
II . 

MIRRORS AND DOMES 

https://doi.org/10.1017/S0252921100108231 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100108231


11 

STEPS TOWARDS 8M HONEYCOMB MIRRORS V 

A METHOD FOR POLISHING ASPHERES AS FAST AS F/1 

J . R. P. Angel 

Steward Observatory, University of Arizona 

ABSTRACT 

A method is proposed for polishing fast aspherics with a lap whose shape is 

continuously changed under computer control as it moves over a r ig id mirror 

blank. The required changes of radius, astigmatism and coma in a circular Zap 

are made with edge bending levers and tensioning members with screw actuators. 

This method of bending has been demonstrated in the laboratory. 

INTRODUCTION 

In a series of four preceding papers^-^ we have argued that an optimum 

diameter for large telescope mirrors is 8m, and have described the development 

of a method suitable for casting lightweight honeycomb glass blanks of this 

size. Rotation is used to preform the parabolic dish shape, and the 8m size 

spinning furnace under development will allow the formation of curves as fast as 

f /1 (8 rpm for 8m focal length) . The surface of a blank formed in this way is 

not of optical qual i ty , but it is within a millimeter or so of the desired 

curve. Finishing to within a few microns RMS of a paraboloid can then be 

achieved rapidly with a numerically controlled precision diamond generator, such 

as the 8m LOG at the Optical Sciences Center.5 

If 8m telescopes were bui l t with f /1 primaries, the moving structure and 

enclosing bui lding ( i f any) would be considerably smaller, l ighter and less 

expensive than for current ly favored designs with f/2 - f/3 primaries. In a 

paper presented at this meeting, Epps, Angel, and Anderson" give an optical 

design for an f /1 paraboloidal pr imary. It has a Cassegrain focus at f / 4 , which 

with the aid of a corrector of 3 fused silica elements realizes a flat field of 

40 arcminutes, with excellent image quality and achromatic correct ion. The same 

paraboloidal pr imary, with a small chopping secondary, would give a good IR 

focus at reasonable focal ratio and plate scale. 

The case for going to f/1 primaries (Woolf, Angel, and Williams^) is s t rong. 

The question is, how do you f igure such a fast large aspheric surface to the 

very high level of performance now needed for telescopes at the best sites? No 

practical method current ly exists, and this is the reason that optical 

telescopes are as clumsy as they are. 

Proceedings of the IAU Colloquium No. 79: "Very Large Telescopes, their Instrumentation and Programs", 
Garching, April 9-12, 1984. 
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The conventional process of making accurate optical surfaces, stil l 

basically the same as used by Galileo and Newton, makes use of the fact that two 

r ig id bodies rubbed against each other with abrasive tend to form a spherical 

boundary. This powerful principle allows spherical lenses and mirrors to be 

polished easily to very high precision, small fractions of the wavelength of 

l ight , with simple equipment. There would be litt le di f f icul ty in polishing a 

fast f /1 sphere of 8m diameter. 

When lapping and polishing is carried out with a lap that is somewhat 

flexible or small compared to the work, then the tendency to make a sphere is 

weakened. In these circumstances, the optician has some latitude to f igure 

surfaces that are modestly aspheric, using an iterative process. The surface is 

worked, its shape is measured and its error from the desired f igure determined, 

and then the surface is worked again to reduce the er ror . In this way 

paraboloidal mirrors of 2.5m diameter as fast as f/2.2 have been made. Examples 

are the diffraction limited mirrors for the Space Telescope program made by 

Perkin Elmer and Kodak, and the series of mirrors made by Norman Cole for 

ground-based telescopes. The same methods can be pushed to make somewhat faster 

mirrors, but d i f f icul ty increases rapidly with decreasing focal rat io. This is 

because the variations in curvature across a parabolic mirror of given diameter 

increases as the inverse cube of the focal rat io. If a lap, either by being 

small or f lexible, can accommodate the desired variations in curvature of the 

asphere, it can also accommodate undesired ones. Thus as focal ratio is 

reduced, zones and ripples appearing on smaller and smaller spatial scales 

rapidly become more di f f icul t to control . One must rely more and more heavily 

on the interactive f igur ing cycle, explicit ly tailoring the polishing to match 

in detail the measured er rors . 

The problem of correcting errors is made all the more di f f icul t because a 

flexible lap will in fact never be a very good f i t to an aspheric surface. The 

only forces acting on the lap available to change is curvature are its weight 

and the polishing pressure reaction from the glass. These forces cannot apply 

any moment at the edge of the lap, so its curvature here cannot be changed, and 

will not f i t correct ly. 

These considerations led us to the idea of using a st i f f lap specially 

f i t ted with internal force actuators, so that its curvature can be explicit ly 

changed to accommodate the desired asphere. Imagine the bow of a bow and arrow, 

f i t ted with a motor driven linear actuator instead of an arrow. By dr iv ing the 

motor we can change the curvature of the bow, without the application of any 

external force. Suppose now that a sti f f polishing lap could be similarly f i t ted 
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with strong actuators, so its shape could be accurately changed at will from 

that of an on-axis parabola to an off-axis segment of the same parent. If the 

shape were changed continuously dur ing polishing strokes and rotat ion, so that 

at any position it conformed to the desired parabola, then the polishing of the 

parabola would become similar to that of polishing a sphere. A preliminary 

discussion of this method is given by Angel and Parks.8 

There are two important advantages in this active bending approach, 

compared to that of using a passive flexible lap. F i rs t ly , the active lap can 

be much st i f fer , and give much better supression of r ipples. This is because 

strong forces can be applied by internal actuators. The limit is set by the 

tensile strength of the lap material, which for steel is around 10^ N/m2. 

Internal stresses in a passive lap are limited by the polishing pressure, and 

depending on lap geometry are unlikely to exceed 106 N/m2. Secondly, the active 

lap can make use of actuators to apply bending moments at the edge of the lap. 

These allow for the curvature to be changed across the whole face of the lap, 

with no inherent problem at the edges. The potential exists for very accurate 

matching of the desired shape changes. 

There is also an important difference in the role played by the computer in 

computer controlled polishing with small laps (CCP) and in active stressed lap 

pol ishing. In CCP, the lap motion is programmed differently for each i terat ion, 

in response to a detailed f igure error map. The active lap actuators, by 

contrast, are programmed to bend always in accordance with the final desired 

f igure. The continuous frenetic activity of the computer in controll ing the lap 

proceeds essentially independently from that of f igur ing the large scale 

er rors . 

THE MECHANICAL CONFIGURATION FOR AN ACTIVE LAP 

We now consider what changes of shape of the lap are required, and how best 

to achieve them. It is convenient to express the shape of an aspheric near any 

point as the distance z between its surface and a spherical reference surface 

which touches at that point. Let the aspheric have conic constant K, the 

reference sphere have radius R equal to the vertex radius of the asphere, and 

touch at a distance h from the axis of the asphere. Then z is given by 

z = Kh2r2(2+cos29)/UR3 + <hr3cos6/2R3 + icr^/SR3 (1) 

where r is measured from the point of contact, 9 from the direction of the 

radius vector from the axis of the asphere. Following Parks, we express z as a 

superposition of elementary surface. The change in shape Az as the point of 
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contact is moved over the asphere requires only the three terms of focus change, 

astigmatisn and coma. If a lap of radius a is used, and we set r/a = p, then 

Az * Ka2h2/ tR3(2p2 - 1) (focus) 

+ <a2h2/4R3(p2 cos 29) (astigmatism) (2) 

+ <a3h/6R3(3p3 - 2p)cos8 (coma) 

Terms in t i l t and piston error are omitted. 

These three terms can be induced in a uniform circular plate simply by the 

application of the correct distr ibut ion of bending moment around the edge of the 

plate, and appropriate stabilizing edge shear forces. No forces distr ibuted 

across the face of the lap are needed, so the polishing pressure can be uniform 

and chosen freely on polishing considerations alone. We have devised an 

implementation for lap bending that involves only levers and tensioning members, 

with no need for any reaction forces except within the lap itself. This is 

shown schematically in Figure 1. Levers whose length are about 1/3 of the lap 

(a) change of radius (b) coma 

Figure 1. Schematic of bending method. 

diameter are arranged around the circumference, st icking up perpendicular to the 

lap. Each is connected by a cable to a point on the lap surface diametrically 

opposite, and a motor actuator is used to vary each cable tension. When all the 

rods are tensioned uniformly, the lap radius is changed (Figure l a ) . 

Astigmatism is induced by increasing the tension in opposite groups of levers. 

A coma term can be added by increasing the tension on neighboring levers and 

decreasing it on the opposite group. This is shown schematically in Figure l b , 

where for clari ty we show a l inking member in compression. In practice, an 

offset of enough uniform tension is applied, so that changes in shape never 

require anything but changes in tension on the dif ferent levers. 

STATIC DEFLECTIONS OF A TEST LAP MEASURED BY HOLOGRAPHY 

To check that the proposed stressing scheme will work in practice, we have 

bui l t a model from a circular disc of glass. For convenience of testing by 

holography, this was given a concave mirror surface. Details of the model are 

shown in Figure 2. The glass disc is 33.3 cm in diameter and 2.5 cm th ick, piano 

concave with a radius of 3m. 24 invar blocks are epoxied to the circumference. 
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(a) 

each carry ing an aluminum lever 

as shown. The lever has two 

arms, the upper one f i t ted with a 

guitar key to tighten the 

tensioning cable. The lower arm 

anchors cables close to the back 

face of the disc, and is set so 

the line of action is through the 

middle of the disc edge. (In a 

metal lap the lower arm would be 

eliminated. It was used simply 

to avoid working the glass disc.) 

The cables, of 65 lb test Toothy 

Cri t ter f ishing l ine, act through 

spr ings. Spring constants were 

determined before assembly, so 

known forces could be applied by 

setting spring lengths with 

cal l ipers. Each spring is 

connected not to the lower arm 

diagonally opposite, but with a V 

cable to the lower arms 

adjacent. 

(b) 

Figure 2. (a) Photograph of the test model; (b) cross section. 
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Bending of the surface of the model was measured by holography by Phil 

Lam at the Optical Sciences Center. A hologram is used to record the wavefront 

coming from the surface in one state of stress, then after changing the stress 

the new and reconstructed wavefronts are allowed to interfere, showing directly 

the change in shape. Fringes formed by the HeNe laser show contour intervals of 

the deflection in units of 0.32p. 

An important characterization of the bending geometry is the influence 

function or bending caused by tensioning one cable alone. This is given in the 

interferogram of Figure 3, which shows the bending for a force of 9.2 k g . The 

bending caused by any combination of 

cable tensions is given simply by a 

linear superposition of the 24 individual 

contr ibut ions. Similarly, if a given 

bending displacement is desired, then the 

combination of cable tensions that best 

reproduces it can be determined 

analytically by the method of least 

squares, once the influence function is 

known. 

Let the influence function for a 

single cable acting at 9 = 0 be IQ ( r , 9 ) . 

The remaining 23 functions are given by 

'n = !0 ( r ,6 -mr /12) . Now let the best 

f i t to the desired bending funct ion, F, 

be given by 

23 
F(r ,9 ) = ^ a n l n + a24 cosG + 825 sine + a26- (3) 

Thus ag to a23 give the cable tensions, 824 and 825 the t i l t and 825 the piston 

terms. The RMS error of this best f i t is then given by 

Iff ¥• V 
E2 = / / I F - > a n l n - a2i, cos6 - a25 sine - a 2 6 \ rdrd9/A , (4) 

*r Q **SC 
where A is the area of the lap. The best f i t value of the a coefficients is 

found by solving twenty-six simultaneous equations, obtained by setting equal 

to zero the partial derivatives of E2 with respect to each coefficient. 
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In this way coefficients for focus change, coma and astigmatism were 

computed, using as input the influence function of Figure 3. The integral over 

the disc was done by summing over seven rings equally spaced in radius, at 

points every 7-1/2° on each r i ng . In Figure 4 are given the calculated forces 

for the functions of focus change, astigmatism and coma, normalized to unit 

force producing the f i rs t funct ion, 2p 2 -1 . The fourth function is appropriate 

for bending a 1/3 diameter lap to f i t at the edge of an f /1 parabola. The RMS 

error of the computed best f its is given also in Figure 4. It is small, and a 

map of the errors shows edge f lu t ing to be a major component of the er ror . 

Figure 4. Pattern of actuator forces needed to induce the functions given. 
Solutions computed from the measured influence funct ion. 

To check the practical realization of bending to a specific funct ion, we 

obtained the interferograms in Figure 5. Figure 5a was obtained by exposing the 

hologram init ial ly with no stress, then t ightening each cable to the same 1.46 kg 

force. The plate shows change of radius, with no significant edge f lu t ing in 

practice. Figure 5b was obtained by exposing the hologram with the forces of 4c 
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needed to produce coma plus a constant offset. The springs were then adjusted 

to give simply the constant offset force, and the interferogram obtained. As 

can be seen, the change of shape is coma, as desired, and again there is very 

l itt le edge f lu t ing . We believe that errors in the influence function 

measurement are responsible for the poorer computed f i t s . It seems also that in 

practice the lack of str ict ly uniform thickness in the disc has not much 

affected the bending. Our conclusion is that the desired shape changes can be 

accurately induced with the 24 actuator system. 

(a) (b) 

Figure 5. Bending induced in the test lap. (a) focus changes; (b) coma. 

A COMPARISON OF STRESSED LAP AND STRESSED MIRROR POLISHING 

Stessed lap polishing is complementary to those methods in which the glass 

mirror itself is stressed and polished with a r ig id lap. The goal is the same, 

to modify the natural tendency of polishing to form spheres, without losing the 

advantage of smoothness. While polishing glass in a stressed state has long 

been used for the manufacture of Schmidt plates, it has recently been used to 

demonstrate the manufacture of off axis parabolic segments. This followed the 

important understanding by Lubliner and Nelson10 that such a segment could be 

deformed into a sphere. Indeed, it is because of this work, and its realization 

in practice by Nelson jst jal.. '' and by Barr j i t j i L 1 ^ that we were sure that the 

similar deformation of a lap would be possible, with high accuracy. 

An advantage of stressing the glass rather than the lap is that only static 

deflections are needed and glass is more perfectly elastic than metals. 

However, the correct deflection for a paraboloid is more di f f icul t to achieve 

in the glass than in the lap. The lap is required to change its shape from one 
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part of a paraboloid to another, while the glass must be bent from a paraboloid 

to a sphere. The latter involves curvature varying quadratically with radius, 

in addition to the uniform and linear changes needed for the lap. The quadratic 

term (spherical aberration) cannot be achieved with edge moments, and requires a 

combination of edge shear and uniform pressure across the blank. Thus correct 

stressing of the glass cannot use the simple system mentioned earl ier, but 

requires levers that apply specific shear and moment forces at the edge, 

together with a uniform support system. 

A fur ther crit ical difference is that stressed mirror polishing places 

strong constraints on the primary mirror substrate. By contrast, stressed lap 

polishing allows the use of st i f f l ightweighted blanks of any size and 

thickness, even for the fastest mirrors. Glass substrates to be stressed cannot 

be very large, so a large primary must be bui l t up from separately f igured 

circular segments. If f igured circular segments are to be cut and f i t ted 

together as hexagons or keystones, then a the substrate will also be required to 

be unusually free of internal s t ra in . The faster the focal ratio the more 

segments there must be, and the thinner and more flexible they must get, to 

avoid breaking the glass. Internal bending stresses vary as thickness/F^. Thus 

to bend a glass segment like that described in these proceedings by Barr to f /1 

instead of f /1.75, and to keep within the same internal stress limit, it would 

have to be only 1.5 cm th ick. Based on a safe upper limit of 7x10° N/mS a 

glass segment of an 8m f /1 paraboloid would have to be no more than 3.5 cm 

th ick. These values are uncomfortably th in , and the focal ratio of f/1.75 

adopted for the California 10m telescope is probably close to the practical 

limit for the method. No corresponding restrict ion on focal ratio applies to 

the stress lap method, since the f lexibi l i ty needed in the lap is not carried 

over into the mirror . 

FIGURING AN 8m F/1 PARABOLOID 

We assume that the start ing point would be a substrate generated to within 

a few microns RMS of the paraboloid. The f i rs t step is to lap off the surface 

damage layer while reducing the surface er ror . An active stressed lap of 2m 

diameter is proposed, which would need bending of about 2mm peak to valley as it 

was translated and rotated over the 8m surface. The characteristic period for 

cycling stress in the lap would be a few seconds, and we envisage the 

controll ing computer would update the actuator force pattern about every 

millisecond, to keep errors at or below the 0.1% level. The strokes would be 

chosen to minimize surface error as monitored with a 10p interferometer. When 

fine gr inding was complete, the same active lap would be faced with pitch and 
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the sur face pol ished o u t , now w i th a HeNe in ter fe rometer measur ing the su r f ace . 

F i g u r i n g would proceed as fa r as possible w i th the 2m lap . I f th is could not 

achieve the des i red q u a l i t y , then 1m or even 1/2 m act ive laps could be used to 

f i n i sh u p . These would requ i re on ly 0.5mm and 0.13mm peak to val ley bend ing 

respec t i ve l y . 

We envisage that a ra the r s t i f f lap would be u s e d , w i th maximum forces per 

cable of o rde r 1000 k g . Steel is p robab ly the p r e f e r r e d mater ia l , because of 

i ts super io r elast ic p r o p e r t i e s . In o rde r to g ive the lap h igh s t i f fness 

w i thou t excessive we igh t a honeycomb or r i b b e d s t r u c t u r e may be r e q u i r e d . 

Ana lys is and exper iment wi l l be needed to des ign such a lap tha t bends as a 

disc of un i fo rm th ickness under the edge moments. 

CONCLUSION 

Stressed lap po l i sh ing would seem to be an idea whose time has come. I t is 

a method tha t would not be possible w i thou t a large number of accurate servo 

systems and a dedicated power fu l computer on l i ne , b u t th is is now qu i te 

p r a c t i c a l . I t does not lend i tse l f easi ly to small scale o p t i c s , b u t the re is 

now a need fo r v e r y large m i r r o r s . I t comes in to i ts own fo r sur faces tha t 

depar t s t r ong l y f rom spheres , and there is now th is need a lso. 

I am g ra te fu l to Phi l Lam fo r se t t i ng up and r u n n i n g the ho lographic 

i n te r fe romete r , to Bob Parks for i n t r o d u c i n g me to the a r t of m i r ro r p o l i s h i n g , 

and to Dan Watson and S te r l i ng Kopke fo r the i r assistance in making the "m i r r o r 

h a r p " and to Sue Mitchel l for assistance in r u n n i n g computer f i t s . Th i s work is 

suppo r ted b y NASA under g r a n t # NACW 121. 
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