp (0 < u < 1), and hence there exists a polynomial
m(x) due to Lemma 3, we write

(4.1) | f@@) = Su(@)| = [flx) — m@)| + |m(x) — Sp(@)]
= Il + I2.
With the help of (3.18) we obtain

1
(4.2) I < ;fil [(1 — xh)Ee 4 ;;H—] <2

Now consider

I, = f_; A — %A + )% m () — :0 . (8) g () | dt.
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From (3.18) it follows that

E @ () @y (x) |dt

= Cﬂzfuf 1 =01+ 01 —t¢ )2(11+#)

Fo [ -0 | 5 0|0

Now using (3.1) and (3.6) we obtain
(43) IQ < Cz3n”_p—“+% In#n + sz”’“’"?“‘rl,
consequently from (4.1), (4.2) and (4.3) it follows that

(4.4) | f(x) — Su(@)] £ corm™?# + cognm?=#42 In . + coyno—20 =201

1
Scm P g, p+p 20+ 3

This completes the proof of (1.2). The proof of (1.4) requires both parts of
Lemma 3.

Remark 1. 1f E,(f) is the best approximation of the function f(x) by
polynomials from H,, where H, is the set of all polynomials of degree less
than or equal to #, then one can easily see from (4.4) that

E,(f)=c¢*In n/nf”“‘“"“%, forp+p=o+ 3

Remark 2. 1f E," is the best approximation of f (" (x) by polynomials of
degree <u then it is easy to verify from (1.4) that

E,M < ¢* Inn/nrte——2=% forp +p =0+ 2r + %

Following word for word the proof of the above lemmas and Theorem 2
and making some minor changes there we also easily establish the following:

THEOREM 3. If f(x) has p continuous derivatives on [—1, 1] and f @ (x) € Lip u,
0< u<l, then for —1 = x = 1land p + u = max(c + 3,3 — 1),

(4.5) [f(x) = Su(@)] £ cos In n/nrtu=o,

and for p + p = max(3, 3 — 1),

(4.6) (1 — %)=t (L 4 x) D) f(x) — S, ()| = cor In m/nob,
where ¢ = max(a, §), 7 = min(e, B);a 2 —4,8 = — 3.

In view of the above theorem one can now also find an estimate for the best
approximation as in Remark 1 under the condition

P+ u=max(o+ 3,35 — 7).
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