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THE ESTIMATION OF COMPLETE EXPONENTIAL SUMS 

BY 

J. H. LOXTON AND R. C. VAUGHAN 

In memoriam Robert A. Smith 

ABSTRACT. This paper proves a conjecture of Loxton and Smith 
about the size of the exponential sum S(f;q) formed by summing 
exp (2Tiif(x)/q) over x mod q, where/is a polynomial of degree n with 
integer coefficients. It is shown that \S(f;q)\ ^ Cfdn(q)qe/ie+i\ where e 
is the maximum of the orders of the complex zeros off. An estimate is also 
obtained for Cf in terms of n, e and the different of/, and a number of 
examples are given to show that the estimate is best possible. 

1. Introduction. Let q be a positive integer and let/be a polynomial of degree n with 
integer coefficients. This paper is concerned with the exponential sum 

(1) S(f;q) = 2 e(f(x)/q) 
xmodq 

where x is taken over a complete set of residues modulo q and e(t) = exp (2THf). 
When n = 1 the sum is trivial and, after the work of Gauss [6], the case n = 2 is 

completely understood. The first systematic study of (1) for larger n is by Hardy and 
Littlewood [7, 8]. In the case/(x) = axn with (a,q) = 1 they obtained the bound 

(2) \S(axn;q)\^Cnq
[-l/n ({a,q) = 1), 

and their argument readily gives Cn — nn (see Vinogradov [19]). They also showed that 

(3) S{axn\pmn) = pm{n~X) (p > n,p | a), 

so that (2) is essentially best possible. The bound (2) has been sharpened by Stechkin 
[16] who obtained Cn = exp (C(n/$(n))2). 

Another special case that has been extensively studied is that of f(x) = axn + bx 
with {a, q) — 1. As in the work of Hardy and Littlewood this special case was studied 
in connection with Waring's problem. Davenport and Heilbronn [4, 5] showed that 

(4) S(axn + bx-q) <e q^(q,b) ((a,q) = 1) 

with 8 = 2/3 when n = 3 and 9 = 3/4 when n ^ 4. 
Let C(f) denote the content of/(*) - / (0) . When p j C(f) the estimate 
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COMPLETE EXPONENTIAL SUMS 441 

(5) \S(f;p)\^(n- \)pm {p\C(f)) 

is a well known consequence of the work of Weil [20] on the Riemann hypothesis for 
curves over finite fields (see, for example, Schmidt [15]). By making use of (5), Hua 
[10] showed that it is possible to take 

(6) e _ i 
~ 2 

in (4) (see Lemma 4.1 of Vaughan [18]). (The earlier work of Davenport and Heilbronn 
was based on the ideas underlying Mordell's estimate [12].) 

When p < (n - l)2 the bound (5) is worse than trivial. Very probably 

(7) \S(f;p)\ ^ (np)m (ptC(f)). 

It follows at once from Mordell's argument (see Anderson and Stiffler [1]) that 

(8) max \S(f,p)\>[{n\?(P
n)-p»]mn 

and so (7) would be essentially best possible. It is worth pointing out that 

P-\ 

S \S(axn;p)\2 = p(p - l)((/i,p - 1) - 1) 

so that when p = 1 (mod n) one obtains the sharper lower bound ((n - \)p)m. 
For a general polynomial/of degree n with integer coefficients the principal interest 

is to obtain an upper bound for \S(f; q) | that is uniform for a large class of/with respect 
to n and q. Hardy and Littlewood [7] obtained S(f;q) <e q

l~2]~n+e uniformly for/with 
leading coefficient coprime with q by adapting a method introduced by Weyl [21] for 
estimating exponential sums. Hua [9] improved on this by showing that for each fixed 
e > 0, 

(9) S(f',q)<ql-l/n+* ((*,C(/)) = D, 

and adumbrates an argument on p. 304 that, after the work of Weil [20], enables one 
to take e = 0 in (9). Thus Nechaev [13], Chen [2], Nechaev [14], Chen [3] and Stechkin 
[17] have successively obtained 

(10) | 5 ( / ; ^ ) | ^ C ^ , - 1 / " ((q,C(f))= 1) 

with Cn = exp (2n)(n ^ 12), exp (Cn2), exp (5n2/\og n)(n ^ 3), exp (nDn)(Dn ^ 
6.1, Dn ^ 4(n ^ 10)) and exp (n + 0(«/log n)) respectively. 

Of course it is immediate from (10) that 

(11) \S(f;q)\^Cnq
]-l/"(q,C(f))l/n 

In view of the example (3) this is essentially best possible. However, in view of (4) 
(with (6)) and (5) one might hope frequently to do better. Recently Loxton and Smith 
[11] have obtained a bound for S(f;q) which improves on (11) in nearly all cases. 
Given a polynomial of degree m, 
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(12) F(x) = a0x
m + axx

m'' + . . . + am 

with integer coefficients, write 

(13) F(x) = a0 El (x - £)<< 

where the £ are the distinct zeros of F, and e% is the multiplicity of £, so that S | ek — 
m. The semi-discriminant A of F is defined by 

(14) MF) = al"'2 EI (Ç " T I ) ^ 

where the product is over all ordered pairs £, T| of zeros of F with £ =£ r\. Let 

(15) e(F) = max ek. 

Loxton and Smith show that 

(16) \S{f\q)\^ dn.x(q)qX'X,le^q)me 

where 

(17) e = e(f), A = A(/ ' ) . 

This gives a smaller bound than (11) when e < n/2 and q is large in terms of/. Also, 
in the case/(jc) = axn + bx with (a,q) — 1, (16) gives a bound of the same quality 
as (4) with (6). 

Loxton and Smith further conjecture that 

(18) \S{f',q)\^cfdn-X(q)qe,{e'X) 

and this fits very well with the evidence of (2), (3), (4) with (6), (5) and (8). The object 
of this paper is to prove this conjecture and obtain a good estimate for cf. 

The quantity A appearing in (16) is used as a measure of the local separation of the 
zeros of/'. However, it is somewhat inefficient for this purpose and in some cases can 
be excessively large. For example, when p > n, the argument of Lemma 4.1 of 
Vaughan [18] gives 

(19) S(xn - nxpm{n-]);pm") = pm(n~x\ 

whereas (16) only gives 

(20) \S(X" - nxpmin'l);pmn)\ ^ npmn/inn-2)(n-\)m/2 

which is worse than trivial when n ̂  4. 
In order to give a better measure of the local spacing of the zeros of/' we instead 

build on the different 3 introduced in Theorems 2 and 3 of Loxton and Smith. Let F 
be as in (12) and let K denote the algebraic number field generated by the roots of F. 
Let oxép denote any extension to K of the additive /?-adic valuation, normalized so that 
ordp p = 1. For a given prime p define 

https://doi.org/10.4153/CMB-1985-053-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-053-7


1985] COMPLETE EXPONENTIAL SUMS 443 

(21) 8(F;É) = MF;!;) = ord, (F^\0/e^\), 

(22) 8(F) = 8,(F) = max 8„(F;Ç). 

Note that 

F(^}(£) 
(23) — = ÛO II (Ê-Tl )^ 

where the product is over all distinct roots T] of F with r\ ï £. Now define 2)(F) to be 
the intersection of the fractional ideals generated by the numbers F{e^(^)/e^\. Then 

(24) 8(F) = ord, 3 (F) . 

Note that 2)(F) is an integral ideal because at least one of the numbers (23) is a p-adic 
integer. 

The bulk of this paper is taken up with establishing 

THEOREM 1. Let f be a polynomial of degree n ^ 2 with integer coefficients, let 8 = 
ordp ( 3 ( / ' ) ) , and let 

1 when p ^ n, 

Then 

L0 when p > n. 

\S(f;pa)\ ^ (n - J)p(-e^^)/(e+\)^ 

In the special case/(x) = xn - nxpm(n~]\ p > n, the above theorem gives 

(25) \S(xn - nxpm{n-X)\pmn)\ ^ (n - l)pm{n-l). 

Indeed, by inspecting the proof for the particular polynomial in question, it is possible 
to replace the right hand side of this inequality by pm(n~]\ This can be compared with 
(19) and (20). 

For a given positive rational integer q we define 

(26) (2>(F),0) = I l p
min^dPCJ^ordP^\ 

p 

Note that fractional exponents may occur. 
Also, whenever {q\,q2)

 = 1 we have 

(27) S(f;qiq2) = S(ulf9ql)S(u2f9q2) 

where uxq2 + u2qx = 1 (mod q\q2). The following theorem is an immediate con
sequence of Theorem 1, (26) and (27). 

THEOREM 2. Suppose that fis a polynomial of degree n ^ 2 with integer coefficients. 
Then 
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\S(f;q)\ *= exp )(„ - l)-<«>(9(/'),9)'/«
+V/('+1) 

where ft(n) = 2 ^ , , log /? arcd co(g) = S ^ 1. 
We remark that in some circumstances 8 can still be too large, particularly when the 

maximum in (22) occurs for a £ for which e% < e. By following up the remark after 
Lemma 1 below it is possible to prove Theorem 1 with 8 replaced by 

(28) 8* = 8* = max max ( 8 p ( / \ Q + / ( ^ - e)) 

and Theorem 2 with (2)(/ ' ) ,#) replaced by 

^ 2 9 ) T~[ pmin(8*,ordp<?) 

In §2 we give a construction, related to the /?-adic approximation to the roots Off, 
which is basic to the proof of Theorem 1, and establish some properties of the approx
imations. In §3 we show how the/?-adic approximations relate to S{f;pa), and estimate 
the sum in certain special cases. We complete the proof of Theorem 1 in §4. 

In §5 we give some examples which show that in many situations Theorem 1 is 
essentially best possible. 

2. The sequences of p-adic approximations. Let/? be a prime and/be a polynomial 
with/? I C(f). We define a sequence of polynomials/ and a sequence of non-negative 
integers xt inductively, as follows. 

Let/o = /• Given/ we choose a non-negative integer T, SO that the polynomial p~7i 

f[ has integer coefficients but p does not divide its content, and we choose r, to be any 
residue class modulo p for which p~T'"//(ri) = 0 (mod /?). Now let JC,- be the least 
non-negative integer in rt for which ordp (2j-=0 xjp

J - £) ^ / + 1 for each root £ of/'. 
If no such xi (i.e. r,) exists, then the sequences terminate with/ and xt-x, with the 
obvious interpretation if x0 does not exist. When such an xt does exist we choose the 
non-negative integer a, SO that the polynomial p~Ui{fi(Xi + px) — /(*;)} has integer 
coefficients but p does not divide its content, and we set 

fi+i(x)=p-'*{fi(xi + px)-Mxi)}. 

At each stage of the construction there may be several choices for r, and hence for 
xt, so it may be possible to construct many such sequences. We denote by si the set 
of all sequences % = {xt} which can be constructed in this way and we write/(jc;â?), 
(7/(90 and T,(â?) for the associated quantities arising in the construction of 9f. For 
convenience we will often suppress the $£ in the notation. If there is no xQ satisfying 
p'^fixo) = 0 (mod /?), then si is empty. 

We further define 
j - i 

2o (X) = o, x, (*) = S o-y(ac) (i > i) 
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and 

xf-(âf) = E V -
7 = 0 

Then the polynomials/(x, $£) are given by 

/•(*,£) = p-^'ifiXi + p'x) -/(X,-)} 

We first of all establish some bounds for a ^ ) , T , ( ^ ) and Sf-(gf ). 

LEMMA 1. Let f be a polynomial of degree n ^ 2 vvzY/z integer coefficients and let p 
be a prime with p \ C{f). Let e = e(f) and 8 = ô (/"'), tf«d let â? &e constructed as 
above. Then 

(i) 2 ^ a,(â?) ^ /i, 
( i O O ^ T / O O ^ t l o g / i / l o g p ] , 
(iii) 2/(30 + T^gE) ^ i(e + 1) + 8. 
We remark that the proof of (iii) will enable one to replace the right hand side by 

maxy(^o (i(e% + 1) + àp(f',Ç)) which is sometimes sharper. 

PROOF. The first inequality af-(?f ) ^ 2 is a trivial consequence of the definition of 
xi9 and the upper bound CT,-(SP) ̂  « follows from the observation that iffi(x) = 2£= 0 

<2*x\ t hen /U + /?*) -/•(*,-) = E ^ j ^ / ? V w i t h ^ = fln,6II_1 = <*„_, + an[n-\)xh 

and so on. 
The inequalities in (ii) follow at once from the fact that for some integer m with 

1 ^ m ^ n we have pTi | m. 
The third assertion is the most important and is somewhat more delicate. We define 

(X/ = max ordp (X, — £) 

where the maximum is taken over the distinct roots £ off. Note that by the construction 
of Xi we have (JL, ^ /. Let e, denote the total multiplicity of the roots p for which this 
maximum is attained. Further, let 

X ^ o r d , / ^ 1 ^ ) / * , ! 

where p is used to indicate one of these roots. We have 

/{e' + 1)(p)/€/! = a0Y\ ( P - T l ) ^ + . . . 

where T| is used to indicate roots T| of/' with ord^ (Xz — y\) < p,,, and the terms indicated 
by the dots have larger /?-adic order than the main term. Thus 

Xf = ord, [a0 I I (P - TO'") = ord, (a0 U (Xi - T ^ ) 

and so is independent of the choice of p. Hence 
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ord„/'(X,) - ord„ (ao FI (X, - T\Y* I\ (X, - p)*) 
y\ p 

= X,- + S ep[ki 
p 

= X, + €/|X/. 

On the other hand 

2, + T/ - i = min {ordp (p '7 (*+ , )(*/)/*!)}. 

Thus 

2 ; + T, ^ X, + 6,-fX/ + /. 

We also have 

where the product is over the zeros £ of/' with £ =£ p. When ordp (X,- — £) = |x, we 
have ord^ (p - £) ^ |x, and when ord^ (X, - £) < jx, we have ordp (p — £) = ordp 

(X, - Ç). Thus 

/U p + 1 )(p) 
8 ^ ordp ^ X/ + |x,(e/ — ep) ^ 2/ + T, — / — |x,ep. 

ep\ 

Hence 

2/ + T,- ^ 8 + i + |x^p ^ 8 + i(l + e). 

For a positive integer a with a ^ T + 3 we define subsets 28* = 28*(a), %. = ^ ( a ) 
and ^ = îfc(ot) of the set si, as follows. Let 28* denote the subset of si formed from 
those sequences â? with at least k elements and satisfying 

2*-, (2C) + Tik-i(2E) + 3 ^ a and 2* (SE) s* a. 

Let ^ denote the subset formed from those sequences with at least k elements and 
satisfying 

2k-1 &) + T*_,(aO + 3 ^ a and 2 , (SE) < a < 2 , (3f) + T * ^ ) + 3. 

Finally, let %k denote the subset of those sequences with at least k elements and 
satisfying 

2 , (3E) + jk(%) + 3 ^ a. 

Since 2/(9f?) + T/(9£) increases with /, the sets 2ft* and %k are disjoint and %k is the 
union of the % and % with 7 > k. Let 3* = &* U %. By Lemma 1, (i), the sets %, 
<€*, 9)jt, ^ are empty for all sufficiently large k. 
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When g is a polynomial with integer coefficients, not all divisible by p, we denote 
by degp (g) the degree of g modulo p, that is, the largest integer k for which the 
coefficient of xk in g is not divisible by p. Set 

KT - AT /o*x _ J max(!> degp(p~T*/*), degp(/*) - 1) when T*., = 0, 

t max(l, deg^(/? T*/£)) otherwise. 

LEMMA 2. Let p be a prime and let f be a polynomial with integer coefficients and 
p X C(f). Then 

S 1 Nk(%)^dcgp(p-^f). 
k=\ %e°J)k 

PROOF. We show by induction on K that 

K 

1 2 Nk+ 2 Nk^dcgp (p-T°f). 
*=i fea t 

The lemma then follows because %K is empty for large K. The inductive step will follow 
if we show that 

2 NK+l^ 2 degp (p-**f'K) 

and this in turn will follow if we establish the inequality 

(30) 2 n / + 1^deg / ?( /?-V;) 
Xj 

p~rif'j(xi) = 0(modp) 

with 

_ r max (1, degp (/TT/+,/;+i), degp(/•+,) - 1) when T, = 0, 
W/+l " Imax (1, degp (/? ~T'+'/;'+1)) otherwise. 

Moreover the case / = 0 of (30) yields the case K = 1 of the inductive hypothesis. 
We prove (30) by adapting an argument of Hua [9]. Let JC,- be a root of p~7ifi(x) 

modulo p with multiplicity mh Then we can write 

P~Tfi(Xi + x) = b0 + bxx + . . . + bnx
n 

where the bj are integers, ty = 0 (mod /?) when 0 ^ j ^ m,; - 1 and bm. ^ 0 (mod /?). 
Now 

fi+l(x) = p-°' (/fa + PX) - /fa)). 

Thus 

P"T'+,AiW = p^'-^^'p-YiiXi + pjc) 
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and this polynomial also has integer coefficients. For k > m, the coefficient of xk is 
divisible by a higher power of p than the coefficient of xmi, so 

deg;,(/?-T '+'/;+1)^m,. 

Again the coefficient of xm' is a/7-adic integer, so 1 - a, - T /+1 + T, + mt ̂  0. Note 
also that degp (/+i) ^ a, from the equation defining/+1. Thus, when T, = 0 we have 

degp (fi+l) ^ o-, ^ m, + 1. 

Taken together, these inequalities give 

n i + l ^ rrii. 

Moreover the sum of the multiplicities mt, taken over all the roots JC, of p ~T'//U) modulo 
p, is at most deĝ , (p~7fl) and this establishes the required inequality. 

3. The reduction of the exponential sum and a special case. 

LEMMA 3. Let p be a prime and let f be a polynomial with integer coefficients and 
p\C(f). If a ^ T0 + 3, then 

00 00 

S(f,pa) = 2 X e(f(Xk)p-a)pa~k + 2 S e(f(Xk)p-a)p^-kS(fk;p
a-^). 

In particular\ if si is empty, then S(f',pa) — 0. 

PROOF. We show by induction on K that 
K K 

S(f;pa)=l 2 e(f(Xk)p-a)pa'k + £ S e(f(Xk)p-a(p^-k S(fk;p
a~^) 

k=\ seeg&ft k=\ %e%k 

+ X e(f(XK)p-")p^K S(fK;pa-^). 

We first establish the case K = 1. We have 

S(/;/?a) = S e(/U)/>-a) + S e(f(x)p~«). 
xmodpa xmodpa 

p"0+l\f'(x) P^+lKf'(x) 

The second sum here is 

wmod/> a T0 ' v m o d p T 0 + 1 

and this can be rewritten as 

2 e(f(u)p-a+p-*°f'(u)vp-1 + . . . 
W, V 
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For ^ 2 w e have ord^fc!) ^ 2k - 3. Moreover the polynomials p 7°f(k\x) have 
integer coefficients. Hence when a ^ T0 + 3 the double sum above is 

X e(f(u)p-«) I e(p-*°f(u)vp-1) = 0. 
Mmodpa~T0 - 1 vmodpTo+l 

Ph~70f'(») 

When si is empty there are no solutions top~7°f(x) = 0 (mod/?) and so S(f;pa) = 

0. This establishes the second part of the lemma. Otherwise 

S(f;pa) = 1 2 e(f0(x)p-«) 
x0 xmodpa 

x=XQ(modp) 

= 2 e(f(x0)p-a) X e(Mx)p"o-"). 
XQ x mod pa 

The terms with 2 j = a0 ^ a contribute 

S e(f(Xx)p-«)p«-x 

The terms with 2 j < a are of two kinds, those with ^ 6 % and those with 1£ E.%\. 
For each kind the summand is 

é?(/(X I)p-«)p2>-1S(/,;pa-2 '). 

This establishes the case K = 1 of the inductive hypothesis. Now suppose that the 
inductive hypothesis holds for some K ^ 1. Consider the sum 

S emXK)p-«)p**-K S(fK\p«-**). 

By repeating the argument used above, we see that for 3? E %K we have 
S(fK;pa~^K) = 0 unless there is an JC*- such that/?~T*/*(**) = 0 (mod/?). In that case 
the summand corresponding to dC in the above sum is 

2 e(f(XK+l)p-a)pa-K-1 or 2 e(f(XK+])p-a)plK+l-K-lS(fK+];p
a-^) 

*K XK 

according as X^+i ^ a or ^K+i < a. This leads to the desired conclusion. 
The reduction step can also be made to work in the case a = T0 + 2. 

LEMMA 4. Let p be a prime and let f be a polynomial with integer coefficients and 
p X C(f). If a = T0 + 2, then 

\S(f;pa)\^p«-ldcgP(p-^f). 

PROOF. Suppose first that/? > 2. When ^ 3 w e have ordp(&!) ^ k - 2. Moreover 
ordp (2!) = 0. Hence, by the argument used in the first part of the proof of Lemma 3 
we have 

https://doi.org/10.4153/CMB-1985-053-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-053-7


4 5 0 J. H. LOXTON AND R. C. VAUGHAN [December 

S(f;pa)= 1 P*" e(f(u)p-a). 
umodp 

p\p~J°f'(u) 

The congruencep~7°f(u) = 0 (mod/?) has at most étgp (p~J°f) solutions. This gives 
the desired conclusion. 

Suppose now thatp = 2. Then 

S(f;2«)= 2 1 e(f(u + 2v)2-T°-2) 
wmod2 vmod2T0+1 

= X e(/(w)2~T°-2) X <?(X 2 - T ° / ( * ) ( K ) V * 2 * - 2 / * ! ) . 
«mod2 vmod2T0+1 V*s=l 

The exact power of 2 dividing kl is k - 1 when & is a power of 2 and less than k — 
1 in all other cases. Consequently, the terms in the sum over k are all integers except 
possibly for those in which A: is a power of 2, and these have denominator at most 2. 
The summand over v is always 1 when v is even and it is (-1)X(M) with 

X(«) = 2 2 - T 0 / ( * ) ( M ) 2 * " 7 * ! 

when v is odd. Thus 

S(f;2a) = X 2T0+,é>(/O)2~T°~2). 
« mod 2 

2|x(") 

When deg2 (2~J°f) ^ 2 the conclusion is trivial. When deg2 (2~T°/') = 1 we have 
2~T°/'(JC) = a + x (mod 2) where a is a constant. Thus x(") = a + « + 1 (mod 2). 
Hence the summation condition is satisfied by only one choice of u. Thus 

| 5 ( / ; 2 a ) | ^ 2 a - 1 d e g 2 ( 2 - T o / ' ) 

as required. When deg2 (2~T°/') = 0 we have 2~T°/'(*) = 1 (mod 2) and the summation 
condition is never satisfied. Thus S(f;2a) = 0 = 2a~l deg2 (2~T°/') which proves the 
lemma in this case also. 

4. The proof of Theorem 1. It clearly suffices to establish the theorem in the case 

PlC(f). 
The argument is divided into a number of cases. First of all we suppose that a = 1. 

By (5) we have 

\S(f\pa)\ ^(n- \)pm ^{n- l)p«/«+1>. 

This establishes the case a = 1. 
Next suppose that 2 ^ a ^ T0 + 1. Since T0 ^ (log AI)/(log/?) and T0 ^ ô, we have 

T = 1 and a ^ 8 + T. Hence a trivial estimate gives 
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Thirdly we suppose that a = T0 + 2. Then a ^ 8 + 2 and Lemma 4 gives 

\S(f;pa)\ * £ ( / ! - l)pa~] ^(n- D ^ - c - w e + n . 

In the fourth case a ^ T0 + 3, we use Lemma 3. For a sequence % in 95* we have 
a ŝ 2*. Hence, by Lemma 1 the contribution from â? is bounded by 

k( / (X t )p"°)p a -* |^P°" ( a - ô ) / ( e + , ) . 

The contribution from a sequence % in <€* is 

C* (say) = e(f(Xk)p-«)p^-kS(fk;p*-^) 

and we have 0 < a - ^ ^ Tt + 2. We now argue in a similar manner to the previous 
cases. 

When a - 2* = 1 and ik-x > 0 we have T = 1. Thus, again by Lemma 1, we have 

\Ck\ ^p«-*^p«-<«-»-T)/c+1). 

When a — 2* = 1 and T^-I = 0, Lemma 1 gives k ^ (a - 8 - l)/(e + 1). We 
have p I C(fk). Hence, by (5) with/ replaced by fk we have 

\Ck\ ^ (deg, (/*) - l)p»-k-m 

^ ( d e g p ( / , ) - i)p«-(«-»)/(^D. 

When 2 ^ a - 1^ ^ Ti + 1 we have, by Lemma l , a ^ 2 * + T * + l ^ 
fc(e+l) + S + l and T = 1 so that trivially we have 

\Ck\ ^ / , « - * ^ p « - ( « - » - » ) / ( * + i ) . 

Finally, when a - 2* = T* + 2, Lemma 1 gives a ^ k(e -f 1) + ô + 2. Hence, 
by Lemma 4 with / replaced by fk and a by a - 2*, we have 

\Ck\ ^ deg, (p-^n)Pa~k'1 ^ deg, (/7-V;)^a"(a"6)/(e+1)-

On combining the contributions of all the sequences we obtain 

\S(f;p«)\ ^ i E Nk(%)p«-^-^+i\ 
k=\ âfe% 

Hence, by Lemma 2, 

\S(f;pa)\ ^ (n - ^pi^+b+me+D 

which establishes the theorem. 

5. Some examples. We give here some examples which show that Theorem 1 is 
essentially best possible. 

When p ^ 3 it is classical that 

2 e(x2/pa)\ =p«/2 
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so that the theorem is certainly best possible when e - 1 and n — 2. For e — 1 
and n ^ 2 consider f(x) = xn - nx. Then / 'O) = n(xn'x - 1) and f"{x) = 
n(n - \)xnl. Following the definitions of §2 (except that we replace the condition 
ord,, ( 2 j = 0 Xjpj - £) ^ i' + 1, which is only used in Lemma 1, by the condition 
-p/2 < xt ^ p/2) and assuming that/? > p0(n) and (p - 1, n — 1) = (2,n - 1) we 
find that Xt = 1 when n - 1 is odd and X,- = ±1 when n - 1 is even. Moreover 
/(X,) = -X f(n - 1) = + (n - l),/ '(X f) = 0,/"(X() - Xf./i(#i - 1) = ±#i(* - 1), 

T/ = 0, 2f- = 2i. 
Now, by Lemma 3, given a ^ 3 w e see that S(/ ; pa) is the sum of one or two terms 

of the form 

e(f(Xk)p-«)pkS(fk;p
a-2k) 

where Jfc = [(a - l)/2] and/*(jc) = p~2k(f(Xk + />**) -f(Xk)). For a ^ 6 we have 

/*(*) = ± U ) J c 2 (mod/?a_2/c). Hence for a ^ 6 and a even it follows that S(f;pa) is 

the sum of one or two terms of the form e( + (n - \)p~a)pa/1. Thus for/? > p0(n) and 

(/? - 1, A2 - 1) = (2, n — 1) we obtain, for even a ^ 6, 

|5(/;/»°)| > ^ o / 2 . 

By a slightly more careful analysis this example can be extended to all even a, and to 
odd a ^ 3 when either n is even or 2\\n — 1 and p = 1 (mod 4). 

In the next example we suppose that/? > p0(n) and n > e ^ 2 and take 

f{x) = /i! [ V ( v - l ) . . . ( y - n + e + l )dy 

This time in considering the definitions of §2 we assume that 0 ^ x{ < p. Now there 
are n — e sequences 9C, each of the form % — (j, 0 ,0 , . . . ) (0 ^ j ^ n - e — 1). 
Moreover when x0 = 0 we have a, = e + 1 (/ = 0 , 1 , . . . ), T, = 0 (/ = 0 , 1 , . . . ) and 
when x0 = j with 1 ^ j ^ n - e - 1 we have a, = 2(i = 0 , 1 , . . . ), T, = 
0 (/ = 0 , 1 , . . . ) . Now Lemmas 2, 3, 4 and the argument of §4 show that when 
e 4- 11 a we have 

S(fpa) = pae/{e+l) + 8(n - l)pa/2 

with |6| ^ 1. Thus 

\s(fpa)\>l
2p

ae/{e+l) 

once more. 
Our final example shows that \ïe{^2) is small compared with n, then even the factor 

n — 1 in Theorem 1 cannot be materially reduced. 
Let 

m 

P(x)= EI (x-r), f(x) = P(xY+\ 
r = 0 
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so that n = (m + l)(e + 1). The function P'(x) has all of its m roots real and 
interlacing, but not coinciding with, the m + 1 roots of P{x). Let K denote the algebraic 
number field generated by the roots of P'. For a given prime p let ordp denote any 
additive non-Archimedean valuation on K which coincides with the additive p-adic 
valuation on Q (normalized so that ordpp = 1). We assume throughout that/? is so large 
that ordp (£ — £') = 0 for each pair £, £' of distinct roots of P'(JC). We again construct 
sequences as prescribed in §2. We assume that/7 > p0(n). There are at least m + 1 and 
at most 2m + 1 possible choices for JC0, namely 

(31) x0 = r (0 ^ r ^ m) 

together with any possible solutions of 

(32) P'(jto) = 0(modp). 

Since P'(x) = 2™=0 H™=0 (x - r) it follows that the solutions of (32) are distinct from 
r*s 

those of (31). For sequences arising from (31) we assume that 0 ^ JC, < /?, so that 
x0 = r. For any arising from (32), however, we suppose that max ord^ (X,- — £) ^ / 
where the maximum is taken over the roots £ of P'. When x0 = r (0 ^ r ^ m) it follows 
that xt = 0 (/ ^ 1), T/ = 0 (i ^ 0), CTf = e + 1 (i => 0),/(X,) = 0. On the other hand, 
when JC0 satisfies (32) it follows that X, (if it exists) satisfies pl | /'(X,-). Moreover 
there is at most one root, £0 of P' such that ordp (X, - £0) > 0, for otherwise ovdp 

(£ - £') > 0 for two distinct roots £, £' of P'. Hence / ^ ordp P'(X,) - ord, 
(m + 1) + E c ordp (X,- - Ç) = ord, (X, - &) ^ i. Thus ord, P'(X,) = /. It follows 
that T/ = 0 (/ ^ 0), a, = 2 (/ ^ 0). 

Now we take a = k(e + 1). The arguments of Lemma 2 and §§3 and 4 show that 

S( / ;p a ) = (m + l )p a ' / ( ' + , ) + 6(/i - l)/?a/2 

= _5_ p «/ (*+i ) + e ( W - i)p«/2 

e + 1 

where |0| ^ 1. Thus, given any e ^ 2 there are arbitrarily large « for which there is 
an/with degree n such that whenever p > p0(n) we have 

| S ( / ; p a ) l > " P a ' / ( e + , ) . 

In each of the above examples we have 8 = 0. However if we replace f(x) by 
pbf(x), then since we have S(phf\pa) = pbS(f',pa~b) for a ^ 8 we may proceed as 
above and obtain the respective lower bounds |/? (a+8) /2 , ip«"+8>/«+1> and np«"+w«+» 
for appropriate choices of the parameters. 

We may also modify the examples in a less trivial manner. Let g(x) = 2* akp
{n~k)mxk 

where the ak are defined by/(;c) = 2* akx
k. Then, in each case, for a sufficiently large 

we have S(g,pa) = p{n-])mS(f',pa-"m). In the first example we find that \S(g;pa)\ > 
lp(a+(n-2)m)/2 a n d g = (rt _ 2)m (c.f. (19)). in the second and third examples we 
find for suitable choices of the parameters that \S(g;pa)\ ~ px and \S(g;pa)\ ~ 
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npx/(e + 1) respectively with \ = (ae + nm - em - m)/(e + 1). In each case we 
have 8 = max/(^)=o (n - e^- \)m = (n - 2)m so that Theorem 1 is no longer sharp. 
However when we replace ô by ô* (given by (28)), since 8* = (n — e— l)m,the 
modified version of Theorem 1 alluded to after Theorem 2 is sharp. 
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