
J. Austral. Math. Soc. Ser. B 39(1997), 61-76

OPTIMAL CONTROL OF A CHEMICAL REACTOR

K. H. WONG and N. LOCK1

(Received 21 March 1995; revised 16 November 1995)

Abstract

A chemical reactor problem is considered governed by partial differential equations. We
wish to control the input temperature and the input oxygen concentration so that the actual
output temperature can be as close to the desired output temperature as possible. By
linearizing the differential equations around a nominal equation and then applying a finite-
element Galerkin Scheme to the resulting system, the original problem can be converted
into a sequence of linearly-constrained quadratic programming problems.

1. Introduction

The simplest model of the tabular chemical reactor can be described by two differential
equations (the mass conservation equation and the energy equation) subject to the
boundary and initial conditions. The full derivation of these two parabolic equations
can be found in [1, 4]. These equations have been solved in [2], although the
solutions have not been exploited in full, whereas in [5], the Newton-Raphson iterative
algorithm together with collocation methods have been applied to obtain the steady
state temperature and concentration profiles for the chemical tabular reaction.

In this paper, a chemical reactor problem is considered similar to those described
in [1, 2, 4, 5]. The aim is to find suitable control variables so that a desired output
temperature is achieved. The variables to be controlled are the temperature and
the concentration of oxygen, which are functions of both position and time, and are
described by a couple of nonlinear diffusion equations. The control variables are input
temperature and input oxygen concentration. The objective function to be minimized
is the mean-square error between actual output temperature and the desired output
temperature. By linearising the differential equations around a nominal solution and
then applying a finite-element Galerkin scheme to the resulting system, the original
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62 K. H. Wong and N. Lock [2]

problem can be converted into a sequence of quadratic programming problems with
linear constraints which can be easily solved by any standard quadratic programming
software packages. There are several such packages in NAG Library. The above
method of solution is strongly motivated by that given in [3].

2. Nonlinear diffusion equations for the chemical reaction

From [1, 2, 4, 5], the differential equations governing the chemical reaction are
given by

dy 3v 1 32y

i k t*1"**'3*- (1)

where

R(y,x) = xexp{y(l - [v(l +«7rv)r1)} (3)

and x(z, t) and y(z, t) are normalized variables representing, respectively, the oxygen
concentration C and the temperature T at position z and at time t, given by

x(z, t) = C(z, t)/Cr (4)

and

y(z,t) = T(z,t)/Tr. (5)

Here / is a given constant representing the velocity parameter of the reaction; Peh,
fi, Dm, Pem, y,a,cr and Tr are also given constants. Values of these constants taken
from a chemistry laboratory are as follows:

/ = 0.01, Peh = 95, 0 = 0.38812,

Dm = 0.89173, Pem = 235, y = 12.297, a = 2.5696 x 10~4,

Cr = 0.01 mole fraction oxygen (1 mole %), Tr = 434.27 Kelvin.

The boundary conditions for the problem are:

^ ( z / , 0 = 0 , ^ ( z / , 0 = 0, (6)
az az

) = y,(t), x(0,t)=x,(t), (7)

^ ( 0 , 0 = 0 , ^ ( 0 , 0 = 0. (8)
dz dz
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[3] Optimal control of a chemical reactor 63

The variables x, {t) and y, (t), the inlet oxygen concentration and the inlet temperature
respectively, are the controls for our problem. Sometimes, the gradient of the inlet
oxygen concentration and the gradient of the inlet temperature can also be regarded
as controls, in which case equation (8) can be replaced by

/ ( 0 , t) = y,(t), -^(0,t)=x,(t), (9)
dz dz

where yi(t) and */(?) are now additional controls.
Moreover, from the physical point of view, the following constraint needed to be

imposed:

J C ( Z , O > 0 , ze[0,zf], te[O,Tl (10)

The objective is to have the outlet temperature y(z/, t) approach a desired temperature
distribution y<i(t) as closely as possible. This can be formulated as:

minimize J= f [y(zf,t)-yd(t)]
2dt. (11)

Jo

Here, the time interval t e [0, 1] is used. Any other time interval t' e [0, T] can be
converted into the time interval t 6 [0, 1] by using the transformation t = t'/T.

3. Method of solution

The method of solution used in this section is strongly motivated by that given in
Section 6.7 of [3].

A finite-element Galerkin method will be used to convert the distributed optimal
control problem into a finite-dimensional mathematical programming problem with
the values of the input temperature, the input oxygen concentration, together with
their respective gradients at every grid point being the variables. Let the temperature
and concentration be approximated as

N+]

) (12)

and

N+l

1=1

where the integer N and the functions fi,(0 are yet to be determined.
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Substituting (12) and (13) into (1), we get

N+l N+l , N+l

^ " " " " ">,*) . (14)
1=1 .=1 ^ e * ,=1

Multiplying (14) by Bj(t) and integrating over [0, 1], we get

N+l »1

y>,(z) / Bj(t)B,(t)dt
,=i Jo

N+l pi j N+l /.I

/ £ /N+l pi

i=l •'0
B}(t)Bt{t)dt

/ R(y,x)Bj(t)dt. (15)
o

To convert (15) into a linear differential equation involving Yi(z) and X,(z), the
term R(y, x) must be linearised around a suitable steady-state solution (y(z), x(z)) as
follows:

R(y, x) = R(y, x) + (y- y)Ry(y, x) + (x - x)Rx(y, x). (16)

However, from (3)

R(y,x) = xRx(y,x). (17)

Combining (16) and (17), we get

R(y, x) = (y- y)Ry(y, x) + xRx(y, x). (18)

Whether the above linearization will be acceptable depends entirely upon x and y.
One may of course use x sufficiently small to give a temperature rise over the reactor
which is sufficiently small to render the approximation reasonable. A suitable choice
for the steady-state solution is y = 0.8175 and x = 0.25. The reason that these values
are chosen is because it has been tested experimentally in the chemistry laboratory
that these values work very well for the regulatory control problem. This solution
is independent of z and corresponds to a concentration of oxygen of 0.0025 and a
temperature of 82°C.
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In view of (18), (12) and (13), equation (15) can be written as

N+l pi

£>,(z) / Bj(t)B,(t)dt
i=i Jo

N+l

Bj(t)B,(t)dt

N+\ piI N+\ pi pi
-Z-J2 y"(z) / Bj(t)B,(t)dt - PDmyRy(y, x) / Bj{t)dt
"eh 7^7 Jo Jo

N+l pi

PDmRy(y,x)^2Yi(z) / Bj(t)B,(t)dt
i=i Jo
N+l pi

i(z) I Bj(t)B,(t)dt. (19)
Jo

By using exactly the same argument as that used to obtain (19) from (1), we can easily
deduce from (2) that

N+l pi , N+l pi

0 = -fY]x'i(z) B}(t)B,{f)dt + YX'!(z) / Bj(t)B,(t)dt
iTi Jo Pem Trf Jo

/

I JV+l pi

Bj(t)dt - DmRy(y,x)Y2Yi(z) / Bj(t)B,(t)dt
,_i Jo

N+l pi
-DmRx(y,x)y^Xi(z) Bj(t)B,(t)dt. (20)

1 = 1 • 'O

Now let

X'(z) (21)

, Y2(z),... YN+l(z)]T, Y(z) = Y\z). (22)

Let the matrices A and C and the vector b be defined as

ly/ = f BJ
Jo

'ji = / BJ
Jo

b, = f Bj
Jo

j ( t ) B , ( t ) d t , i , j = l,... , N + l, (23)

CJt = f B j ( t ) B , ( t ) d t , i , j = l , . . . , N + l , (24)
J

b,= / Bj(t)dt. (25)
Jo

By using a suitable choice of B, (r), such as the one defined by equation (32) later, the
matrix A in equation (23) can be made invertible.
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Then the equations (19) and (20) can be written as

X'(z) = X(z),

X'(z) = fPemX{z) + PemDmRy(y, x)Y(z)

+ PemDmRx{y,x)X{z) - PemDmyRy{y,x)A~xb,

Y\z) = Y(z),

Y'{z) = fPehY(z) + (PehA~xC - pDehDmRy(y, x)IN+l)Y(z)

Let

Then

where

and

- PehpDmRx(y, x)X(z) + PehpDmyRy(y, x)A~'b.

X(z) = [XT{z), XT(z), YT(z), YT{z)f.

r =

o

0

*N+1

K2IN+

0
0

f =

0
A

0
0

IN+\

0

0

[6]

(26)

(27)

(28)

(29)

(30)

(31a)

(31b)

(31c)

Kx = PemDmRx(y, x), K2 = fPem, K3 = PemDmRy{y, x),

= -PehpDmRx{y, x), K5 = fPeh, K6 = -PemDmyRy(y, x)A~xb,

K7 = PehpDmyRy(y,x)A-1b,

A = PehA~xC - pPehDmRy(y,

(3 Id)

(31e)

So far, the functions Bt{t) have not been specified. A suitable choice of Bt(t) is the
linear B splines function defined on the time interval [0, 1] with iV equal subintervals.
That is, let

Bt(t) =

2 + Nt-i, t e [(1 - 2)/N, (i - 1)/N]

i -Nt, t€ [(1 - l)/N, i/N]

0, otherwise.

(32)
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Then the elements of A, C and b are given by

1
3AT

4. . _ i

•' ~ 3N'

67

(33)

and A,; = 0 otherwise;

_ 1

and Cij = 0 otherwise;

«>
_ 1
" 2'

1_

"2*

5 P * - * • ' - 2 - - - "

From (30), it is clear that

7"
Jo= erz

= erz
X(Q)+r(z),

where

In view of (12), (23) and (33), the objective function (11) can be written as

minimize J =
N+\

N+\

-yAO\ dt

N

B?(t)Y?(Zf)

-2yA0

= y(zf)
THY(zf) + gT

y2
d(t) dt

(34)

(35)

(36a)

(36b)

(37)
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where the matrix H, the vector g and the real number C are given by

H -H - 1 H - 2 « - 2 N
Hu-HN+UN+i-—, HU-—, , _ 2 N,

"i,i+l — s ' — 1, . . . , / V , /7/,-_i — , I ^ Z, . . . , l\

Hjj = 0, otherwise;

gi = f -2yd(f)B,(t) dt, i = 1 , . . . , N + 1

[8]

and

ô

( 3 8 )

(39)

(40)

Now, since the functions Bt(t) are known, g and C can be easily computed for any
given function yd(t). In particular, when ya(t) = yd is a constant, then

(41)

g,, = N

In view of (30), the objective function (37) can be written as

minimize / = xT(zf)H*x(z/) + g*?x(z/) + &,

where

"0 0 0 0"
0 0 0 0
0 0 H 0
0 0 0 0.

0
0

i
0

0 is the A' + 1 zero matrix and 0 is the N + 1 zero vector.
We can substitute (36a) into (39) to get

(42)

(43)

(44)

minimize J = xT(0)HX(0) + gTx(0) + k, (45)
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where

H = (erz')TH*eTz>, (46)

g = {erz')T[{H + H*T)r(Zf) + g*l (47)

* = rT{zf)H*r(zf) + (g*)Tr(zf) + C. (48)

Now, in view of (12), (13), (21), (22), (30), the boundary condition (4) can be written
as

t'Azf) = 0

; Bt(t)Y,(zf) = J2 B,(t)X,(zf) = 0

N+\ N+l

=>• Y Bi (OX3JV+3+I (Z/) = Y B> (fiXN+l+i (Z/) = 0- (49)
i = l i = l

By letting t to be equal to the grid points 0, l/N, 2/N,... 1, we easily obtain from
(49) and (36a) that

0,

i = N + 2,... , 2N + 2 and 3W + 4, . . . , AN + 4.

Similarly, the boundary condition (6) can be written as

K(0) = X = 0=»x<(0)=0,

i = N + 2 , . . . , 2N + 2 and 3N + 4 , . . . , 4N + 4.

Again by letting t to be equal to the grid points 0, l/N', 2/N,... 1, we obtain from
(10), (13) and (30) that

X , ( z ) > 0 , i = l,...,N + l. (52)

Finally, we shall approximate the above constraint by the constraint

X i ( z J ) > 0 , i = l , . . . , N + l; j = l , . . . , S , (53a)

where the points zJ are chosen such that

0 = z ' <z2 <---<zs = z f . (53b)

In view of (36), the constraint (53) becomes

rJ J N + l; j = 1 , . . . ,S. (54)
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Now, let
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« = x(0).

[10]

(55)

Then, in view of (44), (49), (50) and (54), the problem with the gradient of the inlet
temperature and the gradient of the inlet oxygen concentration equal to zero can be
written as

(PI)

J = ^
subject to

2N

gTu + k

and 3N+ 4,... ,4N+ 4,

= 0,
i = N + 2, ... , 2N + 2 and 3N + 2,... , 4N + 4
and

{ertJx(0)h >-n(

Similarly, the problem with the gradient of the inlet temperature and the gradient of
the inlet oxygen concentration being regarded as additional controls can be written as

minimizeueR4«+4 J = ^uTHu + gTu + k
subject to
[erz'uh = -r,(zf),
i = N + 2 , . . . , 2N + 2 and 3W + 4 , . . . , 4N + N
and

(P2)

Both (PI) and (P2) are quadratic programming problems with linear constraints,
which can be easily solved by any standard quadratic programming software.

Once the optimal value of u is found, the optimal control can be easily found by
the formulae

N+\

x,(t) = x(0, t) =
N+l

N+l N+\

= j(0, /) = J^ B,(t)Y,(0) =

x,(t) = —(.0,t) =
dz

55/(0 = S ( ° ' ° = 1* Bi{t)Y'i0) = 2 - B,{t)u3N+3+l.
N+l

N+l
= / Bj(t)UN+\+j,

1=1

yv+i

(56)

(57)

(58)

(59)
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The temperature and concentration and their respective gradient at any time t and at
any position z can be easily obtained by the formulae

N+l

x(z,O = £>,(Ox,(z), (60)

N+l

y(Z, 0 = E Bi(0X2N+2+i> (61)

N+l

x'(z, t) = ] P Bj(t)xN+\+i(z), (62)
/=i
N+l

y'(z, 0 = E Bi(t)x2N+2+i(z), (63)

where xiz) can be found from (36) and (55).

4. Computational aspects and implementation

Only two aspects of implementing the above method need discussion. They are

(i) the evaluation of F (z)
(ii) the calculation of the exponential matrix eTz.

From (36b), the evaluation of r(z) involves the calculation of the inverse of F"1.
However, F is extremely ill-conditioned since the reciprocal of the condition number
of F is of order 10~18. Thus, any attempt to calculate the inverse of F will fail
numerically. Hence, r(z) cannot be calculated directly from (36b). Instead, we use
the Gaussian quadrature rule of order 5 to evaluate the integral

r(z)=
Jo

The ill-conditioning method of F also affected the choice of method to calculate the
exponential matrix erz. No numerical method is known for calculating the eigenvalues
of F. Thus, we need to find some methods which does not involve the eigenvalues of
F. Two approaches can be adopted.

Firstly, we consider the series expansion of the exponential matrix, viz.

;=o

The series is considered to have converged when the difference between two
successive intermediate matrices is less than 10~10 in both the Lx and LM matrix
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norm. These norms are calculated by the IMSL routines DNR1RR and DNRIRR
respectively. However, the series-expansion method to calculate the exponential
matrix can sometimes create two types of errors, namely, roundoff and cancellation
errors, which can render the method unusable. Thus, a second method is used in order
to check the accuracy of the result that we obtain in the series-expansion method. This
method involves scaling and the Pad6 approximation. It has been found that the rate
of convergence of the second method was faster than that of the first method, but there
was no significant difference between the results produced by the two methods.

A further difficulty in calculating the exponential matrix is encounted in the choice
of Z/ • For Zf > 0.1, the exponential matrix consists of some element which is so large
that they cannot be handled by the computer. As a compromise, we choose z/ to be
0.1.

Finally, the IMSL routine DQPROG, based on an algorithm by Goldfarb, is used
to solve the quadratic programming problem (PI) and (P2).

5. Illustrative examples

EXAMPLE 5.1. We consider the problem (P2) with the following desired outlet tem-
perature yd = 0.7, 0.63, 0.5 and 0.8, which corresponds to 31°C, 0°C, -55°C and
74° C respectively.

For yd = 0.7, the problem has been solved with N = 4,S and 12. For yd = 0.63
and 0.5, the problem has been solved with N = 8. For yd = 0.8, the problem has
been solved with N = A only.

In all cases, the optimal solutions have the following properties.

(i) The optimal value of J is extremely closed to zero, which shows that the actual
output temperature is almost the same as the desired output temperature,

(ii) The boundary condition (6) is satisfied with the value of x'(z/, t) and y'(z/, t)
being of order 10~14 or less,

(iii) The controls x(0, t) and y(0, t) are almost constant functions of t, with the
input temperature y(0, t) almost the same as the desired output temperature
for all t € [0, 1]. The variations of the controls x'(0, t) and y'(Q, 0 are also
very small as t varies from 0 to 1.

(iv) For each fixed z, the oxygen concentration x(z, t) and the temperature y(z, t)
remain almost constant with time,

(v) For each fixed t, the oxygen concentration x(z, t) increases along the reactor,
while the temperature y(z, t) decreases along the vector.

The numerical results are summarized in Table 1-4. Graphs of the optimal controls
for yd = 0.7 and N = 12 are plotted in Figure 1.
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TABLE 1. Outlet temperature = 0.7. No. of partitions used = 12.

The optimal controls are:
* *(0,0 *'(0,0 y(O,t) y'(O,t)

0.000
0.167
0.333
0.500
0.667
0.833

0.498
0.498
0.503
0.501
0.502
0.502

0.134
0.135
0.119
0.128
0.122
0.124

0.701
0.701
0.701
0.701
0.701
0.701

-0.022
-0.023
-0.021
-0.016
-0.023
-0.022

1.000 0.492 0.156 0.701 -0.039

The boundary condition of the problem
t

0.000
0.167
0.333
0.500
0.667
0.833
1.000

x'(i
-9.2
-8.5
-8.9
-7.8
-8.2
-8.9
-7.8

X

X

X

X

X

X

X

,0
1Q-.4

1Q-.4

1Q-14

1Q-.4

1Q-14

10-.4
10-.4

y
AA

-2.:
5.5
6.1
1.7
6.7

(0.
X

1,0
io-1 5

0.0
l>

X

X

X

X

c IO- 1 5

lO" 1 5

io-15

io-15

io-1 5

TABLE 2. Outlet temperature = 0.63. No. of partitions = 8.

The optimal controls are:
t

0.000
0.250
0.500
0.750
1.000

*(0, 0
0.794
0.794
0.794
0.795
0.798

The boundary
t

0.000
0.250
0.500
0.750
1.000

x'(<
-4.3
-5.0
-5.3
-5.0
-4.6

j .

X

X

X

X

X

x(0, t)
0.220
0.219
0.220
0.220
0.206

y(0,0
0.632
0.632
0.632
0.632
0.632

/(0, 0
-0.035
-0.038
-0.037
-0.036
-0.028

condition of the problem
1,0
io-1 4

io-1 4

io-1 4

io-1 4

1Q-.4

/ (0 .
8.9 x
4.9 x

-2.9 x
-2.2 x
1.2 x

1,0
io-1 6

io-1 5

io-1 5

io-1 5

1Q-.4
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TABLE 3. Outlet temperature = 0.5. No. of partitions used = 8.

t

0.000
0.250
0.500
0.750
1.000

The optimal controls are
*(0,0
1.344
1.345
1.345
1.348
1.351

The boundary <
t

0.000
0.250
0.500
0.750
1.000

JC'(0.1

-3.9 x
-3.6 x
-4.0 x
-3.6 x
-3.6 x

x'(0, 0
0.373
0.369
0.371
0.362
0.352

y(0, t)
0.503
0.503
0.503
0.503
0.503

conditions of the

.,0
1Q-14

10-14

1Q-14

1Q-14

1Q-.4

/ (0 .
2.7 x
8.9 x
2.2 x
6.9 x
7.1 x

/(0, 0
-0.062
-0.063
-0.063
-0.063
-0.046

problem

1,0
lO"15

io-15

10"15

10"15

10"15

TABLE 4. Outlet temperature = 0.8. No. of partitions used = 4.

t

0.000
0.250
0.500
0.750
1.000

The optimal controls are
x(0,f)
0.000

o.ooo
0.000
0.000
0.000

The boundary <
t

0.000
0.250
0.500
0.750
1.000

JC'((

-2 .5
-2 .5
-2 .5
-1 .8
-1 .8

X

X

X

X

X

x'(0, t)
0.282
0.282
0.282
0.282
0.282

y(0,0
0.802
0.802
0.802
0.802
0.802

conditions of the ]
,0
io-1 4

10-.4

1Q-14

io-1 4

1Q-14

/ ( 0 .
-8.9 >
4.2 x

/(o, o
-0.047
-0.047
-0.047
-0.047
-0.047

problem:

1,0
: IO-16

10"15

0.000
3.1 x
5.6 x

io-15

io-1 5

https://doi.org/10.1017/S0334270000009218 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009218


[15]

0.8-

0.6-

0.4-

0.2-

0.0-

-0.2-

Graph

Graph

Graph

Graph
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of y(0, t)

of x(0, t)

of x'(0, t)

ofy'(O.t)

75

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 1. Optimal controls yd = 0.7, N = 12.

6. Conclusion

From the numerical results obtained in Section 5, it appears that the method de-
scribed in this paper works very well for the problem (P2) described in Section 3. In
all the numerical examples solved, the actual output temperature obtained is almost
the same as the desired output temperature. In general, an increase in the number of
partitions N over the time interval [0, 1] will lead to the convergence of the optimal
control of the approximate problems to the true optimal control.
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