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From Matrix to Operator Inequalities

Terry A. Loring

Abstract. We generalize Löwner’s method for proving that matrix monotone functions are operator

monotone. The relation x ≤ y on bounded operators is our model for a definition of C∗-relations

being residually finite dimensional.

Our main result is a meta-theorem about theorems involving relations on bounded operators. If

we can show there are residually finite dimensional relations involved and verify a technical condition,

then such a theorem will follow from its restriction to matrices.

Applications are shown regarding norms of exponentials, the norms of commutators, and “posi-

tive” noncommutative ∗-polynomials.

1 Introduction

This paper is about bounded operators that satisfy relations that involve algebraic

relations, the operator norm, functional calculus, and positivity. The word positive,

when applied to matrices, shall mean positive semidefinite.

The ∗-strong topology can bridge the gap between representations of relations by

bounded operators on Hilbert space and representations by matrices. This feature of

the ∗-strong topology has been noted before, for example by Löwner in [2], or in the

context of residually finite dimensional C∗-algebras in [9].

This article is essentially independent of our previous paper [13] on C∗-relations.

We minimize the role of universal C∗-algebras. Perhaps someone will see how to strip

out the C∗-algebras and get a result that works for norms other than the operator

norm.

Theorem 3.6, our main result, is a meta-theorem. We first define C∗-relations,

and define for C∗-relations the concepts of closed and residually finite dimen-

sional (RFD). The meta-theorem is that, given a theorem about matrices that states

that an RFD C∗-relation implies a closed C∗-relation, we may conclude the same

implication holds for all bounded operators.

2 C∗-Relations

Definition 2.1 Suppose X is a set. A statement R about functions f : X → A into

various C∗-algebras is a C∗-relation if the following four axioms hold:

(R1) the unique function X → {0} satisfies R;

(R2) if ϕ : A →֒ B is an injective ∗-homomorphism and ϕ ◦ f : X → B satisfies R

for some f , then f : X → A also satisfies R;
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(R3) if ϕ : A → B is a ∗-homomorphism and f : X → A satisfies R, then ϕ◦ f : X →
B also satisfies R;

(R4f) if f j : X → A j satisfy R for j = 1, . . . n, then so does f =
∏

f j , where f : X →
∏n

j=1 A j sends x to 〈 f1(x), . . . , fn(x)〉.

Examples of C∗-relations include the zero-sets of ∗-polynomials in noncommut-

ing variables, henceforth called NC ∗-polynomials.

When X = {1, 2, . . . ,m}, the case we really care about, we use a1, . . . , am in

place of the function notation j(q) = aq. Given p(x1, . . . , xm), an NC ∗-polynomial

with constant-term zero, its zero-set is the C∗-relation p(a1, . . . , am) = 0. Other

C∗-relations associated with p include

p(a1, . . . , am) ≥ 0 and
∥

∥ p(a1, . . . , am)
∥

∥ ≤ C

for a constant C > 0, as well as ‖p(a1, . . . , am)‖ < C.
Given a set R of C∗-relations, a function f : X → A to a C∗-algebra A is called a

representation of R in A if every statement in R is true for f . A function ι : X → U

into a C∗-algebra is universal for R if ι is a representation of R and for every repre-

sentation f : X → A of R there is a unique ∗-homomorphism ϕ : U → A so that

ϕ ◦ ι = f .
It is important to note that often there is no universal C∗-algebra and no universal

representation. See [13].

We use the notation C∗〈X | R〉 for U and call it the universal C∗-algebra. Notice

that universal representation ι is usually what we should be talking about. Notice also

that ι need not be injective, but still we often say that the representation f : X → A of

R extends to a unique ∗-homomorphism ϕ : U → A with the requirement ϕ(ι(x)) =

f (x). A good exercise is to show that ι(X) must generate C∗〈X | R〉 as a C∗-algebra.

Alternately, this is clear from the proof of [13, Theorem 2.6].

Given a set R of C∗-relations on a set X, we let rep
R

(X,A) denote the set of all

representations of R in A. If H is a Hilbert space, then we set

rep
R

(X,H) = rep
R

(X,B(H)).

The notation
∏

λ∈Λ
Aλ shall denote the C∗-algebra product consisting of all

bounded sequences or families 〈aλ〉λ∈Λ
that have aλ in Aλ. Given a family of func-

tions fλ : X → Aλ we say it is bounded if supλ ‖ fλ(x)‖ is finite for all x in X. For such

a bounded family we define their product to be the function

∏

λ∈Λ

fλ : X →
∏

λ∈Λ

Aλ

that sends x to the family 〈 fλ(x)〉 .
It could be argued that the above should be called the sum of the representations,

see [5, Section II.6.1]. Notice that, given Hilbert spaces Hλ, we have the inclusion

(block diagonal)
∏

λ

B(Hλ) ⊆ B

(

⊕

λ

Hλ

)

.
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A potential source of confusion is that we are talking about representations of

relations in C∗-algebras, but then often want to represent various C∗-algebras on a

Hilbert space. Sometimes we cut out the middle man and talk about representations

of relations on a Hilbert space. However, what we allow to be called C∗-relations

on a set of operators are properties that can be determined by how they sit in the

C∗-algebra they generate.

Definition 2.2 Suppose R is a set of C∗-relations on a set X. We say R is closed if:

(R4b) for every bounded family fλ : X → Aλ of representations of R the product

function
∏

fλ is also a representation of R.

We say R is compact if it satisfies the following even stronger axiom.

(R4) Every family fλ : X → Aλ of representations of R is bounded and the associ-

ated product function
∏

fλ is a representation of R.

Following Hadwin, Kaonga, Mathes ([11]), Phillips ([17]) and others, we showed in

[13] that R is compact if and only if there is a universal C∗-algebra for R.

For example {x2 − x = 0, x∗ − x = 0} is compact and has universal C∗-algebra

isomorphic to C. Also compact is

{

‖x2 − x‖ ≤ 1
8
, x∗ − x = 0

}

,

and this also has a universal C∗-algebra that is commutative. On the other hand

{x2 − x = 0} is closed but not compact, while

{

‖x2 − x‖ < 1
8
, x∗ − x = 0

}

is not even closed.

It is sometimes easier to look at unital relations and unital C∗-algebras. Everything

here carries over. Notice we are not putting 1 in X, but use it symbolically in relations

to stand for the unit in A when considering a function f : X → A.
The relations associated with NC ∗-polynomials are not the only interesting

C∗-relations. The relation 0 ≤ x ≤ 1 is compact, with universal C∗-algebra C0(0, 1].
Another relation on {x, y, z} is 0 ≤

[

y x∗

x z

]

, which is to be interpreted so that X, Y ,

and Z in a C∗-algebra A form a representation if and only if the matrix
[

Y X∗

X Z

]

is a

positive element in M2(A).
Many results about operators relative to the operator norm, or positivity, can be

stated in the form where one set of C∗-relations implies another. For example,

x∗x = xx∗ =⇒

[

|x| x∗

x |x|

]

≥ 0

or

0 ≤ k ≤ 1, ‖h‖ ≤ 1, ‖hk − kh‖ ≤ ǫ =⇒
∥

∥hk
1
2 − k

1
2 h
∥

∥ ≤ 5
4
ǫ

or

x∗x = xx∗, yx = xy =⇒ yx∗ = x∗y.
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In many cases, such a theorem will follow from its restriction to the matrix case.

Whether this leads to a new result, a shorter proof of a known result, or a new but

harder proof of a known result, depends on the example. What seems interesting

is just how many theorems in the literature involve C∗-relations that are residually

finite dimensional.

3 Residually Finite Dimensional C∗-Relations

We certainly want to look at relations that are compact and have a universal C∗-

algebra that is residually finite dimensional (RFD). For example, for 0 < ǫ ≤ 2 the

relations

u∗u = uu∗
= v∗v = vv∗ = 1, ‖uv − vu‖ ≤ ǫ

have a universal C∗-algebra that has been dubbed “the soft torus” by Exel, and this

C∗-algebra has been shown to be residually finite dimensional by Eilers and Exel

in [8].

A C∗-algebra is residually finite dimensional if there is a separating family of rep-

resentations of A on finite dimensional Hilbert spaces.

The restriction to compact relations is artificial in operator theory. A very impor-

tant example is the relation ‖xy − yx‖ ≤ ǫ on {x, y}. (The obvious “and” operation

turns a set of C∗-relations into a single relation, so we tend to use “relation” and “set

of relations” interchangeably.) We could discuss RFD σ-C∗-algebras, but prefer to

take as our starting point an alternate characterization of RFD C∗-algebras described

in [9].

On rep
R

(X,H) we will consider the pointwise ∗-strong topology, where H is a

Hilbert space and R is a C∗-relation on a set X. Compare this to

rep(A,H) =
{

π : A → B(H) | π is a ∗-homomorphism
}

for a C∗-algebra A with the pointwise ∗-strong topology. Equivalently, consider this

with the pointwise strong topology. A representation π is said to be finite dimensional

if its essential subspace is finite dimensional. The relevant result from [9] is that A

is RFD if and only if for all H the finite dimensional representations are dense in

rep(A,H). For more characterizations of a C∗-algebra being RFD, see [1].

We need a definition of finite dimensional for f ∈ rep
R

(X,H). We define the

essential subspace of f to be

{

ξ ∈ H | f (x)ξ =
(

f (x)
)∗

ξ = 0, ∀x ∈ X
}⊥

.

We say f is finite dimensional if its essential subspace is finite dimensional. Notice

this property has nothing to do with R.
If R is a compact set of C∗-relations, then the essential space of f is the same as

the essential space of the associated representation π of C∗〈X | R〉. Thus f is finite

dimensional if and only if π is finite dimensional.

Definition 3.1 A set of C∗-relations R on X is residually finite dimensional (RFD)

if there are finite constants C(x, r), (x ∈ X, r ∈ [0,∞)) so that, for every H and
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any choice of nonnegative constants rx, every f ∈ rep
R

(X,H) satisfying ‖ f (x)‖ ≤ rx

(∀x ∈ X) is in the ∗-strong closure of

{g ∈ rep
R

(X,H) | g is finite dimensional and g(x) ≤ C(x, rx) ∀x ∈ X} .

We say f in rep
R

(X,H) is cyclic if there is a vector ξ so that Aξ is dense in H, where

A = C∗( f (X)). Even if Aξ is not dense, we call its closure a cyclic subspace for f . We

say f is unitarily equivalent to g in rep
R

(X,K) if there is a unitary U : K → H so that

g(x) = U−1 f (x)U . If K is a reducing subspace for all operators in f (X), then let U be

the inclusion of K in H and let g(x) = U ∗ f (x)U . By (R3) this is also a representation

and we call g a subrepresentation of f .

Lemma 3.2 Suppose R is a set of C∗-relations on X. Every Hilbert space representa-

tion of R is unitarily equivalent to a product of cyclic representations.

Proof The proof is almost identical to that of the same result for representations of

C∗-algebras.

Lemma 3.3 A set R of C∗-relations is RFD if and only if there are finite constants

C(x, r) for x ∈ X and r ∈ [0,∞)) so that, for every H, every cyclic f ∈ rep
R

(X,H) is

in the ∗-strong closure of

{

g ∈ rep
R

(X,H) | g is finite dimensional and g(x) ≤ C(x, ‖ f (x)‖)
}

.

Proof The forward implication is obvious, so assume the condition on the cyclic rep-

resentations holds for some choice of C(x, r). Without loss of generality, C(x, r) 6= 0.
We may as well assume f equals

∏

γ∈Γ
fγ , where fλ is a cyclic representation on

Hγ and H =
⊕

Hγ . Suppose ǫ > 0 and ξ = 〈ξγ〉 is a unit vector. There is a finite set

Γ0 so that when we define η = 〈ηγ〉 by

ηγ =

{

ξγ if γ ∈ Γ0,

0 if γ /∈ Γ0,

we have ‖ξ − η‖ ≤ δ for

δ =
ǫ

2

(

‖ f (x)‖ + C(x, ‖ f (x)‖)
)−1

.

Suppose Γ0 has q elements. For each γ in Γ0 there is a finite dimensional representa-

tion gγ : X → Hγ so that ‖gγ(x)‖ ≤ C(x, ‖ f (x)‖) and

‖gγ(x)ξγ − fγ(x)ξγ‖,
∥

∥

(

gγ(x)
)∗

ξγ −
(

fγ(x)
)∗

ξγ
∥

∥ ≤
ǫ

2q
.

For γ /∈ Γ0 set gγ(x) = 0. Let g =
∏

γ gγ , which is a representation, first in
∏

γ∈Γ0
B(Hγ) by (R4f), and then on H by (R3). It satisfies the norm condition, since

‖g(x)‖ = sup
γ

‖gγ(x)‖.
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The essential space of g is just the sum of the orthogonal essential spaces of the gγ for

γ ∈ Γ0, and so g is also finite dimensional. For each x we have

∥

∥g(x)ξ − f (x)ξ
∥

∥ ≤
∥

∥g(x) − f (x)
∥

∥‖ξ − η‖ +
∥

∥g(x)η − f (x)η
∥

∥

≤
(

‖ f (x)‖ + C(x, ‖ f (x)‖)
)

δ +
∑

γ∈Γ0

∥

∥gγ(x)ξγ − fγ(x)ξγ
∥

∥

≤
(

‖ f (x)‖ + C(x, ‖ f (x)‖)
)

δ + qρ = ǫ

and similarly ‖(g(x))∗ξ − ( f (x))∗ξ‖ ≤ ǫ.

Proposition 3.4 If R is a compact set of C∗-relations on a set R, then R is RFD if and

only if C∗〈X | R〉 is RFD.

Proof By the discussion above, this follows directly from [9, Theorem 2.4].

Every C∗-algebra is isomorphic to the universal C∗-algebra of some C∗-relations;

see [13, Section 2]. There is an abundant supply of RFD C∗-algebras and so an

abundant supply of RFD C∗-relations. Examples include the subhomogeneous

C∗-algebras.

Given a specific C∗-algebra it can be difficult to find a nice universal set of gen-

erator and relations. Conversely, given a set of C∗-relations, it can be difficult to get

a description of its universal C∗-algebra that is more useful than the given univer-

sal property. For present purposes it is best to work directly with representations of

C∗-relations.

Lemma 3.5 Suppose R is a set of C∗-relations R on X. If R is closed and 〈 fλ〉λ∈Λ

is a bounded net in rep(A,H) that converges to the function f : X → B(H), then f ∈
rep(A,H).

Proof The key is noticing inside
∏

λ∈Λ
B(H) the C∗-algebra A of all bounded nets

〈aλ〉 indexed by Λ that have ∗-strong limits

L
(

〈aλ〉
)

= lim
λ

aλ (∗-strong).

Recall, say from [5, I.3.2.1], that we need boundedness to gain joint continuity of

multiplication in the ∗-strong topology. Here we let λ range over the directed set Λ

that indexes the net fλ.
The fλ form a bounded family of representations, so

∏

fλ determines a represen-

tation of R in A. Now we use the naturality property for C∗-relations and conclude

f = L ◦
∏

fλ is a representation.

Now we present the main theorem.

Theorem 3.6 Suppose R and S are C∗-relations on X. If R is residually finite dimen-

sional and S is closed, and if every finite-dimensional representation of R is a represen-

tation of S, then every representation of R is a representation of S.
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Proof Given a representation f : X → B(H) of R, the fact that R is RFD tells us that

there are functions fλ : X → B(H) with finite dimensional essential spaces that are

representations of R and so that fλ(x) converges ∗-strongly to f (x). By assumption,

the fλ are also representations of S and, since S is closed, we conclude that f is a

representation of S.

4 Examples

It is easy to find many closed C∗-relations. Here are enough to keep us busy. Black-

adar noted in [6] the importance of “softening” a relation p(x1, . . . , xn) = 0 to

‖p(x1, . . . , xn)‖ ≤ ǫ.

Proposition 4.1 Suppose ǫ > 0 is real number. If p is a NC ∗-polynomial in

x1, . . . , xn, with constant-term zero, then each of

p(x1, . . . , xn) = 0, p(x1, . . . , xn) ≥ 0, and ‖p(x1, . . . , xn)‖ ≤ ǫ

is a closed C∗-relation.

Proof Consider the last relation, for illustration. The other parts of the proof are

similar. Certainly
∥

∥ p(0, 0, 0, . . . , 0)
∥

∥ = ‖0‖ = 0 ≤ ǫ.

The evaluation of an NC ∗-polynomial does not depend on the ambient algebra.

Therefore axiom (R2) holds. NC ∗-polynomials are natural, so (R3) holds. Given

bounded families 〈x(λ)
j 〉 we get elements in the product C∗-algebra

∏

Aλ. All NC

∗-polynomials respect products, so

∥

∥

∥
p
(

〈

x(λ)
1

〉

,
〈

x(λ)
2

〉

,
〈

x(λ)
3

〉

, . . . ,
〈

x(λ)
n

〉

)∥

∥

∥
=

∥

∥

∥

〈

p
(

x(λ)
1 , x(λ)

2 , x(λ)
3 , . . . , x(λ)

n

)

〉∥

∥

∥

= sup
λ

∥

∥

∥
p
(

x(λ)
1 , x(λ)

2 , x(λ)
3 , . . . , x(λ)

n

)

∥

∥

∥

≤ ǫ.

Therefore (R4b) holds.

Proposition 4.2 If f is a continuous, real-valued function on [0,∞), then

{

x∗ = x, y∗ = y, f (x) ≤ f (y)
}

is a closed set of C∗-relations.

Proof This follows from trivial facts such as f (0) ≤ f (0) and well-known facts

about the functional calculus.

Proposition 4.3 The relation x = x∗ is a closed C∗-relation.

Proof This a special case of Proposition 4.1
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Proposition 4.4 The relation 0 ≤ x is a closed C∗-relation.

Proof A key fact about C∗-algebras is that positivity (x = y∗y for some y) does not

depend on the ambient C∗-algebra. See, for example, [7, Section 1.6.5].

Proposition 4.5 If f is a holomorphic function on the complex plane, and if ǫ is real

number such that ǫ ≥ | f (0)|, then ‖ f (x)‖ ≤ ǫ is a closed C∗-relation.

Proof The functional calculus is to be applied in the unitization of the ambient

C∗-algebra. We know f (0) = f (0)1 for the zero operator and so {0} is a repre-

sentation. The holomorphic functional calculus is natural, does not depend on the

surrounding C∗-algebra, and respects finite products since polynomials do.

Proposition 4.6 The union of two closed sets of C∗-relations on the same set is closed.

If a set of C∗-relations on a set X is closed, the same properties applied to a larger set

Y ⊇ X form a closed set of C∗-relations.

Proof These statements should be obvious.

Proposition 4.7 If p is an NC ∗-polynomial in x1, . . . , xn, with constant-term zero,

and if we are given t1, . . . , tm ≥ 0 and j1, . . . , jm ∈ N (possibly repeated), then

{

x∗j = x j , p(xt1

j1
, . . . , xtm

jm
) ≥ 0

}

is a closed set of C∗-relations. If only integer powers of xr are used, then the relation

x∗r = xr may be dropped and the result is still a closed set of C∗-relations.

Proof Pile the functional calculus higher and deeper. Just to illustrate, we are talking

about a relation such as x
1
3 yx

2
3 ≥ 0 applied to pairs (x, y) of operators, where x is

positive.

The task of finding RFD relations is harder. We start with the classic that kicked

off this investigation.

Theorem 4.8 The set of C∗-relations {x∗ = x, y∗ = y, x ≤ y} is RFD.

Proof We dress Löwner’s argument from [2] in categorical clothing.

By Lemma 3.3, we need only consider representations on a separable Hilbert

space H. Suppose x and y are bounded operators on H that are self-adjoint and that

x ≤ y. Let pn be the projection onto the first n elements in some fixed orthonormal

basis. Define xn = pnxpn and yn = pn y pn so that xn and yn have norms bounded

by ‖x‖ and ‖y‖ and 0 ≤ xn ≤ yn. The operators x and y form finite dimensional

relations, and they converge ∗-strongly to x and y.

Theorem 4.9 Suppose β > 0 is a real number. The C∗-relation Re x ≤ β is RFD.

Proof This proof is almost identical to the last.

Theorem 4.10 Suppose β ≥ 1 is a real number. The C∗-relation ‖eRe x‖ ≤ β is RFD.
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Proof Since the real part of x is Hermitian, the exponential of the real part is Hermi-

tian with spectrum contained in the positive real line. Therefore, ‖eRe x‖ ≤ eβ holds

if and only if eRe x ≤ eβ , which holds if and only if Re x ≤ ln(β). This relation has the

same representations as the relation in Lemma 4.9, so must itself be RFD.

Theorem 4.11 The empty set of relations on any set X is a closed C∗-relation.

Proof This is more or less contained in [10]. Given a Hilbert space H and operators

a j on H with j ∈ X, take any net of finite-rank projections pλ converging strongly to

the identity. Then pλa j pλ is bounded in norm by ‖a j‖ and converges ∗-strongly to

a j .

Many amalgamated products A ∗C B turn out to be RFD when A and B are RFD.

The simplest theorem of this sort, proved in [9], is that A and B being RFD implies

A ∗ B is RFD. This generalizes easily here to something very useful.

Theorem 4.12 Suppose X and Y are disjoint sets and that R is an RFD set of C∗-re-

lations on X and S is an RFD closed set of C∗-relations on Y. If we regard both sets as

relations on X ∪ Y, then the set R ∪ S is an RFD set of C∗-relations.

Proof All we need to know is that if A is a set of operators on H that are zero on

the orthogonal complement of the finite dimensional subspace H1, and if B is a set

of operators on H that are zero on the orthogonal complement of the finite dimen-

sional subspace H2, then the union is a set of operators that is zero on the orthogonal

complement of the subspace H1 + H2, which is also finite dimensional.

Proposition 4.13 If p1, . . . , pm are NC ∗-polynomials in x1, . . . , xn that are homo-

geneous of degrees that can vary, and ǫs > 0 are real constants, and 0 ≤ n1 ≤ n2 ≤ n,
then

0 ≤ x j , ( j = 1, . . . , n1)

x∗j = x j , ( j = n1 + 1, . . . , n2)
∥

∥ ps(x1, . . . , xn)
∥

∥ ≤ ǫs (s = 1, . . . ,m)

form a closed set of C∗-relations.

Proof Assume x1, . . . , xn are in B(H), where H is separable, and that these operators

satisfy the above relations. Let uk be a countable approximate identity for the compact

operators, with 0 ≤ uk ≤ 1, that is quasi-central for x1, . . . , xn. Such an approximate

identity exists by [15, Corollary 3.12.16]. Applying a decreasing perturbation to each

uk we may further assume each uk is finite-rank.

Let x j,k = ukx juk. Clearly ‖x j,k‖ ≤ ‖x j‖, and 0 ≤ x j,k for j ≤ n1 and x∗j,k = x j,k

for n1 < j ≤ n2. Also x j,k → x j in the ∗-strong topology. For fixed k the x j,k all act

as zero on the complement of range of uk, which is finite dimensional. However, we

need to modify the x j,k to make the last line of relations hold.

Suppose ps is homogeneous of degree ds. This means uk appears 2ds times in each

monomial in ps. Since uk is quasi-central for the x j , we have

lim
k→∞

∥

∥ ps(x1,k, . . . , xn,k) − u2ds

k ps(x1, . . . , xn)
∥

∥ = 0.
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Therefore,

lim sup
k→∞

∥

∥ ps(x1,k, . . . , xn,k)
∥

∥ = lim sup
k→∞

∥

∥u2ds

k ps(x1, . . . , xn)
∥

∥ ≤
∥

∥ ps(x1, . . . , xn)
∥

∥ .

It is easy to show that if aλ → a in the strong topology, then

lim inf
λ→∞

‖aλ‖ ≥ ‖a‖.

The x j,k are bounded sequences converging to x j in the ∗-strong topology, so

lim
k

ps(x1,k, . . . , xn,k) = ps(x1, . . . , xn) (∗-strong),

which means

lim
k→∞

∥

∥ ps(x1,k, . . . , xn,k)
∥

∥ =
∥

∥ ps(x1, . . . , xn)
∥

∥ .

If ps(x1, . . . , xn) = 0, let α j,k = 1, and otherwise let

α j,k = max

(

1,

(

‖ps(x1, . . . , xn)‖

‖ps(x1,k, . . . , xn,k)‖

)
1
ds
)

.

Let y j,k = α j,kx j,k. The α j,k are at most 1, so ‖y j,k‖ ≤ ‖x j‖. We are scaling by positive

factors, so 0 ≤ y j,k for j ≤ n1 and y∗j,k = y j,k for n1 < j ≤ n2. Since α j,k → 1, we

see that y j,k → x j in the ∗-strong topology. For fixed k the y j,k still all act as zero on

the complement of range of uk. What we have gained are the final relations,

∥

∥ ps(y1,k, . . . , yn,k)
∥

∥ =
∥

∥αds

j,k ps(x1,k, . . . , xn,k)
∥

∥

= αds

j,k

∥

∥ ps(x1,k, . . . , xn,k)
∥

∥ ≤ ǫs.

5 Applications

We have several corollaries to Theorem 3.6. All these results refer to the operator

norm or order relations. Of course, we recover the result of Löwner that matrix

monotone for all orders implies operator monotone.

Corollary 5.1 Let a be a bounded operator. Then ‖ea‖ ≤ ‖eRe(a)‖.

Proof Theorem IX.3.1 of [3] tells us this result is true for any matrix, and indeed for

any unitarily invariant norm.

Since ‖ex‖ ≥ 1 for any operator x, we can rephrase this to say that for each α ≥ 1,
we have

‖eRe(a)‖ ≤ α =⇒ ‖ea‖ ≤ α.

As the first relation is RFD and the second is closed, we are done by Theorem 3.6.

The NC ∗-polynomial version (in the original variables, not their fractional pow-

ers) of the following can be proven by Helton’s sum-of-squares theorem ([14, Theo-

rem 1.1]), which is essentially in [12].
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Corollary 5.2 Suppose that p is an NC ∗-polynomial in x1, . . . , xn with constant-

term zero, and that t1, . . . , tm are positive exponents and j1, . . . , jm are between 1 and

n. If

p(xt1

j1
, . . . , xtm

jm
) ≥ 0

for all self-adjoint matrices x1, . . . , xn, then the same hold true for all self-adjoint oper-

ators on a Hilbert space. If only integer powers of xr are used, the relation x∗r = xr may

be dropped.

Proof The null set of relations is RFD, so Theorem 3.6 still applies.

Corollary 5.3 Let a, b, and x be a bounded operators, with a ≥ 0 and b ≥ 0. Then

for 0 ≤ ν ≤ 1,
‖aνxb1−ν + a1−νxbν‖ ≤ ‖ax + xb‖.

Proof The proof is in [3, Corollary IX.4.10], restricted to matrices but for any

unitarily invariant norm. Using the operator norm version of that result, Proposi-

tion 4.13, and Proposition 4.7 we find again that the operator result follows from the

matrix result.

Corollary 5.4 If C is a constant so that

(5.1) ‖a‖ ≤ 1 and b ≥ 0 =⇒ ‖ab
1
2 − b

1
2 a‖ ≤ C‖ab − ba‖

1
2

for all matrices a and b, then (5.1) is true for all bounded operators on Hilbert space (or

C∗-algebra elements).

Proof We hope that the constant C = 1 works here; see [4, 16]. Perhaps this reduc-

tion to the matrix case will make that easier to prove.

We can rephrase this as

‖a‖ ≤ 1, b ≥ 0, ‖ab − ba‖ ≤ δ =⇒ ‖ab
1
2 − b

1
2 a‖ ≤ Cδ

1
2 .

The set of relations on the left is RFD by Proposition 4.13, and those on the right are

closed by Proposition 4.7.
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