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1. Introduction

There are a number of well known theorems on the mutual independence
of forms, either linear or quadratic, in normal variables. Some of these
theorems can only hold when the system of variables is normal or degenerate
and so the possibility of certain forms being independent characterises the
normal distribution. The theorems on characterisation have usually been
proved by consideration of the necessary properties of the characteristic
function. Here we shall be considering the characteristic function of the
variables but we shall make more use of cumulant theory than previous
authors. To do so we have first to prove that the existence of cumulants of
all orders is implied by the independence conditions. The basic theorems we
use are those from general cumulant theory and the special theorems of
Cramer and of Marcinkiewicz. An advantage of the methods of this paper is
that it is possible to show that some of the characterisation theorems require
neither of these special theorems. For example, spherical symmetry is a very
strong condition and so neither theorem is required whereas both theorems
are needed for the most general theorems on the independence of two linear
forms. Throughout we take the class of normal distributions to include the
degenerate normal, that is, the distribution of a sure variable.

2. The Independence of Linear Forms

LEMMA 1. Let F(x) be a distribution function and suppose that there
exists a positive number, R, such that

(1A) F(— x) + 1 — F(x) = 0(exp — rx) as x -> + oo

for all positive r < R. Then F(x) has finite moments of all orders.
PROOF. A proof has been given by Cramer on page 71 of [5] of a related

theorem from which this lemma is readily deduced. The essential point is
368
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that for positive integers k, xkexp(— r\x\) tends to zero as \x\ -> oo. The
lemma can be stated in the alternative form that for N > 0,

(IB) P{\x\ >t} = 0(exp - rtN)

as t -> oo implies the existence of all moments of the random variable x,
since (IB) is equivalent to

(1C) P{\y\ > t) = 0(exp - rt),

where y = Xs. Since y has finite moments of all orders by (1A) so has x.

LEMMA 2. Let n be a positive integer greater than unity

(2) e < rrz

implies.

(3) n > (1 — c)-B+1

and (3) holds good for 0 ^ ei; < e.

PROOF.

log(l - £)-n+1 = (n - l)(e + i£2 + ie3 + • • •)

<(n- l)e(l + £ + £2 H )

< 2(» — l)e < 2n~2 ^ | .

So that (1 — £)~n+1 is always less than eV2 and so less than n. It is obvious
that the expression on the right is not increased by replacing e by ei < s.

LEMMA 3. Let positive constants ej be defined by

(4) e, = »3ej_1, £0 = £ < n~3,

then

(5) sk = M~ 3 (W 3 £) 2 *

PROOF. Suppose it is true for 1, 2, • • • (s — 1), then

£g = w3^"3^3^2*"1]2 = n~3(n3e)2'

and the result follows by mathematical induction.

LEMMA 4. If for c > 1 and a > 0 and a random variable x,

(6) P{\x\ > CSOL] ^ £„

as defined in (4), then moments of x of all orders are finite.

PROOF. We define r > 0 and N > 0 by the equations,

w3£ = exp(— r) and AT = log 2/log c and £ = cs
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and substitute them in (5) and (6) to obtain

(7) P{\x\ > fa} = P{\x\ > csa} ^ e,

= n~3(n3e)2'

= n~3 exp(— 2s r)

= n~3 exp(— tNr)

= 0 (exp(- rtN));
hence

(8) Pflza-1! > t) = 0(exp - rtN)

and so finite moments of xctr1, and hence of x, of all orders exist by Lemma 1.
We now prove our most important lemma.

LEMMA 5. Let xlt x2, • • •, xn be a set of n independently distributed
random variables, which we write as elements ot a vector, x. Then either of
the following conditions is sufficient for the existence of finite moments
of all orders.

(i) there exists a set of m, (2 ^ m 5S n), independently distributed ran-
dom variables, yi} such that

(9A) y = Ax,

where A is an m x n matrix of rank m in which each column contains at
least two non-zero elements;

(ii) the xi are identically distributed and there exists a set of m independ-
ently distributed variables, yit such that

(9B) y=Ax,

and A has m rows [m > 1) and at least one column contains two non-zero
elements.

PROOF. In either case there is no loss of generality by assuming that \au\ is
not greater than unity for every pair (i, j). Let the least of the non-zero
absolute values atj be a. Choose an e < n~3 and so obeying (2) and take a
positive a to satisfy

(10) P{\xt\ > a} < e for / = 1, 2, • • •, n,

which entails

(11) P{\aitx\ > at) < e for / = 1, 2, • • - , « ,

because of the condition above imposed on the \ai:j\. Under either hypothesis
(i) or (ii) let us choose a pair of variables y^, yt" corresponding to a pair of
non-zero coefficients a^- and a^-. \yt'\ > no. is only possible if at least one
of the \xt\ is greater than a and since the variables Xj are mutually independ-
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ent, the events, \x}\ > a, are not mutually exclusive. We have, therefore,

(12) P{\yt>\ > n*} < ne,

and a similar inequality holds for y{".
On the other hand, it \ax}\ > (2n — l)a and |ay| 5̂  a for / ^ /' both

\yt'\ and {y^'l will each be greater than no.. Using the multiplication rule for
independent probabilities, we have

P{\yt>\ > n*, \Vi"\ > nx} ^ P{\axs\ > {2n - l)a} n {P\*,'
(13) ***'

^ (1 — e)B-1P{|aa;i| > (2» - l)

But the hypothesis of independence of y/ and y^' gives

(14) P{\yA > net, ly^'l > «a} = P{\yt'\ > wa}P{|2/--| > wa}.

Combining (13), (14) and (12),

(15) (1 - e^Pilax,] > {2n - l)a} ^ (we)2

and so making use of (3),

(16) P{\x,\ > ca} < w3e2 = ex,
where c = (2n — l)ja and so c > 1.

Hypothesis (i) enabled (16) to be applied to every Xj and so we obtain by
repeated application with ca, c2a, c3a, • • •, in place of a the formula (6).
For example by writing ca in (16) in place of a, we obtain

(17) P{\aXi\ > c2a) < nze\ = e2.

Hypothesis (ii) gives us that every x has the same distribution function and
(6) is again true. But (6) assures us of the existence of finite moments of all
orders according to Lemma 4.

It is worthy of note that we can obtain a similar result by an alternative
method if we are prepared to confine our attention to the class of distribu-
tions such that the expectation of \Xj\k is finite for each / and for one given
positive k; k might for example be very small, 10~6 say. The independence
conditions of two linear forms enable us then to prove that the expectation of
|«3|

2fc is finite. Repeated application assures the existence of moments of
every order. Zinger [18] has used a similar method in his study of the
independence of "quasi-polynomial statistics".

3. The Independence of Two Linear Forms

THEOREM 1. Darmois [6], Skitovitch [15], Lukacs and King [13].
Let xx, x2, • • •, xn be a set of mutually independent random variables and
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jbi 7^ 0 for each j . Then if the two linear forms,

(18) a2x2x2
anxn, and l2 = b1x1 + b2x2 bnxn

are independent, ihe x^ are all normally distributed.
PROOF. Condition (i) of Lemma 1 is satisfied and so all cumulants exist.

Now it may happen that some ratios b^a^ are identical; if so, we form new
variables with ux the sum of the a5Xj taken over all values of j , such that
bi\ai = rx; u2 is a similar sum corresponding to the ratios, &,/«,- = r2, and
so on.

(19)
jr2u2- • -rn.un,,

where {Uj} is a set of mutually independent variables, which have finite
cumulants of all orders, and the rt are pairwise different. We define Kg

})

as the cumulant of order q of the random variable u^ and KQ as an operator
signifying the qth cumulant of the specified random variable. Now, the
arbitrary real linear form, Mx + jul2, in the independent variables can be
written as the sum of independent random variables in two different ways,
namely:

Taking cumulants, and noting the mutual independence of lx and l2,

(21)

But using (20), and noting the mutual independence of the {w3},

/d2) = Ka

(22)

= I (A +
3 = 1

The A and /u are arbitrary real indeterminates, so that we may take q > n'
and equate coefficients in A9"1//, A9"2//2, • • • Xq~n'jj,n' to obtain

(23)

1 r2 * n -1

0

0

0

The deteiminant of this matrix is not zero, so that for each variable, ujt

the cumulants of order greater than ri are all zero. A theorem of Marcinkie-
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wicz [14], forces all the variables to be normal. But'the u^ are linear combina-
tions of the Xj and the theorem of Cramer [4] on the decomposition of a
normal variable shows that each x^ is normal.

In order to discuss the degenerate cases rigorously, it is desirable now to
note a characterisation theorem for the degenerate normal distribution.

THEOREM 2. / / the variable lx = ax is independent of the variable l2 = bx,
where a and b are real non-zero constants, then x is a sure variable, (in other
words, x is a degenerate normal variable).

THEOREM 3. / / the sum of two independently distributed random variables
is a sure variable, then each of these variables is also a sure variable.

PROOF. This can be taken as a degenerate case of the Cramer theorem or
it can be proved by elementary means. We can now consider the degenerate
cases and note some corollaries and a converse of Theorem 1.

COROLLARY 1. If n = 1, xx is a sure variable. (This is Theorem 2.).
COROLLARY 2. If all the ratios bja^ are identical, then the variables x5

are all sure variables.
PROOF. This follows from Corollary 1.

COROLLARY 3. If the variance of #,- is o], then

(24) 2>A<>}=0-
3 = 1

PROOF. lx is uncorrelated with l2.
COROLLARY 4. If all the ratios have the same sign then the distributions

are all degenerate (each a; is a sure variable).
PROOF. (24) cannot hold if a] > 0 for any aj.
COROLLARY 5. (Bernstein [1]). If xx + x2 is independent of xt — x2, then

xx and x2 are normal.
PROOF. This follows by specialising the coefficients a3- and b^ and putting

n — 2 in Theorem 1. Bernstein [1] assumed the existence of the second
moments.

Converse to Theorem 1.

If {Xj} form a set of mutually independent normal variables with variances,
cr?, and if 2r=ia^i°f = ®> then h — ̂ a%xi is independent of / 2

= = 2 ^ ; r t -
PROOF. Skitovitch [15] uses characteristic functions but it may be proved

directly or as a corollary to the proposition that in joint normal distributions
zero correlation implies independence.

4. Independence with Respect to Two Sets of Axes

The next theorem asserts that if a set of mutually independent variables
can be transformed linearly to another set of mutually independent variables
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then each variable is normally distributed. Some restrictions are placed on
the matrix of the transformation to avoid trivial transformations such as a
change of scale or a renumbering of the variables. The method of proof is to
use Lemma 5 to assure the existence of moments of all orders, to change the
scale of the variables so that the variances are either zero or unity. By
Theorem 3 above, it is possible then to show that the matrix is reducible
since sure variables must transform into sure variables. In fact, we might
consider only non-degenerate distributions but this would make Theorem 4
exceptional among the theorems of this paper.

THEOREM 4. (Loeve [12]). Let x and y be vectors related by

(25) y = Ax, x = A~xy

where A is real, non-singular and of size n, and has at least two non-zero
elements in each column. Then if the elements of x form a set of mutually
independent variables and if the elements of y form also a mutually independent
set, every variable is normally distributed.

PROOF. The conditions satisfy hypothesis (i) of Lemma 5. All moments of
the variables of the sets {x^} and {y}) exist. We may therefore centre the
variables xs to have zero means, the y} also will have zero means.

We suppose that p of the x's and q of the y's are sure variables. We can
assume without loss of generality that they are the last p and last q elements
of the vectors x and.y. Now consider the first equality of (25). The last q y's
are linear forms in the x's and these must be the last p x's by Theorem 3
above; since A is non-singular p ^ q. Similarly from the second equality of
(25) q 2> p and so p = q. Now consider a partition of A,

(26) A = \ x 2 , where A± is p X p.

A3 is a matrix of zeroes. A^ therefore contains at least two non-zero elements
in every column and is non-singular. Since A2 is the matrix of coefficients of
the sure variables which have been centred, their values are immaterial. It is
clear now that we can drop all consideration of the sure variables, which we
do. We therefore can assume that p is zero. We have proved that all the
remaining variables Xj and ys have finite second moments which by a change
of scale is unity. This is equivalent to pre- and post-multiplication of A by
diagonal matrices. We can assume this has been done. But now since the
y's have unit variance and are uncorrelated (since they are independent)
A is orthogonal and every element is less in absolute value than unity.
Let us now write X{

8
j) and Y{

s
j) for the sth cumulant of the x} and«/,-. We define

(27) A™ = (««) = « , )

and take AT(S) for its transpose. Writing now Xs and Ys, vectors whose
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elements are X^ and Y{J\ we have, using the cumulant theory and taking
s > 2,

(28) Ys = A^XS = A^AT{s) Ys = BYS,

say. This is trivially satisfied if Ys = 0. Now,

i 3k

< 2 2 «?*«?* = 2 «?* =
3k

since every |attj < 1. If every Y^ is not zero, suppose for definiteness that
is the greatest in absolute value of the sth cumulants. Then

(29)
i i

Thus a contradiction results unless |Y*X)| is zero and hence all cumulant's
vanish for s > 2. The variables are thus all normal. Lancaster [11] gave this
proof but assumed the existence of all cumulants. The proof requires neither
the theorem of Cramer nor that of Marcinkiewicz.

COROLLARY 1. If xx + x2 is independent of x1 — x2, where xx is independ-
ent of x2, then both variables are normal. This was proved by Bernstein [1],
under the restrictive condition that the variances were finite and can be
deduced from Theorem 1. (see Corollary 5 to Theorems 1 to 3).

COROLLARY 2. Spherical symmetry of the joint distribution of independent
random variables implies that the distributions are identical and normal.

COROLLARY 3. If xx and x2 are independent and xx cos a + x2 sin a is
independent of — xx sin a. -\- x2 cos a for one value of a not a multiple of
n(2, the distribution is noimal. This corollary is sometimes proved using
the stronger restriction "for every a."

5. Spherical Symmetry and Independence

We restate corollary 2 of Theorem 4 as

THEOREM 5. / / the joint distribution of n independently distributed random
variables is spherically symmetrical, then the distributions are all identical in
form and normal.

This can be deduced as a corollary of Theorem 1 or of Theorem 4. We
required in either case only to find a rotation which satisfies the condition
of the theorem. The deduction from Theorem 4 is preferable since it calls on
fewer of the fundamental theorems. The history of this theorem began with
an anonymous review by Herschel in the Edinburgh Review for 1850.
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6. Identically Distributed Variables

The proofs of Theorems 4 and 5 above require neither the theorem of
Marcinkiewicz nor that of Crame'r but both are required in Theorem 1.
If all the variables have the same distribution the conditions on the coeffi-
cients can be considerably weakened and the Marcinkiewicz theorem will
not be required.

THEOREM 6. Let lx = 2"=iaj-a?* and h = ^H=i^>xi be two independently
distributed linear forms in independently and identically distributed random
variables, and let the product a} bj be non-zero for at least one j , then the distribu-
tion is normal.

PROOF. Lemma 5 enables us to assume the existence of all moments and
cumulants. We proceed as before and express the s-th cumulant of an
arbitrary linear combination, Ux -f- [d2, in two different ways as in (20),
then taking the s-th cumulants as before

(30) A* 2 «J Ks + ^ i b* Ks = 2 (to, + &,) 'K,

where Ks is the sth cumulant and has the same value for each variable.
Putting s = 2, if y^idibi ^ 0, then K2 is zero and the distribution is the
degenerate normal. If K2 is not zero, 2?=iai^ = 0- Next taking s = 2t,
where t is an integer greater than unity, and identifying coefficients in
X2t~2ju2, we find that Ks has a non-zero coefficient and the product is zero.
So that every cumulant of even order vanishes and CrameYs theorem shows
that the distribution is normal. Since if we took a random variable composed
of the difference of two such variables, independently distributed, then it
would be symmetrical and its moments of odd order would vanish. If it is
known that 2?=i #*~2u^u does not vanish for at least one value of u for every
value of s, then Cramer's theorem would be unnecessary as we could prove
that each cumulant of odd order vanishes too. For example, if xx + x2 -j- x3

is independent of xx + 2x2 — 3x3, then Cramer's theorem is not needed.

7. The Independence of Quadratic Forms

In this section, we shall prove some characterisations of the normal
distribution by the independence of two quadratic forms. Since xTaaTx
is a quadratic form, the theorems and the lemma will apply to the independ-
ence of a linear from a quadratic form. We specialize the problem to the
consideration of identically distributed variables.

LEMMA 6. Let xlt sc2, •••,#„ be a set of identically distributed and
mutually independent random variables. Let A and B be two non-negative
definite real symmetric matrices. Then, if xTAx is distributed independently

https://doi.org/10.1017/S1446788700026033 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026033


[10] The characterisation of the normal distribution 377

of xTBx and a^b^ is not zero for at least one /, the distribution of the x's
have finite moments of all orders. (Note that without the requirement on the
a^b^, the quadratic forms would be mutually independent regardless of the
form of the distribution.)

PROOF. Without loss of generality we may assume that the absolute values
of the au and btj are less than unity and that a n and blx are both positive,
since this involves at most a division by a constant and a renumbering of the
variables. As in the proof of Lemma 5, let e < n~3 be chosen such that
P{|JC| > a} < e. Under the hypotheses made, it follows from the general
theory that any quadratic form can be expressed in the form

(31) x?Ax = a^1
1{a11x1 + f avxt)* + w%Wt + ^ 3 ^ ' " • wnWn

where W' j is the square of a linear form in the last n-\-\—j variables and
each Wj is a non-negative constant. We therefore have the inequality

(32)
i=2

Taking a to be min(|an|, |&n|), if \axx\ > {2n — l)a and \xz\ < a, \x3\ < a,
\xn\ < a,

(33) xTAx > w2a2 and xTBx > w2a2

so that

(34) P{xTAx > w2a2, xTBx > w2a2} ^ P{ \xt\ > (2n- l)a/a} f [ P{\xi

But P{xTAx > «2a2}is less than ne since for the inequalities (33) to hold,
at least one of the |a;t.| must be greater than a and these events are not
mutually exclusive because of the independence of the variables xv

The rest of the proof follows the lines of the proof of Lemma 5 with
hypothesis (ii) holding.

8. The Independence of a Linear from a Quadratic Form

THEOREM 7. Geary's Theorem. If xx, x2 • • • xn form a set of identically distri-
buted and mutually independent random variables and if the mean is distributed
independently of the sample variance, then the distribution is normal.

PROOF. We use Lemma 6 with xTaaTx in place of the quadratic form
xTAx and the elements of a, each l/\/n. We have E{x — x)2 = xT{\—aaT)x,
so that the sample variance can be represented by xTBx where B = 1—aaT.
The conditions of Lemma 6 are fulfilled. All moments exist. We may now
complete the proof using Geary's method of equating the bivariate cumu-
lants of x and s2 to the cumulants of the parent distribution. Alternatively
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we may consider the expectations of (aTx)k (xTBx), using the independence
condition,

(35) E(aTx)kxTBx = E{aTxfExTBx.

Now this is an equation in the moment of order (k + 2) m the lower
moments. The coefficients are uniquely determined and by inspection we
find that the coefficient of the xk+2 is not zero. If E(x) = 0, Ex2 = a2,
then the equation for E (x3) or Kz of the parent distribution is the same for
all distributions giving independently distributed mean and variance and
similarly with the higher moments. But the normal distribution is one such
solution and any other distribution will have the same moments, that is, the
normal is the only solution with non-zero variance. We develop this proof in
greater detail in Section 9. This proof also clarifies the remark of Geary [7]
that in his proof, "it has only been necessary to utilize the condition KiX = 0,
without taking account of the series Ki2 = 0, KiZ = 0, etc., in order to
establish normality".

In the proof above we have put E(x) = 0 for convenience, but it is an
inessential step. In the following modification of the theorem we suppose
that E(x) = 0.

THEOREM 8. Under the conditions of Theorem 7 and E(x) = 0, let aTa = 1,
with each element at ^ 0, then if aTx is independent of xT(l — aaT)x, the
system is normal. (More than one of the elements of a is to be positive.)
The proof goes through as in the main theorem with the aid of (35). Some
condition such as the restriction of the elements of a to be non-negative is
essential. It is indeed sufficient to ensure that ]£ia* (* — ai) *s n ° t z e r o f°r

any integral k as in the following variation.

THEOREM 9. Under the condition of Theorem 7, if a is such that aTa = 1
and 2?=*ai(l —aTl *s not zer0 for any natural number k, and if aTa is
distributed independently of xT(l — aaT)x, then the distribution is normal
(Zinger, 16).

PROOF. The proof goes through as in Theorem 7.

9. The Independence of two Quadratic Forms

Consideration, similar to those, used in the characterisations of the
previous section apply again. But now we find that the equations of the form

(36) E{xTAxy{xTBxy' = E {x^Ax)* E (xTBxf'

which is analogous to (35), is a homogeneous equation in the moments of
order 2(t + t') and lower. Indeed there will be in all (n — 1) homogeneous
equations of the 2n-th order. It seems likely that these would imply enough
conditions on the moments and the coefficients of the matrices, A and B,
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to ensure that AB is the null matrix and the parent distribution is normal if
the symmetric two point distribution is excluded. But the algebraic complex-
ities appear to be too great to carry this through. For example, Kawada
[10], knowing that the distribution was normal, proved that AB was the
null matrix if xTAx a.ndxTBx were mutually independent. But the algebra
is very heavy. We shall have to be content with some characterisations which
avoid even heavier algebra. Further, it seems difficult to prove that the
equations (36) do yield unique solutions to the moments of uneven order.
To avoid this difficulty, we now consider only symmetrical parent distribu-
tions.

We define the standardised cumulants, Cs of a distribution by

(37) Ca = Ka> for s> 2, C2 = K% - 1 = 0, C1 = Kx = 0

where we have first of all standardised the distribution by taking the origin
at the mean and changing the scale so that the variance is unity. The further
step of taking C2 = K2 — 1 is to ensure the truth of

LEMMA 7. The standardised cumulants of a normal distribution are all
zero.

PROOF. This is obvious from the method of defining the C3-.

LEMMA 8. Let x be a random variable possessing finite moments of all
orders, zero mean and unit variance. Then the moment of any order s can be
expressed uniquely in terms of the standardised cumulants of order s and
lower together with a constant, perhaps zero. In this expansion the coeffi-
cient of Cs is unity.

PROOF. In the statistical texts, we find for the moments of a given order
expansions in the cumulants of the form

(38) JUS = Ks + terms in Ka_1, Ks_2 etc.

Now to change this into the required form we note that C1 = Kx = 0,
Cj = Ki for / > 2, and we write (C2 + 1) in place of K%. (38) is homogeneous
in the sense that the subscripts of each term add up to the order s. After the
change of notation, the expression is no longer homogeneous but the sum of
the subscripts of the C.,- in any term is at most equal to s. A constant term,
gs, may appear which has a value independent of the distribution. By inspec-
tion of the formula relating the [j,s and the cumulants, it is found that the
only term which can contribute to the constant term is the term in K\*,
when s is even. gs is the coefficient, in fact, of K\s. It can also be evaluated by
specialising the distribution to be normal, in which all the C.,- vanish.

g, = 1 • 3 • 5 • • • (s — 1), for even s
{ } = 0 for odd s.

LEMMA 9. The expectation of the powers of a quadratic form, xTAx in a
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set {xt} of mutually independent, identically distributed variables, with zero
mean and finite moments of all orders, can be evaluated in terms of the C;-,
the standardised cumulants of the distribution.

PROOF. Let us consider E(xTAx)t, written out in full. From the independ-
ence of the variables we can write each term out in terms of the moments
of the common distribution and so obtain a homogeneous expression in the
moments with the sum of the subscripts of each term equal to 2t. These can
then be converted to expressions in the Cj and perhaps a constant term,
G(t; A). The value of G(t; A) will be independent of the form of the common
distribution since the relations used are identities not depending on special
relationships between the moments.

LEMMA 10. The expectation of (xTAx)t (xTBx)tr can be obtained similarly
with conditions as in Lemma 9. A constant term G(t,t';A,B) may appear in
the expansions.

PROOF. The proof goes through as in Lemma 9. We assert once more that
G(t, t'\ A, B) is independent of the actual form of the common distribution
of the xt.

LEMMA 11. In an arbitrary distribution subject to the conditions of
Lemma 9,

(40) AB= O

implies

(41) G(t; A) G{t'; B) = G(t, V; A, B).

PROOF. We have already noted that the functions in (41) are independent
of the form of the common distribution. We can obtain numerical results by
suitably specialising the distribution. We do so by considering the case
where each x is normally distributed. In this case, (37) shows that xTAx
and xTBx are mutually independent by the theorem of Craig |3|. We have
therefore

(42) E{{xTAxY{xTBxY'} = E(xTAxy E{xTBxy'.

Expanding both sides in terms of the C3- and the appropriate constants and
remembering that in the normal distribution all the Cj are zero, we obtain
(41) which was to be proved. We assert that (41) is true independently of
the form of the distribution of the xt providing it obeys the conditions of
Lemma 11, namely AB = O.

We are now in a position to prove the main theorem of this section which
in effect states that the Craig condition for independence characterises the
normal distribution.

THEOREM 10. Let x1)x2> • • •, xnbeaset of mutually independent, identically
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and symmetrically distributed random variables. Let A and B be non-negative
matrices such that a^b^ ̂  0 for at least one value of j and AB = O. Then,
if xTAx is stochasticallyi ndependent of xTBx, the distribution is the normal.

PROOF. The mean of each distribution is zero. Without loss of generality
we take the variance to be unity. The proof is by induction. We assume that
the Cj vanish for / = 2, 4, • • •, It, and prove that C2t+2 is also zero. We have
that C2 is zero by definition and C3- for odd / is zero by the hypothesis
that the distribution is even. The independence hypothesis gives us, in
particular,

(43) E(xTAxyxTBx = E {xTAxy E {xTBx)

now expanding both sides in terms of the C3- and constant terms, C2t+2 is the
Ci with greatest subscript and it occurs only on the left side, where it has a
non-zero coefficient, d = ^ i a% bjj, and this is positive by the non-negative
condition on the matrices A and B and the hypothesis of the theorem that at
least one a^b^ is not zero. Now the inductive hypothesis gives us that every
other Cj occurring in the expansions of the two sides of (43) is zero. There
follows,

(44) dC2t+2 + G(t, 1; A, B) = G(t; A) G(l; B).

But by writing t' = 1 in (41) we obtain from (44) by the use of the identity
(41),

(45) C2t+2 = 0.

Thus the induction is proved. C} is zero for every /. The distribution has
therefore the same sequence of moments as the normal. This sequence is such
that the moment problem is determined and so it follows that the distribution
is normal.

In all the following we assume that the x's are a set of mutually independ-
ent, identically and symmetrically distributed random variables.

COROLLARY 1. If A is symmetric real and idempotent and xTAx is distri-
buted independently of xT(l — A)x then the parent distribution is normal.

PROOF. If we write B = 1 — A, then all the conditions of Theorem 10
are satisfied.

COROLLARY 2. The condition of Cochran [2],

(46) |1 - 2PA\\\ - 2oB\ = \1 — 2PA - 2oB\,

for independence can only hold in a normal system.

PROOF. This is equivalent to the condition of Craig [3] given in Theorem
10, as can be proved by matrix methods as in [11].
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COROLLARY 3. If any normalised linear form aTx is independent of the
residual sum of squares, xT(l — aaT)x, then the distribution is normal
(Zinger |16|).

PROOF. We replace A and B in Theorem 9 by aaT and 1 — aaT respecti-
vely.

COROLLARY 4. If aTB is a null vector and if aTx is independent of xTBx,
then the distribution is normal. (B is assumed to be non-negative definite
and cijb^^O for at least one /).

PROOF. We write A = aaT and note that xTaaTx = (aTx)2 is independ-
ent of B.

COROLLARY 5. Geisser's characterisation [8]. If x is independent of
2~1(w — k)-1 ^JjZi {%3+k — xi)2> t n e distribution is normal.

PROOF. It needs only to be verified that the product of the two quadratic
forms is zero. Our proof is without restriction in the class of symmetric
distributions. Geisser's [8] proof is without restriction if we use our Lemma 6
to prove the existence of all moments.

10. Summary

Some characterisations of the normal distribution by the independence of
linear and quadratic forms of special interest in statistical theory have been
proved. The method used is alternative to those of previous authors. Here
the independence conditions are shown to imply the existence of all moments.
Recurrence relations among the moments are then found to determine the
normal distribution since the moments uniquely determine the distribution.
The theorem on the independence of two linear forms is proved. The proof
of the well-known characterisation of Geary [7] is completed, there being no
need to specify the existence of the second moment. Some similar theorems
on the independence of a general linear form from a quadratic form are
proved. The characterisation theorems on quadratic forms lead to what
appear to be extremely difficult algebraic computations and so we have been
content to prove some theorems with symmetrically distributed variables.
Within this class of parent distribution, the well-known Cochran and Craig
conditions lead to the characterisation of the normal distribution.

References

[1] Bernstein, S. N., Trud. Leningrad. Politechn. Institut. (Kalinin), No. 3, (1941) 21 — 22.
[2] Cochran, W. G., Proc. Camb. Phil. Soc. 30 (1934), 178—181.
[3] Craig, A. T., Ann. Math. Statistics, 14 (1943), 195-197.
[4] Cramer, H., Math. Zeit., 41 (1936) 405-414.
[5] Cramer, H., Mathematical Methods of Statistics, Princeton (1946).
[6] Darmois, G., Proc. Internat. Statist. Conference, 1947, Vol. 3A (1951), 231, Washington.

https://doi.org/10.1017/S1446788700026033 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026033


[16] The characterisation of the normal distribution 383

[7] Geary, R. C, / . Roy. Statist. Soc. Suppl. 3 (1936), 178-184.
[8] Geisser, S., Ann. Math. Statistics 27 (1956), 858 — 859.
[9] Herschel, J. (Anonymously), Edinburgh Rev., 92 (1850), 1 — 57.

[10] Kawada, Y., Ann. Math. Statistics, 21 (1950), 614-615.
[11] Lancaster, H. O., / . Roy. Statist. Soc. Ser. B, 16 (1954), 247-254.
[12] Loeve, M. A. note on pages 337 — 338 of P. Levy, Processus Stochastiques, Gauthier-

Villars, Paris (1948).
[13] Lukacs, E. and King, E. P., Ann. Math. Statistics, 25 (1954) 389 — 394.
[14] Marcinkiewicz, J., Math. Zeit., 44 (1938), 612 — 618.
[15] Skitovitch, V. P., Izvest. Akad. Sc. S.S.S.R., mat. Ser. 18 (1954), 185-200.
[16] Zinger, A. A., Uspehi mat. Nauk, 6 (1951), 171-175.
[17] Zinger, A. A., Doklady Akad. Nauk, S.S.S.R., 110 (1956), 319-322.
[18] Zinger, A. A., Teoriya Veroyatnostei, 3 (1958), 265 — 284.

Department of Mathematical Statistics
University of Sydney

https://doi.org/10.1017/S1446788700026033 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026033

