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Abstract

Few coastal ecosystems remain untouched by direct human activities, and none are unimpacted
by anthropogenic climate change. These drivers interact with and exacerbate each other in
complex ways, yielding a mosaic of ecological consequences that range from adaptive responses,
such as geographic range shifts and changes in phenology, to severe impacts, such as mass
mortalities, ecological regime shifts and loss of biodiversity. Identifying the role of climate
change in these phenomena requires corroborating evidence from multiple lines of evidence,
including laboratory experiments, field observations, numerical models and palaeorecords. Yet
few studies can confidently quantify the magnitude of the effect attributable solely to climate
change, because climate change seldom acts alone in coastal ecosystems. Projections of future
risk are further complicated by scenario uncertainty – that is, our lack of knowledge about the
degree to which humanity will mitigate greenhouse-gas emissions, or will make changes to the
other ways we impact coastal ecosystems. Irrespective, ocean warming would be impossible to
reverse before the end of the century, and sea levels are likely to continue to rise for centuries and
remain elevated for millennia. Therefore, future risks to coastal ecosystems from climate change
are projected to mirror the impacts already observed, with severity escalating with cumulative
emissions. Promising avenues for progress beyond such qualitative assessments include collab-
orative modelling initiatives, such as model intercomparison projects, and the use of a broader
range of knowledge systems. But we can reduce risks to coastal ecosystems by rapidly reducing
emissions of greenhouse gases, by restoring damaged habitats, by regulating non-climate
stressors using climate-smart conservation actions, and by implementing inclusive coastal-
zone management approaches, especially those involving nature-based solutions.

Impact statement

Human society deeply values coasts and the ecosystem services they provide. But navigating the
challenge of coastal management over the coming decades to sustain these connections depends
on an ability to identify and quantify the ecological consequences of climate change. Aiding in
this task has been a sequence of Assessment Reports by the Intergovernmental Panel on Climate
Change (IPCC), the most recent of which is its Sixth Assessment Report. Both this IPCC Report
and associated studies emphasise that human-caused climate change has driven our oceans into
states unprecedented over millennia, and that these changes have led to fundamental ecological
impacts across all coastal ecosystems. These impacts exacerbate and are exacerbated by other
human-caused impacts in the coastal zone. Projections of future risk mirror the impacts already
observed, but they escalate with cumulative greenhouse-gas emissions. Although these conclu-
sions are supported by multiple lines of evidence, progress beyond qualitative assessments is
hampered by our inability to confidently disentangle the effects of interacting drivers of change.
Difficulties in this regard escalate as the number of drivers considered increases. Promising
avenues for progress include emerging collaborative initiatives, such as model intercomparison
projects, and the more inclusive use of multiple knowledge systems. In the interim, however,
reducing risks over the remainder of this century depends on rapidly reducing emissions,
restoring damaged habitats, designing and deploying climate-smart conservation actions that
alleviate non-climate stressors, and carefully managing existing and future coastal development,
with an emphasis on nature-based solutions.

Introduction

The world’s coasts hold special places in human history and culture: settlements and cities have
sprung up close to the sea because of the rich resources the ocean and coastal ecosystems provide,
the transport and trade they facilitate, and the sense of place they instil (Neumann et al., 2015;
Cooley et al., 2022). As a direct result, these coastal ecosystems facemultiple escalating threats from
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humanity, most of which exacerbate or are exacerbated by climate
change. Navigating the challenge of coastal management over the
coming decades therefore relies heavily on being able to identify and
quantify the ecological consequences of climate change. Aiding in
this task has been a sequence of Assessment Reports by the Inter-
governmental Panel on Climate Change (IPCC), the most recent of
which is its Sixth Assessment Report (IPCC, 2021, 2022). Here, we
explore the main findings of that work, providing illustrative
examples of climate-driven impacts and risks, identifying key chal-
lenges to progress, and briefly discussing promising avenues that
might lead to the development of more robust, quantitative projec-
tions of future risk to coastal ecosystems due to climate change.

Human-induced climate change has vastly altered the
environmental conditions within which coastal ecosystems
operate

Anthropogenic climate change has driven the physical and chem-
ical conditions of coastal ecosystems (Table 1) to states that are

unprecedented over millennia (Cooley et al., 2022). Approximately
93% of the excess incoming solar energy trapped by greenhouse
gases is absorbed by the ocean. This has added 350 ZJ (1 ZJ = 1021 J)
to the heat content of the oceans between 1958 and 2019, with an
annual acceleration over the past decade. (Cheng et al., 2022). This
has driven the heat content of the upper ocean to reach record levels
in 2022, exceeding the previous record (2021) by approximately
10 ZJ (Cheng et al., 2023). Associated warming has been almost
ubiquitous along coastlines (Lima and Wethey, 2012) and within
estuaries (Scanes et al., 2020). The exception has been upwelling
cells, where the increased prevalence of upwelling-favourable winds
has resulted in local cooling, especially at higher latitudes (Bograd
et al., 2023). Superimposed on this long-term trend of warming has
been a rapid surge in the localised occurrence of anomalously warm
waters that persists for days to many months, known as marine
heatwaves (MHWs) (Hobday et al., 2016; Laufkötter et al., 2020;
Sen Gupta et al., 2020). The frequency of MHWs has at least
doubled since the 1980s, and MHW intensity has increased rapidly
with ocean warming, as has the proportion of time the global ocean
is subject to MHW conditions (IPCC, 2021).

Table 1. Estimates of magnitudes of observed and projected changes in climate-induced drivers pertinent to coastal ecosystems, as assessed by the IPCC. These
estimates are global averages and it should be noted that in each case, considerable spatial variability is anticipated, especially in coastal areas. Unless otherwise
stated, ranges in brackets represent 90% confidence intervals.

Climate impact-driver Observed change Projected change

Ocean warming Considering the decade 2011–2020, the global ocean surface
waters have warmed on average by 0.88°C (0.68–1.01°C)
compared with the period 1850–1900, with 0.60°C (0.44–0.74°C) of
this warming having occurred since 1980 (Fox-Kemper et al., 2021).

Relative to the 20-year period ending in 2014, global ocean surface
temperatures in the last two decades of the century are projected
to have warmed by 0.86°C (0.43–1.47°C) under SSP1‑2.6, 1.51°C
(1.02–2.19°C) under SSP2‑4.5, 2.19°C (1.56–3.30°C) under SSP3‑7.0,
and 2.89°C (2.01–4.07°C) under SSP5‑8.5 (Fox-Kemper et al., 2021).

Marine heatwaves Over the course of the 20th century, marine heatwaves became
more frequent and intense, with a rapid escalation in the 21st
century: since the 1980s, the frequency of marine heatwaves has
doubled, and their intensity and duration have rapidly increased
(Fox-Kemper et al., 2021).

Relative to the 20-year period ending in 2014, marine heatwaves
are projected to be four times more frequent in the last two
decades of the century under SSP1‑2.6, and eight timesmore likely
under SSP5‑8.5 (Fox-Kemper et al., 2021).

Stratification and
deoxygenation

Stratification of the upper 200 m of the ocean water column has
increased by approximately 5% since the 1970s (Arias et al., 2021).
Over the same period, the subsurface ocean (100–600 m depth)
lost 2% of its total dissolved oxygen, resulting in the identification
of >700 hypoxic (<2 mg O2 L

�1) coastal regions (Canadell et al.,
2021).

Over the course of the 21st century, the ocean water column will
continue to stratify, and subsurface waters are projected to
transition to historically unprecedented conditions, with
dissolved oxygen in the last two decades of the century declining
by between 6.4 ± 2.9 mmol m�3 (under SSP1-2.6) and 13.3 ± 5.3
mmol m�3 (under SSP5-8.5), relative to the period 1870–1899
(Canadell et al., 2021).

Acidification The pH of surface waters in the open ocean has declined by 0.012–
0.104 pH units since the 1970s, and acidification of deeper waters
has become ubiquitous since the 1980s (Gulev et al., 2021).

Relative to the period 1870–1899, ocean surface pH in the last two
decades of the 21st century is projected to have declined by 0.16–
0.44 pH units under SSP1-2.6 and SSP5-8.5, respectively (Canadell
et al., 2021).

Sea-level rise Over the period 1901–2018, global mean sea level rose by 201.9
mm (150.3–253.5 mm), with 44.3 mm (38.6–50.0 mm) of this rise
since 2006 at a rate of 3.7 mm yr�1 (3.2–4.2 mm yr�1) (Fox-Kemper
et al., 2021; Gulev et al., 2021). High-tide flooding events that
occurred five times per year during the period 1960–1980
occurred, on average, more than eight times per year during the
period 1995–2014 (Fox-Kemper et al., 2021).

Ignoring high-impact–low-likelihood outcomes, such as Antarctic
marine ice-cliff instability, globalmean sea levels (relative to those
for the period 1995–2014) are projected to rise by between 190mm
(66% confidence: 160–250 mm) and 230 mm (200–290 mm) by
2050 under SSP1-2.6 and SSP5-8.5, respectively. Corresponding
projections for 2100 are 440 mm (320–620 mm) and 770 mm (630–
1010 mm), respectively.
Associated rates of sea-level rise are 4.8 mm yr�1 (3.5–6.8 mm
yr�1) to 7.2 mm yr�1 (5.6–9.7 mm yr�1) over the 20-year period
centred on 2050 under SSP1-2.6 and SSP5-8.5, respectively.
Corresponding projections for the 20-year period centred on 2090
are 5.2 mm yr�1 (3.2–8.0 mm yr�1) and 12.1 mm yr�1 (8.6–17.6
mm yr�1), respectively (Fox-Kemper et al., 2021).
These projections mean that historically extreme sea levels (i.e.,
1-in-100-year events for the period 1995–2014) might occur
annually (or more frequently) across 19–31% of locations by 2050,
rising to 60–82% of locations by 2100 under SSP1-2.6 and SSP5-
8.5, respectively (Fox-Kemper et al., 2021).
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As the oceans havewarmed, the solubility of gases has decreased,
resulting in a strong trend in declining dissolved oxygen content – a
process known as ocean deoxygenation (Canadell et al., 2021).
Ocean stratification is enhanced by warming, reducing mixing
(ventilation), altering nutrient redistribution, and exacerbating
deoxygenation, especially in subsurface waters. Oxygen minimum
zones (OMZs) – areas of low oxygen concentration in the upper
ocean that are especially apparent in tropical regions – have been
expanding at least since 1960 (Zhou et al., 2022). An exception
to warming-driven deoxygenation is found where intensifying
upwelling brings cold, low-oxygen water to the surface (Canadell
et al., 2021; Bograd et al., 2023). A further direct impact of warming
is melting ice, both at sea and grounded on land. The latter –

together with the thermal expansion of seawater – has contributed
to accelerating rates of sea-level rise, now averaging >3 mm
per year, faster than any time in at least the last 3,000 years
(Fox-Kemper et al., 2021; Le Cozannet et al., 2022).

Increasing atmospheric CO2 concentrations have resulted in
decreasing pH of ocean waters – known as ocean acidification –

so that surface-water pH is now unusually low in the context of the
past 2 million years (Arias et al., 2021). Finally, changes in precipi-
tation, stratification and ice-melt have enhanced contrasts in sal-
inity between relatively salty and relatively fresh parts of the ocean
(Cheng et al., 2020).

Ocean conditions are projected to continue diverging from
their pre-industrial state, with the magnitude of change
depending on cumulative emissions

Most of the observed changes in ocean conditions due to anthropo-
genic climate change (Table 1) are irreversible on centennial to
millennial scales, given present mitigation tools (IPCC, 2021).
Warming of the upper ocean by 2100 is projected to range 2–8
times that experienced over the period 1971–2015, resulting in
more frequent and intense MHWs, greater deoxygenation,
increased stratification, faster ice-melt and accelerating sea-level
rise. Ocean acidification is expected to intensify and salinity con-
trasts to be enhanced (Arias et al., 2021).

Confirming that climate change has caused ecological
responses

While change in Earth’s climate system has been unambiguously
attributed to anthropogenic greenhouse-gas emissions (IPCC,
2021), distinguishing the role of anthropogenic climate change in
altering ecological systems from the roles of other potential drivers
has provenmore problematic and contentious (Brander et al., 2011;
Pielke, 2011; Stocker et al., 2011). Such attribution has been espe-
cially difficult in coastal systems, where human impact is ubiqui-
tous (Williams et al., 2022; Allan et al., 2023) and drivers of change
compete with each other amidst naturally variable conditions,
confounding unambiguous interpretations (Cooley et al., 2022;
Friess et al., 2022). In such systems, attribution instead usually
comprises a sequence of steps (Figure 1), often involving multiple
lines of evidence (Parmesan et al., 2013; Hansen et al., 2016;
Phillips, 2023).

The first step involves identifying a hazard. This could be a
change in a climate variable that is known to be affected by
anthropogenic greenhouse-gas emissions (i.e., a climate-induced
driver), but it could equally be a phenomenon caused by a change
in climate, including a management action taken to mitigate an

existing climate-change impact (e.g., the construction of a seawall,
Simpson et al., 2021). The second requirement is to demonstrate
that the organism or system is vulnerable to that hazard – that is,
that there is a plausible and demonstrable mechanism for the
putative effect. Third, the organism or system must experience –
be exposed to – the hazard. Fourth, an exposed organism or system
must demonstrate the anticipated change – a process known as
“detection” of a climate impact. Ideally, detection is accompanied
by an analysis that separates the putative climate response from
responses to other non-climate drivers experienced by the organ-
ism or system (Hansen et al., 2016) – this constitutes formal
“attribution” of a climate impact (Figure 1). Gonzalez et al.
(2023) provide a more detailed discussion of detection and attri-
bution and propose a quantitative framework for these processes as
they apply to changes in biodiversity and other impacts to ecosys-
tems (Parmesan et al., 2013; Ara Begum et al., 2022).

Climate-induced drivers have greatly impacted life in the
ocean and along its coasts

Ocean warming

Temperature is a central driver of metabolic processes and there-
fore a key driver of ecological responses (Pörtner, 2021). Because
the specific heat of seawater is around four times that of air, the
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Figure 1. Steps involved in detecting and attributing an impact of climate change on
an organism or ecological system. Note that the final step of attribution is seldom
straightforward, instead often involving inference on the basis of multiple lines of
evidence.

Cambridge Prisms: Coastal Futures 3

https://doi.org/10.1017/cft.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2023.27


oceans have warmed only half asmuch as the atmosphere as a result
of anthropogenic climate change, despite absorbingmore than nine
times the thermal energy (Fox-Kemper et al., 2021). But this
property of seawater also means that ocean temperatures are gen-
erally less variable in space and time than those on land, resulting in
marine organisms having narrower thermal tolerance ranges
(Pinsky et al., 2019; Pörtner, 2021), and a greater predisposition
towards occupying the full extent of these ranges than that of their
terrestrial counterparts (Sunday et al., 2012). This renders marine
biodiversity more vulnerable to warming than its terrestrial coun-
terparts, causing a wide range of impacts. Among the more com-
mon consequences of the long-term trend in warming for coastal
biodiversity are range shifts and tropicalisation, and changes in
phenology.

Range shifts, tropicalisation and depth shifts
Warming of the ocean surface since the 1950s has shifted marine
taxa and communities poleward at an average (± 90% confidence
interval) of 59.2 ± 15.5 km per decade (Lenoir et al., 2020;
Fredston et al., 2021). Susceptibility to range shifts varies
strongly by functional group, with short-lived, fast-growing
planktonic organisms shifting their ranges much faster than
longer-lived and sessile species, or species with fixed breeding
sites (Poloczanska et al., 2013; Pinsky et al., 2020). Although
range edges of coastal species in tropical to temperate waters
generally maintain the species’ thermal niches as the climate
warms (Lenoir et al., 2020; Fredston et al., 2021), this tendency
is both stronger and more common at the leading (cool) range
edge than at the trailing (warm) range edge (Poloczanska et al.,
2013; Fredston-Hermann et al., 2020; Pinsky et al., 2020). Pinsky
et al. (2020) provide a detailed discussion of potential explan-
ations for this phenomenon, including physiology, behaviour,
evolution, dispersal and species interactions, but answers are
elusive, and this question remains a topic of active research
(e.g., Usui et al., 2023).

Nevertheless, arguably the most ubiquitous consequence of
differential range shifts at leading and trailing range edges is the
arrival of warm-affinity species in communities previously domin-
ated by – and still occupied by – species of cooler provenance
(Vergés et al., 2014; Chaudhary et al., 2021; Favoretto et al., 2022;
Fujiwara et al., 2022). This process, known in low- to mid-latitudes
as tropicalisation, in combination with the closely related process of
deborealisation – the loss of cool-associated species from high-
latitude places – results in the continual reassembly of biotic
communities in coastal waters (McLean et al., 2021). When tropi-
calisation involves the arrival of herbivores, seagrasses and macro-
algal habitat can be rapidly transformed (Vergés et al., 2016, 2022;
Schuster et al., 2022; Santana-Garcon et al., 2023), reshaping entire
ecosystems and their functioning (Peleg et al., 2020). But other
arriving taxa can have equally profound impacts (de et al., 2022).
Despite evidence that “healthy” ecosystems with relatively intact
biodiversity can resist climate change of the magnitude already
witnessed (Bates et al., 2014; Frid et al., 2023; Ziegler et al., 2023),
the inevitability of range shifts identifies the network effects of
tropicalisation and deborealisation as an urgent research priority.

Although range shifts are themost commonly studied ecological
response to warming, some coastal species might respond to warm-
ing surface waters by seeking refuge at depth (Giraldo-Ospina et al.,
2020). Evidence of such depth shifts, however, remains somewhat
contradictory (Chaikin and Belmaker, 2023; Rubenstein et al.,
2023).

Marine heatwaves (MHWs)
MHWs can expose marine life to conditions beyond those pro-
jected for the end of this century for periods ranging from days to
months (Sen Gupta et al., 2020; Koehlinger et al., 2023). It is
therefore unsurprising that MHWs impact all levels of marine life,
from the ecophysiology of individual organisms to the structure of
marine communities (Smith et al., 2023). Although some effects can
be beneficial, especially at high latitudes – for example, increased
productivity or reproductive success in populations close to their
leading range edge (Smith et al., 2019; Favoretto et al., 2022; Magel
et al., 2022) – many effects are detrimental. MHWs can reduce
breeding success (Hays et al., 2021; Rogers et al., 2021), cause
trailing-edge extirpations and consequent regime shifts (Arafeh-
Dalmau et al., 2019; Wernberg, 2021; Félix-Loaiza et al., 2022),
facilitate geographic shifts at leading range edges (Smith et al., 2019;
Favoretto et al., 2022; Coulson et al., 2023) and benefit non-native
invasive species (Arafeh-Dalmau et al., 2019), drive mass mortal-
ities in natural (Piatt et al., 2020) and aquaculture (Smith et al.,
2021) settings, exacerbate infectious disease epidemics (Harvell
et al., 2019; Claar and Wood, 2020; Genin et al., 2020), and impact
habitat-forming taxa, including seagrasses (Strydom et al., 2020),
kelps (Arafeh-Dalmau et al., 2019; Wernberg, 2021) and corals
(Goreau and Hayes, 2021; Speare et al., 2022; van Woesik et al.,
2022). However, the magnitude of effects varies by taxon, location,
ecosystem type and health, and even genotype, as well as the
intensity, duration, abruptness of onset and return interval of the
MHW event (Smith et al., 2019; Fox et al., 2021; Suryan et al., 2021;
Magel et al., 2022; Shlesinger and van Woesik, 2023; Ziegler et al.,
2023).

Phenology
Another conspicuous impact of ocean warming is the earlier
attainment of typical spring temperatures and later attainment of
autumn temperatures, which are both important in setting the
timing of key seasonal events, such as breeding and migration.
Although the timing of such seasonal events is not regulated by
temperature signals alone (Ducklow et al., 2022; Whelan et al.,
2022), a meta-analysis of phenological studies indicates that ocean
warming has driven spring events 4.3 ± 1.8 days to 7.5 ± 1.5 days
earlier per decade among planktonic organisms and 3.0 ± 2.1 days
earlier per decade for fish (Cooley et al., 2022). Although there is
more and stronger evidence for climate-driven phenological shifts
among small, short-lived taxa (Cooley et al., 2022), recent evidence
confirms such responses among large, long-lived taxa, including
whales (Ganley et al., 2022; Pendleton et al., 2022; Shuert et al.,
2022) and sharks (Hammerschlag et al., 2022). Moreover, since
both range shifts and phenological shifts are responses to warming,
it is unsurprising that taxa with high geographic fidelity (e.g., those
with specific spawning or nesting requirements) might demon-
strate stronger phenological responses than those that more readily
shift ranges (Chust et al., 2023).

Deoxygenation
Progressive loss of oxygen – deoxygenation – has been observed in
the ocean interior since the mid-twentieth century (Canadell et al.,
2021). Normally, oxygen enters the upper ocean from the atmos-
phere and from photosynthesis by aquatic vegetation (including
phytoplankton), then vertical mixing moves oxygen into the deep
ocean, where it is respired by heterotrophic marine organisms.
About 15% of the observed deoxygenation is attributed to
warming-induced decreases in oxygen solubility, and the rest is
attributed to increased stratification (Canadell et al., 2021).

4 David S. Schoeman et al.

https://doi.org/10.1017/cft.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2023.27


Deoxygenation is transformingmarine communities by increas-
ing individual species’ migration, replacement and loss (Cooley
et al., 2022) by, for example, altering the dynamics of aquatic
infectious diseases (Burge and Hershberger, 2020; Byers, 2021)
and threatening tropical shallow-water coral reefs with lethal and
sublethal effects (Hughes et al., 2020; Pezner et al., 2023). In mid-
waters, deoxygenation is thought to compress habitat for pelagic
oceanic fish species and temporarily increase catchability
(Breitburg et al., 2018).

Acidification

The decrease in surface ocean pH observed over the past 40 years
due to the uptake of anthropogenically released atmospheric CO2

has altered the water chemistry surrounding upper-ocean ecosys-
temsmore than in the past 26,000 or more years (Arias et al., 2021).
Ocean acidification can have a variety of effects on biological
processes: higher aquatic dissolved CO2 concentrations tend to
increase photosynthesis of some primary producers, while higher
H+ ion concentrations (i.e., greater acidity or lower pH) tend to
challenge calcification – the biological creation of calcium carbon-
ate shells and skeletons – for several animals or planktonic species,
especially juveniles (Doney et al., 2020). Loss of juvenile Pacific
oysters in aquaculture facilities (Barton et al., 2015) and increased
bioerosion and dissolution of tropical corals in nature have been
attributed to ocean acidification, but the complexity and variety of
the effects of acidification on marine species, along with species’
exposure to multiple simultaneous drivers, makes attributing many
individual and most ecosystem-scale outcomes to ocean acidifica-
tion extremely challenging (Doo et al., 2020).

Sea-level rise

Thermal expansion of the ocean and, more recently, freshwater
input from the loss of ice mass from terrestrial glaciers are driving
up the global mean sea level (Fox-Kemper et al., 2021). Because
coastlines can be subsiding (e.g., due to freshwater extraction) or
experiencing isostatic rebound from the last glaciation (Durand
et al., 2022), this sea-level rise is experienced as the change in the
mean sea level relative to the land – relative sea-level rise. Almost all
intertidal and shallow subtidal coastal ecosystems are sensitive to
relative sea-level rise (Cooley et al., 2022). Observed impacts
include flooding at high-tide extremes (Lawrence et al., 2022);
salinisation of coastal soils, wetlands and the upper reaches of
estuaries, with associated ecosystem transitions (Peteet et al.,
2018; Andres et al., 2019; Kirwan and Gedan, 2019; Grieger et al.,
2020; Eswar et al., 2021); increased erosion (e.g., Peteet et al., 2018);
and coastal storm and flood damage (e.g., Strauss et al., 2021).
Counterintuitively, relative sea-level rise can also result in accretion
of intertidal sediments in areas where wetland vegetation can
generate or trap sediments at rates exceeding those of relative
sea-level rise (e.g., Marx et al., 2020; Saintilan et al., 2020).

Despite these observations, the impacts of relative sea-level rise
are compounded with and confounded by other anthropogenic
stressors at the coast, as well as the widespread deployment of
countermeasures, including beach nourishment and other forms
of coastal restoration and protection (Cooley et al., 2022). Global
analyses of relatively coarse-scale imagery suggest the net effects of
these processes have resulted in the loss of 15% of tidal flats since
1984 (Mentaschi et al., 2018; Murray et al., 2022), but with a
corresponding number of the world’s beaches accreting (28%) as
eroding (24%) (Luijendijk et al., 2018).

Ice loss

The effects of ice loss on coastal ecosystems are so far most keenly
felt in the Arctic (Meredith et al., 2019; Cooley et al., 2022). Here,
the formation, melting and persistence of sea ice drives seasonal
patterns of coastal productivity, breeding and feeding opportun-
ities, and connectivity (Le Moullec and Bender, 2022). Sea ice can
be disruptive, through processes like benthic scouring, but can
also be protective, through processes like buffering of coastal
erosion (Lebrun et al., 2022). Irrespective, loss of ice in Arctic
coastal systems can have cascading impacts (Meredith et al., 2019;
Cooley et al., 2022), including the poleward movement of primary
productivity driven by spring melt, with concomitant impacts for
benthic and pelagic communities and the predators that feed on
these (Brandt et al., 2023), including iconic species such as polar
bears and walruses (Lebrun et al., 2022; Alabia et al., 2023; Kellner
et al., 2023). Changes in ice phenology also impact phenology and
breeding success among seabirds (Cusset et al., 2019; Descamps
et al., 2019; Golubova, 2021). Despite these examples of impact,
there is considerable variation among taxa and locations
(Gutowsky et al., 2022; Grémillet and Descamps, 2023). Trends
in ice loss and their attribution to climate change are both more
uncertain in the Antarctic (Fox-Kemper et al., 2021; Cooley et al.,
2022).

Other climate-induced drivers

Coastal ecosystems and their resident organisms are variously
sensitive to a range of climate-induced drivers beyond those dis-
cussed above (Cooley et al., 2022). Included amongst these are
drivers, such as changes in ocean salinity and stratification, that
are not yet expected to elicit ecological responses large enough to be
detectable as climate-change impacts. Also included are changes in
wave height and power (Young and Ribal, 2019; Odériz et al., 2021)
and ocean circulation (e.g., Hu et al., 2020), which are yet to be
confidently detected and attributed (Fox-Kemper et al., 2021; Gulev
et al., 2021), and atmospheric phenomena that are difficult to
predict, let alone project, such as tropical cyclones and storms.
The latter can impact coastal systems such as vegetated wetlands
and exposed sandy beaches, but with effects that are case-specific,
and sometimes counter-intuitive. For example, the precipitation,
wind and wave action associated with storms can rearrange coastal
sediments, causing erosion in some places and accretion elsewhere
(Xie et al., 2017; Armitage et al., 2020; Mo et al., 2020; Wang et al.,
2020). In other cases, impacts can be indirect: heavy precipitation
associated with storms can increase estuarine nutrient loads via
runoff from adjacent land, causing or exacerbating eutrophication
and stimulating HABs (Phlips et al., 2020; Dai et al., 2023), some-
times causing large-scale marine mammal, bird, and fish kills
(Adams et al., 2019). Similarly, strong winds from tropical storms
and cyclones can be beneficial for mangroves (Castañeda-Moya
et al., 2020; Feher et al., 2020), or cause ephemeral damage
(Armitage et al., 2020; Branoff, 2020), but they can also initiate
regime shifts involving peat collapse and transition to mudflats
(Chambers et al., 2019; Osland et al., 2020).

Compound events

Although discussion so far has focused on the direct impacts caused
by individual climate-induced drivers, in real-world situations,
none of these operate in isolation. Instead, they combine and
interact in various ways. This complicates the task of attributing
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observed ecological responses to any single driver (Parmesan et al.,
2013). For example, because ocean acidification and deoxygenation
both depend on the solubility of gases in seawater – which is
temperature dependent – these climate-induced drivers operate
in concert with ocean warming to change the physiological suit-
ability of coastal waters for marine fish and invertebrates.

Because temperature fundamentally affects the metabolism,
motility, feeding efficiency and breeding success of marine organ-
isms (Grady et al., 2019), ocean warming can alsomodify ecological
interactions. Among the many examples of this phenomenon, one
is of increasing concern: the host–pathogen interactions that drive
outbreaks of infectious diseases in a range of coastal and marine
taxa (Harvell et al., 2002; Randall and van Woesik, 2015; Cohen
et al., 2018; Harvell et al., 2019). Since metabolic activity in ecto-
thermic fish is temperature-dependent, warming temperatures, in
concert with parasite exposure, are likely to facilitate the prolifer-
ation of disease-causing organisms and affect the health of fish
hosts (Scharsack et al., 2021). In some cases, parasites grow faster
and producemore viable eggs and offspring, which can lead to a rise
in infection pressure, increased virulence, pathogenicity or
expanded ranges for the parasite (Harvell et al., 2002; Arriaza
et al., 2010; Cohen et al., 2018; Scharsack et al., 2021), and reduced
fitness and/or mortality for the host. This can indirectly lead to
trophic cascades in the warming habitat through changes to pre-
dation rates, thereby affecting ecosystem functioning (Harvell et al.,
2019; Scharsack et al., 2021).

Such compounded combinations of hazards in marine systems
result in rates of extirpation twice as high as those experienced by
terrestrial taxa (Pinsky et al., 2019). On a global scale, the progres-
sive loss of tropical biodiversity Chaudhary et al. (2021) provides
stark evidence of these aggregate impacts of changes in the physical
and chemical state of the ocean, in line with data from experiments
and the palaeorecord (Reddin et al., 2020; Penn andDeutsch, 2022).

The effects of climate change worsen and are worsened by
the impacts on marine life of non-climate anthropogenic
drivers

Not only do climate-induced drivers interact with each other, but
their effects also modify and are modified by the effects of non-
climate anthropogenic drivers (Sage, 2020; Gissi et al., 2021; Cooley
et al., 2022). This is particularly true – but under-recognised – in
coastal ecosystems, few of which remain untouched by human
activities (Williams et al., 2022; Allan et al., 2023), rendering them
especially vulnerable to the coupled climate and biodiversity crises
(Pörtner et al., 2023).

The escalation of interactive effects of climate-induced drivers
and other anthropogenic stressors is ubiquitous in coastal eco-
systems (Halpern et al., 2019; He and Silliman, 2019; Gissi et al.,
2021). Although examples abound (Table 2), we will restrict our
brief discussion here to impacts on tropical coral reefs as a case
study.

Corals are important habitat-forming species in tropical waters
that support exceptionally high biodiversity (Fisher et al., 2015;
Hughes et al., 2017) and provide extensive ecosystem services
(Eddy et al., 2021). Yet many coral taxa are sensitive to climate
change, especially through ocean warming and acidification, as
well as to other anthropogenic stressors, such as nutrient and
sediment loading (Hughes et al., 2017; Ellis et al., 2019; Cornwall
et al., 2021; Zhao et al., 2021; Cooley et al., 2022). Importantly,
both vulnerability to and recovery from the impacts of climate

change are affected by local anthropogenic stressors (França et al.,
2020; Cramer et al., 2021; Donovan et al., 2021). This is a double-
edged sword: where reefs are exposed to both climate change and
other human impacts, consequences can be severe; but this also
means that well-designed climate-smart conservation interven-
tions in these places, which both alleviate non-climate human
impacts and deploy complementary strategies, should reduce
vulnerability to climate change (Mellin et al., 2019; França et al.,
2020; Dutra et al., 2021; Kuempel et al., 2022), at least in the short
to medium term. Many other coastal ecosystems are less well-
studied but would benefit equally from climate-smart conserva-
tion planning approaches (Brown et al., 2022; Doxa et al., 2022;
Buenafe et al., 2023).

Projecting future risks of climate change in coastal
ecosystems

Given the difficulties in detecting and attributing climate-change
impacts in coastal ecosystems, it should be no surprise that
projecting future risks comes with even greater uncertainties.
In some instances, projected risks of climate change are inferred
from magnitudes of projected change in climate-driven hazards
(Table 1, Figure 2), combined with the same established
(or inferred) sensitivities to these drivers as are used in attribut-
ing observed impacts (Figure 1). In such cases, only the direction
of change can be projected with any confidence (e.g., Hughes
et al., 2020; Friess et al., 2022). In other cases, statistical models –
including, but not limited to species distribution models – are
used to map ecological responses against climate-driven hazards,
and then this model is used to project the magnitude of future
change in that response variable (e.g., Moltó et al., 2021; Van der
Stocken et al., 2022; Chaudhary et al., 2023). More sophisticated,
still, are ecosystem models that couple multiple environmental
drivers to multiple interacting ecological response variables;
these models are then used to extrapolate those interacting
relationships forward under projected future climates (e.g.,
Moullec et al., 2019; Tittensor et al., 2021). All of these methods
assume that the underlying models are transferable in time (and
sometimes space), despite known problems with this assumption
(Yates et al., 2018; Neupane et al., 2022; Rousseau and Betts,
2022). But as with the detection of climate impacts, confidence in
their attribution – and therefore their utility as predictors of
future responses – increases in the presence of multiple lines of
evidence.

An alternative approach that does not rely on projecting estab-
lished relationships forward in time, involves using palaeodata to
estimate the magnitude of ecological responses to past climate
states analogous to projected future climates (Fordham et al.,
2020). Examples of such palaeodata for coastal ecosystems include
reef and sediment cores (Jones et al., 2019; Cohen et al., 2020;
Cramer et al., 2021; Hesterberg et al., 2022; Bograd et al., 2023).
The advantages of palaeo-analogues of future climate are that they
potentially account for natural adaptation in the taxa or systems
impacted, and that human impacts are effectively eliminated
(Kiessling et al., 2023). But questions about the transferability of
estimates remain.

Beyond the approaches used to project future risks of climate
change, it is important, also, to ensure that the future being
assessed is plausible. Recent reviews (Burgess et al., 2023; Schoe-
man et al., 2023) provide detailed analysis of the use of future
scenarios (described in Table 3), as used in climate-change
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ecology. Results reveal that the practice of focusing exclusively
on RCP8.5/SSP5-8.5 – often designated a “high-emissions
scenario” – is common. But even when complemented by
RCP2.6/SSP1-2.6 – commonly designated a “low-emissions
scenario” – the use of this extreme scenario is problematic for
projections out to 2100: while SSP1-2.6 is still attainable over this
timeframe, SSP5-8.5 is highly unlikely (Hausfather and Peters,
2020), despite being potentially useful over the near- to mid-
term (Schwalm et al., 2020). Instead, SSP2-4.5 (Table 3) is
believed to be the most plausible of the common long-term
scenarios, arguably along with SSP1-2.6, and while SSP3-7.0 is
a better “business-as-usual” scenario than SSP5-8.5, especially in
the long term, it is also reasonably implausible in some regards
(Burgess et al., 2023). It is important to note, however, that the
plausibility of future emissions scenarios depends heavily on
whether countries’ ambitions to reduce such emissions will be
matched with strong action (Rogelj et al., 2023). Irrespective,
since much of the literature on projected impacts in the coastal
zone by 2100 relies on RCP8.5/SSP5-8.5, significant caution is
warranted when interpreting these projections.

Projected future ocean conditions increase risks to ocean
and coastal systems, including elevated risk of regional
extirpations and global extinctions

A clear message from the IPCC Sixth Assessment Report cycle,
including its Special Reports, is that risks from climate change
escalate with the magnitude and duration of warming caused by
greenhouse-gas emissions (Magnan et al., 2021; IPCC, 2023): every
increment beyond 1.5°C of warming matters. Nowhere on Earth is
this message more pertinent than along the world’s coasts, where
warming is faster than for the global ocean as a whole (Figure 2;
Lima andWethey, 2012; Varela et al., 2023). The thermal inertia of
the ocean, together with the acknowledgement that sea levels will
continue to rise for centuries and remain elevated for millennia
(Fox-Kemper et al., 2021), means that there are few easy ways to
reduce risks of climate change to coastal ecosystems over the
remainder of this century. But rapidly reducing emissions, allevi-
ating non-climate anthropogenic stressors, and attempting to
restore damaged habitats will provide more operating room for
the full adaptation toolkit. This includes revising institutions

Table 2. Examples of interactions among climate-induced drivers and other anthropogenic stressors in coastal ecosystems.

Non-climate driver
Interacting climate-induced
drivers Mechanism of impact Ecosystems impacted References

Runoff of fertilizers or
organic matter

Warming, acidification,
deoxygenation, sea-level
rise

Nutrients released into the water column
stimulate a pulse of primary production.
When nutrients are depleted, secondary
production consumes oxygen, leading to
hypoxic or even anoxic, acidic conditions.

Estuaries, lagoons,
deltas, shallow
nearshore waters,
including seagrass
beds

Nelson and Zavaleta (2012);
Brauko et al. (2020); DeCarlo
et al. (2020); Wooldridge
(2020); Dai et al. (2023)

Disturbance of
organic-rich sediment

Warming, acidification,
deoxygenation

Estuaries, lagoons,
deltas, shallow
nearshore waters,
including seagrass
beds

Simone et al. (2021); Zhu et
al. (2021); Smeaton and
Austin (2022)

Coastal infrastructure Sea-level rise The mass of infrastructure and the
abstraction of groundwater can lead to
subsidence of coastal land, aggravating the
effects of sea-level rise.

Shorelines of
estuaries, lagoons,
deltas

Rossi and Toran (2019);
Befus et al. (2020);
Bosserelle et al. (2022)

Infrastructure sets a hard limit to inland
migration of coastal habitats in response to
rising sea levels. This phenomenon is known
as coastal squeeze.

Mangroves,
saltmarshes, sandy
beaches

Borchert et al. (2018);
Lithgow et al. (2019)

Resource use Warming Fishing can impose additional sources of
mortality on fish populations and benthic
habitats, including seagrass beds. This can
alter community structure and exacerbate
the effects of ocean warming.

Estuaries, lagoons,
nearshore waters

Brander (2007); Grech et al.
(2012); Townhill et al. (2019)

Warming, acidification,
deoxygenation

By disturbing organic-rich sediment, some
fishing methods, like bottom trawling, can
exacerbate deoxygenation and
acidification.

Estuaries, lagoons,
deltas, shallow
nearshore waters

De Leo et al. (2017);
Bradshaw et al. (2021);
Corell et al. (2023)

Sea-level rise Harvesting of trees for buildingmaterial and
fuel can make mangroves more susceptible
to habitat transitions driven by sea-level
rise.

Mangroves Ward et al. (2016)

Impoundment of rivers Sea-level rise Reduction of freshwater input can
accelerate upstream penetration of saline
waters.

Estuaries Herbert et al. (2015);
Bricheno et al. (2021); Costa
et al. (2023); Khondoker et
al. (2023)

Reduced supplies of terrigenous sediments
can exacerbate coastal erosion.

Sandy beaches Tuck et al. (2021); Gao et al.
(2023)
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related to ocean and coastal activities and users, developing new
technologies and innovative built infrastructure, and employing
marine and coastal nature-based solutions while also carefully
managing existing and future coastal development (Duarte et al.,
2020; Frazão Santos et al., 2020; Cooley et al., 2022; Shin et al., 2022;
van Woesik et al., 2022; Pörtner et al., 2023; Rossbach et al., 2023).

Given this reality, together with the assessment that anthropo-
genic climate change has already exposed coastal ecosystems to
conditions unprecedented over millennia, it can be projected with
some confidence that the impacts already caused by climate change
will become worse and more extensive (Cooley et al., 2022). Here,
we present a selection of the most robust projections of future risk,

Table 3. Policy context of common future climate scenarios (Meinshausen et al., 2020; Chen et al., 2021). Scenarios are named by Shared Socioeconomic Pathway
(SSPs) and radiative forcing level in 2100, approximating Representative Concentration Pathways (RCPs; W m�2).

Scenario
Policy relevance, including global warming levels (GWL) relative to the pre-industrial and corresponding 90% confidence intervals, as assessed by the
IPCC Sixth Assessment Report (IPCC, 2021)

SSP1-1.9 A 1.5°C world: an equitable world with sustainable development achieves net zero greenhouse-gas emissions by mid-century and maintains net
negative emissions for several decades thereafter. This stabilises global temperatures at 1.4°C (1.0–1.8°C) GWL. Minimal overshoot beyond 1.5 °C is in
line with the stretch goal of the Paris Agreement.

SSP1-2.6 A 2°C world: an equitable world with sustainable development achieves net zero emissions around 2075 and maintains net negative emissions for
several decades thereafter. Temperatures remain below the target set by the Paris Agreement, being restricted to 1.8 °C (1.3–2.4°C) GWL.

SSP2-4.5 Approximates current climate policies: a world implementing current climate policies and following current trends of slow reduction in consumption
and energy use, sees emissions rising until around 2050, before declining to net zero by 2100. Temperatures exceed the Paris Agreement, reaching 2.7°
C (2.1–3.5°C) by 2100 and stabilising thereafter. Current nationally determined contributions (NDCs) for 2030 achieve a slightly lower GWL of 2.4°C (1.8–
3.4°C) (Hausfather and Moore, 2022).

SSP3-7.0 Approximates a scenario under which no new climate policy is implemented: a world retreating from globalisation to focus on domestic issues
deprioritises the environment, resulting in slow economic growth and a doubling of emissions by 2100. Warming reaches 3.6°C (2.8–4.6°C) GWLby 2100
and continues thereafter.

SSP5-8.5 An extreme counterfactual: a world focusing on capitalism, open markets and consumption results in rapid economic growth. Emissions double by
2050 and triple by the end of the century. Warming reaches 4.4°C (3.3–5.7°C) by 2100 and continues thereafter.

Figure 2. Projected changes in climate-induced drivers across coastal systems relative to the recent past (1985–2014), after Cooley et al. (2022). Climate-induced drivers are
arranged by row, while coastal systems are arranged by column. All measures are for the ocean surface, except changes in oxygen concentrations, which are subsurface (100–600m)
in upwelling and polar systems. Projections are derived from an ensemble of CMIP6 models interpolated to a 1° x 1° grid. Error bars represent 90% confidence.
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focusing on habitat-forming species due to their importance in
ecological structure and functioning.

Projected climate risks for habitat-forming coastal taxa

Evidence from the palaeorecord and from species-environment
relationships suggests that ocean warming and acidification will
result in declining coral reef extent and species richness (Pandolfi
et al., 2011; Pandolfi and Kiessling, 2014; Hoegh-Guldberg et al.,
2018a; Hoegh-Guldberg et al., 2019; van der Zande et al., 2020;
Chaudhary et al., 2023). Recent assessments that exclude consid-
eration of natural adaptive capacity project declines in reef extent
by >70% at 1.5°C of warming, and by >99% at 2°C (Hoegh-
Guldberg et al., 2018b; Kalmus et al., 2022). Considering return
times of severe bleaching-level heat events provides an even more
pessimistic outlook (Kalmus et al., 2022). However, on the basis of
results from a coral-symbiont eco-evolutionary model, Logan et al.
(2021) concluded that natural adaptation – including evolution and
other processes – could allow 70–80%of coral to survive the century
with ~2°C of warming, but with warming beyond 3.5°C by 2100,
<10% of coral cover would remain. The relatively high levels of trait
heritability among corals (Bairos-Novak et al., 2021) further
emphasise the potential for future adaptation. However, limits
remain, and resilience is spatially variable, even when accounting
for adaptive capacity (Cornwall et al., 2023).

Kelps and seagrasses are also at risk from future warming
(Cooley et al., 2022). For both taxa, warming trends commonly
underlie projections of extirpations at warm range edges, with
poleward range extensions at cool range edges (Wilson and Lotze,
2019; Assis et al., 2022; Davis et al., 2022; Pecquet et al., 2022; Daru
and Rock, 2023). However, there are exceptions to this pattern
(e.g., Goldsmit et al., 2021), especially for invasive seagrasses
(Wesselmann et al., 2021). Some species might even find refuge
from warming at depth and boost their overall biomass due to
increasing productivity in the cooler parts of their ranges (Davis
et al., 2022). The potential effects of projected changes in marine
heatwaves remain qualitative (e.g., Starko et al., 2022), although
progress is being made towards more quantitative projections (e.g.,
Pruckner et al., 2022; Li and Donner, 2023).

Other climate-sensitive coastal taxa that contribute to habitat
structure includemangroves and saltmarshes. But even for the well-
studied mangrove forests, quantitative projections are challenged
by difficulties in disentangling the impacts of recent climate change
from those of other non-climate anthropogenic stressors, and by
themix of positive (e.g., through enhanced productivity due to CO2

enrichment and warming) and negative (e.g., due to sea-level rise
and drought) effects of projected climate change (Friess et al., 2022).
Further complications are introduced by uncertainties surrounding
future trajectories of socioeconomic development in the coastal
zone, which can have effects on projected gains or losses of coastal
wetland habitat that at least equal those of climate change (Ouyang
et al., 2022; Liang et al., 2023). Central to the future of these systems
is the availability of accommodation space, which regulates their
ability to accrete sediment and move inland in response to sea-level
rise (Krauss, 2021; Rogers, 2021). In this sense, coastal development
that restricts accommodation space and traps wetlands in a coastal
squeeze is arguably the largest threat to their resilience (Cooley
et al., 2022). Irrespective, analysis of reconstructed palaeorecords
suggests projected rates of sea-level rise (Table 1) will overwhelm
the ability of mangroves to keep pace with rising water levels by
mid-century, even with ambitious mitigation of greenhouse-gas
emissions, and that saltmarshes face the same fate by the end of

the century (Horton et al., 2018; Saintilan et al., 2020; Törnqvist
et al., 2020). Although the vulnerability of coastal wetlands
decreases with increasing sediment availability, greater elevation
on the shore, and increasing tidal range (Schuerch et al., 2018;
Saintilan et al., 2020; Friess et al., 2022), efforts at restoration and
protection appear to be the key to the future resilience of these
systems. Quantitative projections remain contentious for other
coastal systems, such as sandy beaches (e.g., Cooper et al., 2020;
Vousdoukas et al., 2020a; Vousdoukas et al., 2020b).

Broader projections of climate risks for marine taxa and
regions

When considering quantitative projections of processes such as
range shifts (e.g., García Molinos et al., 2016; Gokturk et al., 2022)
and phenology (e.g., Asch et al., 2019; Gokturk et al., 2022; Yama-
guchi et al., 2022), analyses are often either taxon-specific or global,
and not focused specifically on coastal ecosystems. The same is true
for quantitative projections of future risk. Yet results are instructive
for coastal ecosystems. For example, Trisos et al. (2020) project not
only that temperatures across entire species’ ranges will transition
to levels unprecedented in those species’ recent (1850–2005)
experience, but that this will occur abruptly, especially for marine
species such as seagrasses, corals, cephalopods, marine reptiles and
marine mammals. This phenomenon is projected to manifest in
tropical oceans before 2030 under the highest emissions scenarios
and escalate with duration and the magnitude of emissions. Pigot
et al. (2023) confirm this trend towards abrupt thermal exposure
across species’ ranges. Further evidence comes from a recent ana-
lysis of future climate risk across ~25,000 marine species (Boyce
et al., 2022), which found that by the end of the century, risk was
substantially reduced for ~1.8°C relative to ~4.4°C of global warm-
ing, with 1.3% vs 2.7% of assessed species being at critical risk and
54%vs 84% at high risk, respectively. Sincemany of the taxa in these
analyses occur primarily in coastal waters, these generic risks may
be assumed to hold there, too.

Moving beyond projections of climate risk for individual
taxa becomes more difficult, but climate analogues can help. For
example, on the basis of data from the palaeorecord, Reddin et al.
(2022) project that if warming levels approach those anticipated
under the highest emissions scenarios (Table 3), taxa with thermal
optima beyond ~21°C will experience elevated risk of extinction, as
will those with thermal optima below ~11°C. This pattern is mir-
rored by projections from an ecophysiological model validated on
spatial patterns of extinction from the fossil record, which projects
extirpations at the tropics and extinctions at the poles, but with
substantial reductions in risk from immediate and strong mitiga-
tion (Penn and Deutsch, 2022). Again, however, these are generic
projections, and coastal taxa must be assumed to comply with
reported patterns.

The emergence of ecosystem and global models for projecting
of climate risks in the ocean

The growing need for policy advice in the face of these projected
climate-change risks has challenged the scientific community to
develop models that go beyond exploring risks to biodiversity, such
as those discussed above, to instead assess risks to ecosystem
functioning and service provision (Weiskopf et al., 2022). This
requires modellers to build from familiar outputs of Earth System
models (ESMs), such as changes in temperature, pH and salinity,
and, more recently, nutrient availability, phytoplankton and even
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zooplankton biomass (Canadell et al., 2021), to project changes in
primary and secondary production.

One response has been the development of the Fisheries and
Marine Ecosystem Model Intercomparison Project (FishMIP),
which specifies sets of common ESM forcings and model outputs
for a diverse suite of marine fisheries and ecosystem models
(Tittensor et al., 2018). The advantage of the “modelling
intercomparison” approach is that it yields comparable projections
from each model, allowing assessment of the range of plausible
outcomes, given our current understanding and computing cap-
acity (Heymans et al., 2020). This is important because marine
ecosystemmodels still largely lack formal approaches to validation,
calibration, and quantification of uncertainty (Steenbeek et al.,
2021).

In terms of uncertainty, scenario uncertainty can be assessed by
comparing model outputs generated under different future scen-
arios, such as those in Table 3. But parametric uncertainty – the
uncertainty around the parameters within individualmodels – is far
more difficult to address for models with any level of complexity,
given current computational capacity (Steenbeek et al., 2021).
Finally, intercomparison can help to quantify structural – inter-
model – uncertainty, but attempts to do so reveal that the projected
responses to two of the most fundamental inputs to the models –
magnitude of warming and productivity of lower trophic levels –
are inconsistent in both direction and magnitude amongst models
(Heneghan et al., 2021). This disparity emphasises that understand-
ing of how ecosystem-level effects emerge from individual-level
processes remains incomplete. Despite limitations in individual
ecosystemmodels, ensembles of models – such as those in FishMIP
– provide projections of global decline in total biomass of marine
animals that worsen with increasing emissions (Tittensor et al.,
2021), with reasonable agreement in the direction of change in
coastal systems, but little agreement on the magnitude of change
(Cooley et al., 2022).

A view of the way ahead

Despite the recent advances in our understanding of the impacts of
anthropogenic climate change on coastal ecosystems described in
Cooley et al. (2022) and updated above, projections of future
climate risk have not progressed much beyond the notion that risks
escalate with cumulative emissions (i.e., with warming). Part of the
problem is that our detailed understanding of processes at the
single-organism level seldom adequately addresses interactions
among multiple drivers, so does not scale intuitively to predict
integrated responses at the levels of populations or ecosystems
(Boyd et al., 2018; Collins et al., 2022). Theoretical progress is being
made in this regard (Orr et al., 2020; Pirotta et al., 2022), but
proposed solutions are not yet commonly implemented. This prob-
lem is exacerbated for coastal ecosystems by the interactions among
numerous climate-induced and non-climate anthropogenic drivers
(Table 2; Gissi et al., 2021). Not only do these interactions compli-
cate the parameterisation of models, but they also complicate the
scenario space that must be explored: what humans do in the
coastal zone can often have a larger ecological effect than that of
climate change. For example, under ambitious mitigation, conser-
vation and coastal-zone planning can ameliorate climate impacts
on coastal ecosystems, but climate-uninformed coastal develop-
ment can condemn those same ecosystems (Cooley et al., 2022).
The utility of advice to policymakers therefore requires

more purposeful selection and articulation of scenarios to be con-
sidered – simply making projections for SSP1-2.6 and SSP5-8.5
cannot remain the norm. In this context, one solution might be to
consider warming levels (e.g., 1.5°C, 2°C and 3°C relative to pre-
industrial), each in combination with alternative coastal develop-
ment scenarios. This is impractical with current CMIP6 model
outputs because each scenario subsumes a shared socioeconomic
pathway (Table 3), but the increasingly prominent use of climate-
model emulators (Nicholls et al., 2020; IPCC, 2021)might provide a
solution.

There are several other areas where progress is urgently needed.
But one requires particular attention because we have not addressed
it elsewhere in this review: the need to expand the knowledge
systems on which our assessments depend by ensuring that Indi-
genous Knowledge and perspectives are more adequately repre-
sented in our assessments (Fischer et al., 2022; Schipper et al., 2022).
Silent cores of sediment and coral have taught us somuch about the
past and the future; how much more could we learn from the rich
oral histories held by Indigenous Peoples around the world?
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