Approximation on Closed Sets by Analytic or Meromorphic Solutions of Elliptic Equations and Applications

André Boivin, Paul M. Gauthier and Petr V. Paramonov

Abstract

Given a homogeneous elliptic partial differential operator L with constant complex coefficients and a class of functions (jet-distributions) which are defined on a (relatively) closed subset of a domain Ω in \mathbf{R}^{n} and which belong locally to a Banach space V, we consider the problem of approximating in the norm of V the functions in this class by "analytic" and "meromorphic" solutions of the equation $L u=0$. We establish new Roth, Arakelyan (including tangential) and Carleman type theorems for a large class of Banach spaces V and operators L. Important applications to boundary value problems of solutions of homogeneous elliptic partial differential equations are obtained, including the solution of a generalized Dirichlet problem.

1 Introduction

Let L be a homogeneous elliptic partial differential operator with constant complex coefficients (such as powers of the Cauchy-Riemann operator $\bar{\partial}$ or the Laplacean Δ). In [2], given a Banach space ($V,\| \|$) of functions (distributions) on $\mathbf{R}^{n}, n \geq 2$, we studied the problem of approximating, on a closed subset F of \mathbf{R}^{n}, the solutions of the equation $L u=0$ by global (L-analytic or L-meromorphic) solutions of the equation. Approximation theorems of Runge-type and Arakelyan-type were obtained whenever the operator L and the Banach space V satisfied certain conditions.

In this paper, we first generalize the results of [2] and [11] to Banach spaces of functions (distributions) defined on any domain Ω of $\mathbf{R}^{n}(n \geq 2)$. As already mentioned in [2], the only purpose of one of the important conditions on L and V ([2, Condition (4)]) was to obtain a "special maximum principle" ([2, Lemma 1]). Weakened assumptions of this lemma have now become our new Condition 4 (see Section 2 below), and consequently our proof has been slightly modified (and improved). For all operators L under consideration, our conditions are satisfied by a large class of classical (non-weighted) spaces.

Using results on the solution of the Dirichlet problem for strongly elliptic equations in bounded smooth domains, we find (see Proposition 2 below) that in this case our conditions are also satisfied by a wide class of spaces, for which an application of

[^0]our theorems gives important new examples in the theory of tangential approximation (see Theorem 4(iii)).

Using Carleman-type approximation results (see Lemma 4 and Proposition 5), we obtain in Section 6 some very interesting examples of the possible boundary behaviour of solutions of homogeneous elliptic partial differential equations, analogous to those described in [5, Chapter IV, Section 5B] for functions holomorphic in a disc. First, given a domain Ω satisfying some mild conditions, we construct an L-analytic function f in Ω such that the limit of f and of all its derivatives along any path ending at the boundary of Ω does not exist (Theorem 5). To our knowledge, only very special cases of this result were known for the $\bar{\partial}$ equation in \mathbf{R}^{2} and the Laplacean in $\mathbf{R}^{n}, n \geq 2$ (see [5, Chapter IV, Section 5], [6, Section 8]).

When the boundary of Ω is sufficiently smooth, we are also able to solve (see Theorem 6) a "weakened" Dirichlet problem where the boundary values of an L-analytic function, together with the boundary values of a fixed number of its derivatives are prescribed (almost everywhere on $\partial \Omega$) as we approach the boundary in the normal direction.

2 Definitions and Notation

For the reader's convenience, we summarize the definitions and main notation of [2]. Note that in [2], these were given only for \mathbf{R}^{n}, but here we extend them very naturally to general domains.

Let Ω be any fixed domain in $\mathbf{R}^{n}, n \geq 2$. We let $V=V(\Omega)$ stand for a Banach space, whose norm is denoted by $\left\|\|\right.$, which contains $C_{0}^{\infty}(\Omega)$, the set of test functions in Ω and is contained in $\left(C_{0}^{\infty}(\Omega)\right)^{*}$, the space of distributions on Ω. We make some additional assumptions on V.

Conditions 1 and 2 We assume that V is a topological $C_{0}^{\infty}(\Omega)$-submodule of $\left(C_{0}^{\infty}(\Omega)\right)^{*}$, which means that for $f \in V$ and $\varphi \in C_{0}^{\infty}(\Omega)$, we have $\varphi f \in V$ with

$$
\begin{equation*}
\|\varphi f\| \leq C(\varphi)\|f\| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|\langle f, \varphi\rangle| \leq C(\varphi)\|f\| \tag{2}
\end{equation*}
$$

where $\langle f, \varphi\rangle$ denotes the action in Ω of the distribution f on the test function φ and $C(\varphi)$ is a constant independent of f. We note that this implies that the imbeddings $C_{0}^{\infty}(\Omega) \hookrightarrow V$ and $V \hookrightarrow\left(C_{0}^{\infty}(\Omega)\right)^{*}$ are continuous (see [2, Section 2.1]).

Given a closed subset F in Ω, let $I(F)$ be the closure in V of (the family of) those $f \in V$ whose support in Ω in the sense of distributions (which will be denoted by $\operatorname{supp}(f))$ is disjoint from F, and let $V(F)=V / I(F)$. The Banach space $V(F)$, endowed with the quotient norm, should be viewed as the natural (Whitney type) version of V on F (see [14, Chapter 6]). We will write $\|f\|_{F}$ for the norm of the equivalence class (jet) $f_{(F)}:=f+I(F)$ in $V(F)$ of the distribution $f \in V$.

For any open set D in Ω, let

$$
V_{\mathrm{loc}}(D)=\left\{f \in\left(C_{0}^{\infty}(D)\right)^{*} \mid f \varphi \in V \text { for each } \varphi \in C_{0}^{\infty}(D)\right\}
$$

where φ and $f \varphi$ are extended to be identically zero in $\Omega \backslash D$. We endow $V_{\text {loc }}(D)$ with the projective limit topology of the spaces $V(K)$ partially ordered by inclusion of the compact sets $K \subset D$. For a closed set F in Ω, define $V_{\mathrm{loc}}(F)=V_{\mathrm{loc}}(\Omega) / J(F)$, where $J(F)$ is the closure in $V_{\mathrm{loc}}(\Omega)$ of the family of those distributions in $V_{\mathrm{loc}}(\Omega)$ whose support is disjoint from F. The topology on $V_{\text {loc }}(F)$ will be the quotient topology. Note that for compact sets K, the topological spaces $V(K)$ and $V_{\text {loc }}(K)$ are identical.

For $f \in V_{\text {loc }}(\Omega)$, we put $f_{(F) \text { loc }}:=f+J(F)$. If D is a neighbourhood of F in Ω, then each $h \in V_{\text {loc }}(D)$ naturally defines an element (jet) $h_{(F), \text { loc }}$ in $V_{\text {loc }}(F)$ by taking $h_{(F) \text { loc }}$ to be the closure in $V_{\text {loc }}(\Omega)$ of the set of $f \in V_{\text {loc }}(\Omega)$ such that $f=h$ (as distributions) in some neighbourhood (depending on f) of F. In particular, this works for each $h \in C^{\infty}(D) \subset V_{\text {loc }}(D)$. For $f_{(F) \text { loc }} \in V_{\text {loc }}(F)$, we will write $f_{(F) \text {,loc }} \in$ $V(F)$ (or more briefly $f \in V(F)$), if $V \cap f_{(F), \text { loc }} \neq \varnothing$. We will then write $\left\|f_{(F) \text {,loc }}\right\|_{F}$, or equivalently $\|f\|_{F}$, to mean $\|g\|_{F}$, where $g \in V \cap f_{(F) \text {,loc }}$. Practically the same proof as in [2, Section 2.1] shows that $V \cap J(F)=I(F)$ holds for each closed set F in Ω, which means that $\left\|f_{(F), \text { loc }}\right\|_{F}$ is well-defined.

For a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, with $\alpha_{j} \in \mathbf{Z}_{+}(:=\{0,1,2, \ldots\})$, we let $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \alpha!=\alpha_{1}!\cdots \alpha_{n}!, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ and $\partial^{\alpha}=\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}$.

We denote by $B(a, \delta)$ (respectively $\bar{B}(a, \delta))$ the open (respectively closed) ball with center $a \in \mathbf{R}^{n}$ and radius $\delta>0$. If $B=B(a, \delta)$ and $\theta>0$ then $\theta B=B(a, \theta \delta)$ and $\theta \bar{B}=\bar{B}(a, \theta \delta)$.

Throughout this paper we let $L(\xi)=\sum_{|\alpha|=r} a_{\alpha} \xi^{\alpha}, \xi \in \mathbf{R}^{n}$, be a fixed homogeneous polynomial of degree $r(r \geq 1)$ with complex constant coefficients and which satisfies the ellipticity condition $L(\xi) \neq 0, \xi \neq 0$. We associate to L the homogeneous elliptic operator of order r

$$
L=L(\partial)=\sum_{|\alpha|=r} a_{\alpha} \partial^{\alpha}
$$

Let D be an open set in \mathbf{R}^{n} and denote by $L(D)$ the set of distributions f in D such that $L f=0$ in D in the sense of distributions. It is well known [7, Theorem 4.4.1] that $L(D) \hookrightarrow C^{\infty}(D)$. Therefore if $D \subset \Omega$, then $L(D) \subset V_{\text {loc }}(D)$, and if $\left\{f_{m}\right\}$ is a sequence in $L(D)$ with $f_{m} \rightarrow f$ in $V_{\text {loc }}(D)$ as $m \rightarrow \infty$, then $f \in L(D)$, since convergence in $V_{\text {loc }}(D)$ is stronger than convergence in the sense of distributions, which preserves $L(D)$ [7, Theorem 4.4.2].

Functions from $L(D)$ will be called L-analytic in D. We shall also say that a distribution g in D is L-meromorphic in D if $\operatorname{supp}(L g)$ is discrete in D and for each $a \in \operatorname{supp}(L g)(a \in D)$ there exist h, which is L-analytic in a neighbourhood of a, $k \in \mathbf{Z}_{+}$and $\lambda_{\alpha} \in \mathbf{C}, 0 \leq|\alpha| \leq k$, such that

$$
g(x)=h(x)+\sum_{|\alpha| \leq k} \lambda_{\alpha} \partial^{\alpha} \Phi(x-a)
$$

in some neighbourhood of a, where Φ is a special fundamental solution of L as described in [7, Theorem 7.1.20]. The points $a \in \operatorname{supp}(L g)$ will be called the poles of g.

We recall (see [3, p. 239] or [15, p. 163]) that there exists a $k>1$ such that if T is a distribution with compact support contained in $B(a, \delta)$ and $f=\Phi * T$, then, for $|x-a|>k \delta$, we have the Laurent-type expansion:

$$
\begin{equation*}
f(x)=\langle T(y), \Phi(x-y)\rangle=\sum_{|\alpha| \geq 0} c_{\alpha} \partial^{\alpha} \Phi(x-a) \tag{3}
\end{equation*}
$$

where $c_{\alpha}=(-1)^{|\alpha|}(\alpha!)^{-1}\left\langle T(y),(y-a)^{\alpha}\right\rangle$. The series converges in $C^{\infty}(\{|x-a|>$ $k \delta\}$), which means that the series can be differentiated term by term and all such series converge uniformly on $\left\{|x-a| \geq k^{\prime} \delta\right\}, k^{\prime}>k$.

Let $\varphi \in C_{0}^{\infty}(\Omega)$. The Vitushkin localisation operator $\nu_{\varphi}:\left(C_{0}^{\infty}(\Omega)\right)^{*} \rightarrow$ $\left(C_{0}^{\infty}(\Omega)\right)^{*}$ associated to L and φ is defined as $\mathcal{V}_{\varphi} f=\left.(\Phi *(\varphi L f))\right|_{\Omega}$, where in the last equality $*$ denotes the convolution operator in \mathbf{R}^{n}.

Condition 3 We require that for each $\varphi \in C_{0}^{\infty}(\Omega)$, the operator \mathcal{V}_{φ} be invariant on $V_{\text {loc }}(\Omega)$, i.e. \mathcal{V}_{φ} must send continuously $V_{\text {loc }}(\Omega)$ into $V_{\text {loc }}(\Omega)$. This means that if K is a compact subset of Ω and $\operatorname{supp}(\varphi) \subset K$, then for each $f \in V_{\text {loc }}(\Omega)$ one has $\nu_{\varphi} f \in V_{\text {loc }}(\Omega)$ and

$$
\begin{equation*}
\left\|\mathcal{V}_{\varphi} f\right\|_{K} \leq C\|f\|_{K} \tag{4}
\end{equation*}
$$

where C is independent of f.
We make one more assumption on V in relation with L.
Condition 4 For each open ball B with $3 \bar{B} \subset \Omega$, there exist $d>0$ and $C>0$ such that for each $h \in C^{\infty}\left(\mathbf{R}^{n}\right)$ satisfying $L h=0$ outside of B and $h(x)=O\left(|x|^{-d}\right)$ as $|x| \rightarrow \infty$, one can find $v \in L(\Omega)$ with

$$
\begin{equation*}
(h-v) \in V \quad \text { and } \quad\|h-v\| \leq C\|h\|_{3 \bar{B}} \tag{5}
\end{equation*}
$$

In this assumption, instead of the constant 3, one can take any fixed real number greater than 1.

3 Some Remarks on Conditions 1 to 4

All Conditions 1 to 4 are satisfied by classical (non-weighted) spaces on any domain Ω in \mathbf{R}^{n}, for example $B C^{m}(\Omega), B C^{m+\mu}(\Omega), \operatorname{VMO}(\Omega)$ and the Sobolev spaces $W_{m}^{p}(\Omega)$, $1 \leq p<\infty$. We shall give the definitions and prove this assertion only for the spaces $V=B C^{m}(\Omega)$ and $B C^{m+\mu}(\Omega)$.

For $m \in \mathbf{Z}_{+}$, let $B C^{m}(\Omega)$ be the space of all m-times continuously differentiable functions $f: \Omega \rightarrow \mathbf{C}$ with (finite) norm

$$
\|f\|_{m, \Omega}=\max _{|\alpha| \leq m} \sup _{x \in \Omega}\left|\partial^{\alpha} f(x)\right|
$$

If $m \in \mathbf{Z}_{+}$and $0<\mu<1$, then

$$
B C^{m+\mu}(\Omega)=\left\{f \in B C^{m}(\Omega) \mid \omega_{\mu}^{m}(f, \infty)<\infty \text { and } \omega_{\mu}^{m}(f, \delta) \rightarrow 0 \text { as } \delta \rightarrow 0\right\}
$$

where $\omega_{\mu}^{m}(f, \delta)=\sup \frac{\left|\partial^{\alpha} f(x)-\partial^{\alpha} f(y)\right|}{\left.|x-y|\right|^{\mu}}$, the supremum being taken over all multi-index α such that $|\alpha|=m$ and all $x, y \in \Omega$ with $0<|x-y|<\delta$. The norm in this space is defined as

$$
\|f\|_{m+\mu, \Omega}=\max \left\{\|f\|_{m, \Omega}, \omega_{\mu}^{m}(f, \infty)\right\}
$$

We shall omit the index Ω in the last norm whenever $\Omega=\mathbf{R}^{n}$. Finally, for any $\rho \geq 0$, we set $C^{\rho}(\Omega)=\left(B C^{\rho}(\Omega)\right)_{\text {loc }}$.

Proposition 1 Let Ω be a domain in $\mathbf{R}^{n}, n \geq 2$, and let $\rho \geq 0$. Then the pair $(L, V(\Omega))$ with $V(\Omega)=B C^{\rho}(\Omega)$ satisfies Conditions 1, 2, 3 and satisfies Condition 4 with $v=0$.

Proof Conditions 1 and 2 are easily verified. Condition 3 is proved in [10, Corollary 5.6] in the case $\Omega=\mathbf{R}^{n}$ for all spaces mentioned above, since $C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ is locally dense in each of them. As Condition 3 is local, it holds for each pair $(L, V(\Omega))$ under consideration.

To obtain Condition 4 with $v=0$, we can easily use [2, Lemma 1] (see also [11, Lemma 2]). In fact, by this lemma, for each open ball B with $3 \bar{B} \subset \Omega$, we even can find $d>0$ and $C>0$ such that if h satisfies the hypotheses of Condition 4 with this d, then

$$
\|h\|_{\rho} \leq C\|h\|_{\rho, 3 \bar{B}} .
$$

Since $\|h\|_{\rho, \Omega} \leq\|h\|_{\rho}$, the proof is complete.
In [2, Corollary 1] (see also the brief discussion thereafter) and [11, Theorem 4] one sees how (whenever Conditions 1 to 3 are satisfied) Condition 4 can affect L meromorphic and L-analytic approximation in the special case of weighted uniform holomorphic approximation ($n=2, L=\bar{\partial}$).

We also wish to present here an example of a pair (L, V) satisfying Conditions 1,2 and 4 (with $v=0$), but not 3 . Hence, this example eludes our method. The example seems new even without considering Condition 4.

Take $L=\bar{\partial}, \Omega=\mathbf{R}^{2}(=\mathbf{C}), B_{1}=\{z \in \mathbf{C}| | z \mid<1\}$ (the unit disk), and let

$$
V=B C^{0}\left(\mathbf{R}^{2}\right) \cap B C^{1}\left(B_{1}\right) \quad \text { with norm } \quad\|f\|=\max \left\{\|f\|_{0},\|f\|_{1, B_{1}}\right\}
$$

Conditions 1 and 2 are easily verified. Condition 4 (with $v=0, d=1$) follows from the maximum principle and from trivial estimates of derivatives (outside $2 \bar{B}$) of a function, holomorphic outside \bar{B} and vanishing at ∞. Finally, fixing any $\varphi \in$ $C_{0}^{\infty}\left(3 B_{1}\right)$ such that $\varphi(z)=\bar{z}$ on $2 B_{1}$, one can check that there exists $f \in B C^{0}\left(\mathbf{R}^{2}\right)$, $f=0$ in B_{1}, with $\left.\mathcal{V}_{\varphi} f\right|_{B_{1}}$ not in $B C^{1}\left(B_{1}\right)$. In fact, in this case

$$
\mathcal{V}_{\varphi} f(w)=f(w) \varphi(w)-\frac{1}{\pi} \int \frac{f(z) \bar{\partial} \varphi(z)}{w-z} d x_{1} d x_{2} \quad z=x_{1}+i x_{2}
$$

so that one needs only to study the behavior (in B_{1}) of the function

$$
\int_{2 B_{1} \backslash B_{1}} \frac{f(z)}{(w-z)^{2}} d x_{1} d x_{2}
$$

Easily, there is $g \in C\left(\mathbf{R}^{2}\right), g \geq 0, \operatorname{supp}(g) \subset\left\{x_{1} \geq 2\left|x_{2}\right|\right\} \cap B_{1}$, such that

$$
\int \frac{g(z)}{|z|^{2}} d x_{1} d x_{2}=+\infty
$$

It is enough to take $f(z)=g(z-1)$ and let $w \in(0,1)$ tend to 1 . Indeed, set $1-w=\delta$. Then, it is enough to show that

$$
\int \frac{g(z)}{(z+\delta)^{2}} d x_{1} d x_{2}
$$

is unbounded as δ tends to zero. In fact,

$$
\operatorname{Re}\left(\frac{1}{(z+\delta)^{2}}\right) \geq \frac{1}{2|z+\delta|^{2}}
$$

on $\operatorname{supp}(g)$, and if the integrals

$$
\int \frac{g(z)}{|z+\delta|^{2}} d x_{1} d x_{2}
$$

were uniformly bounded for $\delta \in(0,1)$, then by Fatou's lemma, the integral with $\delta=0$ would be convergent, which is not the case.

The following proposition provides us with another class of examples for which Conditions 1 to 4 are satisfied. These in turn will allow us to obtain in Section 4 new results on "tangential" approximation. Given m and q in \mathbf{Z}_{+}, with $q \leq m$, and a bounded domain Ω, set

$$
B C_{q}^{m}(\Omega)=\left\{f \in B C^{m}(\Omega) \mid \text { for each } \alpha,|\alpha| \leq q, \lim _{x \rightarrow \partial \Omega} \partial^{\alpha} f(x)=0\right\}
$$

which is a Banach space with the norm $\|f\|_{m, \Omega}$.
Proposition 2 Let L be a strongly elliptic operator of order $r=2 \ell, \ell \in \mathbf{Z}_{+}, \ell \geq 1$ (see [1, p. 46]). Let $m, q \in \mathbf{Z}_{+}, m \geq \ell-1, q \leq \ell-1$. If Ω is bounded and $\partial \Omega$ is of class C^{s}, $s=\max \{2 \ell,[n / 2]+1+m\}$ (see [1, p. 128]), then the pair $\left(L, V=B C_{q}^{m}(\Omega)\right)$ satisfies Conditions 1 to 4 .

Proof Since $\left(B C_{q}^{m}(\Omega)\right)_{\text {loc }}=C^{m}(\Omega)$, Conditions 1, 2 and 3 are satisfied. Let us prove Condition 4. Fix any ball $B, 3 \bar{B} \subset \Omega$, and take any $h \in C^{\infty}\left(\mathbf{R}^{n}\right)$ with $L h=0$ outside B. Now, results on solvability and regularity of the classical Dirichlet problem applied to the operator L (see [1, Theorem 8.2 and Lemma 7.7, Theorem 9.8 and Lemma 9.1, Theorem 3.9]) show that under the hypotheses of Proposition 2, there
exists $v_{0} \in C^{m}(\bar{\Omega}) \cap L(\Omega)$ such that $u_{0}=h-v_{0}$ satisfies $\left.\partial^{\alpha} u_{0}\right|_{\partial \Omega}=0$ for each α, $|\alpha| \leq \ell-1$ (so that $h-v_{0} \in V$), and moreover

$$
\left\|u_{0}\right\| \equiv\left\|u_{0}\right\|_{m, \Omega} \leq C_{1}\|h\|_{s, \Omega}
$$

where C_{1} is independent of h. We observe that we have not used here the property $L h=0$ in $\mathbf{R}^{n} \backslash B$. We also remark that our notations for m and $\|\cdot\|_{m, \Omega}$ are different from those of [1], and that the last inequality follows from [1, (9.23)] since

$$
\left\|u_{0}\right\|_{L^{2}(\Omega)} \leq\left\|u_{0}\right\|_{W_{\ell}^{2}(\Omega)} \leq C_{2}\|h\|_{W_{\ell}^{2}(\Omega)}
$$

by [1, Theorems 8.1 and 8.2].
By [11, Lemmas 1 and 3], we can choose $d>0$ and $C_{3}>0$ (independently of h) such that if additionally $h(x)=O\left(|x|^{-d}\right)$ as $|x| \rightarrow \infty$, then (see also [2, Lemma 1])

$$
h=\Phi * L h, \quad \text { and } \quad\|h\|_{m, \Omega} \leq\|h\|_{m, \mathbf{R}^{n}} \leq C_{3}\|h\|_{m, 3 B} .
$$

Fix $\chi \in C_{0}^{\infty}\left(\frac{3}{2} B\right), \chi=1$ on B. Then for $x \in \mathbf{R}^{n} \backslash 2 \bar{B}$, we get

$$
h(x)=\int_{B} \Phi(x-y) \operatorname{Lh}(y) \chi(y) d y=\int_{B} L(\chi(y) \Phi(x-y)) h(y) d y
$$

and so since Ω is bounded,

$$
\|h\|_{s, \Omega \backslash 2 \bar{B}} \leq C_{4}\|h\|_{0, \frac{3}{2} B} \leq C_{4}\|h\|_{m, 3 B}
$$

We can now find a function $h_{1} \in C^{\infty}\left(\mathbf{R}^{n}\right), h_{1}=h$ on $\mathbf{R}^{n} \backslash 2 \bar{B}$ such that

$$
\left\|h_{1}\right\|_{s, \Omega} \leq C_{5}\|h\|_{s, \Omega \backslash 2 \bar{B}} \leq C_{6}\|h\|_{m, 3 B} .
$$

Let now v_{1} and $u_{1}=h_{1}-v_{1}$ satisfy the same properties as the functions v_{0} and u_{0} above, but taken with h_{1} instead of h. Then

$$
\left\|u_{1}\right\|_{m, \Omega} \leq C_{2}\left\|h_{1}\right\|_{s, \Omega} \leq C_{7}\|h\|_{m, 3 B}
$$

The function $v=v_{1}$ is as desired. In fact, since $\partial^{\alpha} u_{1}=0$ on $\partial \Omega$ for $|\alpha| \leq \ell-1$, then

$$
\left.\partial^{\alpha}(h-v)\right|_{\partial \Omega}=\left.\partial^{\alpha}\left(h_{1}-v_{1}\right)\right|_{\partial \Omega}=0
$$

for $|\alpha| \leq \ell-1$, so that $h-v \in V(\Omega)$. Finally

$$
\|h-v\|_{m, \Omega}=\left\|h-h_{1}+h_{1}-v_{1}\right\|_{m, \Omega} \leq\|h\|_{m, \Omega}+\left\|h_{1}\right\|_{m, \Omega}+\left\|u_{1}\right\|_{m, \Omega} \leq C\|h\|_{m, 3 B}
$$

since clearly

$$
\left\|h_{1}\right\|_{m, \Omega} \leq\left\|h_{1}\right\|_{s, \Omega} \leq C_{6}\|h\|_{m, 3 B} .
$$

Note that the constants C_{2} to C_{7} and C are independent of h. This ends the proof.

Let Ω be any domain in \mathbf{R}^{n}. Denote by $\Omega^{*}=\Omega \cup\{*\}$ the one point compactification of Ω and by X° the interior of a set X. For $i \geq 1$, let

$$
X_{i}=\{x \in \Omega|\operatorname{dist}(x, \partial \Omega) \geq 1 / i,|x| \leq i\}
$$

Then each X_{i} is a compact subset of Ω such that both $\Omega^{*} \backslash X_{i}$ and $\Omega^{*} \backslash X_{i}^{\circ}$ are connected and such that $X_{i} \subset X_{i+1}^{\circ}$.

In the next sections, we shall need frequently the following easy consequence of a very general version of Runge's theorem.

Proposition 3 Assume $V=V(\Omega)$ satisfies Conditions 1 and 2. Then, given $i \geq 1$, $\varepsilon_{i}>0$ and $f \in L\left(X_{i+1}^{\circ}\right)$, one can find $h_{i} \in L(\Omega)$ such that

$$
\left\|f-h_{i}\right\|_{X_{i}} \leq \varepsilon_{i}
$$

Proof By the generalization of Runge's theorem found in [7, Theorem 4.4.5], there exists a sequence $\left\{g_{m}\right\}_{m=1}^{\infty} \subset L(\Omega)$ such that $g_{m} \rightarrow f$ in $C^{\infty}\left(X_{i+1}^{\circ}\right)$ and hence $g_{m} \rightarrow$ f in $V\left(X_{i}\right)$ as $m \rightarrow \infty$, which gives the result if one takes $h_{i}=g_{m}$ for some m sufficiently large.

4 Approximation Theorems

As in [2, Section 3], a closed set F in Ω will be called a Roth-Keldysh-Lavrent'ev set in Ω, or more simply an Ω-RKL set, if $\Omega^{*} \backslash F$ is connected and locally connected. In this section, we formulate our main approximation results. They extend the analogous ones of [2] from \mathbf{R}^{n} to general domains Ω. Using Proposition 2, concrete new applications to "tangential" approximation are also obtained (see Theorem 4(iii)). Note that Carleman-type approximation results will also be presented in Section 6 with interesting applications to the boundary behaviour of L-analytic functions.

We first obtain sufficient conditions for approximation of Runge-type on closed sets.

Theorem 1 Let Ω be a domain in $\mathbf{R}^{n}, n \geq 2$. Let $(L, V(\Omega))$ be a pair satisfying Conditions 1 to 4, F be a (relatively) closed subset of Ω, and f be L-analytic in some neighbourhood of F in Ω. Then, for each $\varepsilon>0$, there exists an L-meromorphic function g on Ω with poles off F such that $\left(f_{(F), \text { loc }}-g_{(F), \text { loc }}\right) \in V(F)$ and

$$
\|f-g\|_{F}<\varepsilon
$$

Moreover, if F is an Ω-RKL set, then g can be chosen in $L(\Omega)$.
The next theorem deals with approximation of a single function and shows that the problem is essentially local.

Theorem 2 Let Ω be a domain in $\mathbf{R}^{n}(n \geq 2),(L, V(\Omega))$ be a pair satisfying Conditions 1 to 4, F be a (relatively) closed subset of Ω, and $f \in V_{\mathrm{loc}}(\Omega)$. Then the following are equivalent:
(i) for each positive number ε, there exists an L-meromorphic function g in Ω with poles off F such that $\left(f_{(F), \text { loc }}-g_{(F), \text { loc }}\right) \in V(F)$ and $\|f-g\|_{F}<\varepsilon$;
(ii) for each ball $B, \bar{B} \subset \Omega$ and positive number ε, there exists g such that $L g=0$ on some neighbourhood of $F \cap \bar{B}$ and $\|f-g\|_{F \cap \bar{B}}<\varepsilon$;
(iii) the previous property is satisfied by each ball from some locally finite family of balls $\left\{B_{j}^{\prime}\right\}$ covering F, where $\overline{B_{j}^{\prime}} \subset \Omega$ for each j.

For any subset X of \mathbf{R}^{n}, we let $L(X)$ stand for the collection of all functions f defined and L-analytic in some neighbourhood (depending on f) of X. For a closed set F in Ω we denote by $M_{L V}(F)$ (respectively $E_{L V}(F)$) the space of all $f_{(F) \text {,loc }} \in V_{\text {loc }}(F)$ which satisfy the following property: for each $\varepsilon>0$ there exists an L-meromorphic function g in Ω with poles outside of F (respectively a function $g \in L(\Omega)$) such that $f-g \in V(F)$ and $\|f-g\|_{F}<\varepsilon$. We also introduce the space $V_{L}(F)=V_{\text {loc }}(F) \cap$ $L\left(F^{\circ}\right)$. Whenever Conditions 1 to 4 hold, we have that by Theorem $1, M_{L V}(F)$ is the closure in $V_{\text {loc }}(F)$ of the space $\left\{h_{(F) \text { loc }} \in V_{\text {loc }}(F) \mid h \in L(F)\right\}$. Moreover, if F is an Ω-RKL set, then $M_{L V}(F)=E_{L V}(F)$.

We now study the necessity of being a Ω-RKL set for approximation by L-analytic functions.

Let K be a compact set in Ω. Denote by \hat{K} the union of K and all the (connected) components of $\Omega \backslash K$ which are pre-compact in Ω. Obviously, the property $\hat{K}=K$ means precisely that $\Omega^{*} \backslash K$ is connected, so that K is a Ω-RKL set.

Define

$$
N(K)=N_{L V}(K)=\left\{a \in \hat{K} \backslash K \mid\left(\Phi_{a}\right)_{(K)} \notin E_{L V}(K)\right\}
$$

where $\Phi_{a}(x)=\Phi(x-a)$.
Condition N We shall say that a pair $(L, V(\Omega))$ satisfies Condition N ("nonremovability of holes") if $N(K) \neq \varnothing$ for each compact set K with "holes", i.e. such that $K \neq \hat{K}$.

Remark 1 The same proof as in [2, Proposition 2] shows that $(L, V(\Omega))$ satisfies Condition N whenever all of the following conditions hold:
(1) $(L, V(\Omega))$ satisfies Conditions 1 and 2 ;
(2) $n=2$ or $n \geq 3$ and L has the following symbol:

$$
L(\xi)=P_{2}(\xi) Q_{r-2}(\xi), \quad \xi \in \mathbf{R}^{n},
$$

where P_{2} is some homogeneous (elliptic) polynomial of order two with real coefficients (so that P_{2} has constant sign in $\mathbf{R}^{n} \backslash\{0\}$), and Q_{r-2} is some homogeneous polynomial of order $r-2$;
(3) $\operatorname{Ord}(V) \geq r-1$.

For the definition of $\operatorname{Ord}(V)$ when Ω is \mathbf{R}^{n}, see [2, Section 4.3]. Replacing \mathbf{R}^{n} by Ω everywhere in that definition, we get the corresponding definition of $\operatorname{Ord}(V(\Omega))$ for an arbitrary domain Ω.

One can also find in [2, Section 4.2] some informative examples concerning Condition N .

Theorem 3 If $(L, V(\Omega))$ satisfies Conditions 1 to 4 , then the following statements are equivalent:
(i) for each (relatively) closed set $F \subset \Omega$ one has

$$
M_{L V}(F)=E_{L V}(F) \Longleftrightarrow\{F \text { is a } \Omega-\mathrm{RKL} \text { set }\}
$$

(ii) for each compact set $K \subset \Omega$,

$$
M_{L V}(K)=E_{L V}(K) \Longleftrightarrow\left\{\Omega^{*} \backslash K \text { is connected }\right\}
$$

(iii) the pair $(L, V(\Omega))$ satisfies Condition N.

Remark 2 Our proof of (ii) \Rightarrow (iii) in fact shows that if for some compact set K in Ω there is a function $f \in L(K)$ which is not in $E_{L V}(K)$, then the same is true for some $\Phi_{a}, a \in \hat{K} \backslash K$.

From Theorems 2 and 3, it is not difficult to obtain the corresponding approximation (reduction) theorems for classes of functions (jets), analogous to that of [2, Proposition 1]. In this direction, we present only the following result which extends [2, Theorem 4]. Note that (iii) is a result on tangential approximation.

Theorem 4 Let L (of order r) satisfy property (2) of Remark 1, Ω be an arbitrary domain in \mathbf{R}^{n} and F be a closed subset of Ω.
(i) For $\left.V=B C^{\rho}(\Omega)\right)$, where $\rho \in(r-1, r)$ (see Section 3), the equality $V_{L}(F)=$ $M_{L V}(F)$ holds if and only if there exists a constant $A \in(0,+\infty)$ such that for each ball B in Ω

$$
M_{*}^{n-r+\rho}\left(B \backslash F^{\circ}\right) \leq A M^{n-r+\rho}(B \backslash F)
$$

(ii) For $V=B C^{m}(\Omega)(m=r, r+1, \ldots)$ or $V=B C^{\rho}(\Omega)(\rho>r, \rho \notin \mathbf{Z})$ the equality $V_{L}(F)=M_{L V}(F)$ holds if and only if F° is dense in F.
(iii) Let L, Ω and $V=B C_{q}^{m}(\Omega)$ be as in Proposition 2, and additionally suppose that $m \geq r$. Then the equality $V_{L}(F)=M_{L V}(F)$ holds if and only if F° is dense in F.
(iv) For each space $V(\Omega)$, which is mentioned in (i), (ii) or (iii), the equality $V_{L}(F)=$ $E_{L V}(F)$ holds if and only if $V_{L}(F)=M_{L V}(F)$ and (at the same time) F is a Ω-RKL set.

Here $M^{n-r+\rho}(\cdot)$ and $M_{*}^{n-r+\rho}(\cdot)$ are the Hausdorff and lower Hausdorff contents of order $n-r+\rho$ respectively (cf. [15]).

5 Proofs of Theorems 1, 2, 3 and 4

Fix a pair $(L, V(\Omega))$ satisfying Conditions 1 to 4 , and let $k=k(L)>1$ be the constant which appears in (3).

Lemma 1 Let $B=B(a, \delta)$ be a ball in Ω with $6 k \bar{B} \subset \Omega$ and T be a distribution with $\operatorname{supp}(T) \subset B$. Set $h=\Phi * T$ and let

$$
h_{m}=\sum_{0 \leq|\alpha| \leq m} c_{\alpha} \partial^{\alpha} \Phi(x-a)
$$

be the partial sums of the Laurent series expansion of h outside $k \bar{B}$ (see (3)). Then there exists $M \in \mathbf{Z}_{+}$such that for all $m \geq M$, one can find $v_{m} \in L(\Omega)$ such that $h-h_{m}-v_{m} \in V(\Omega \backslash 2 k B)$ and

$$
\left\|h-h_{m}-v_{m}\right\|_{\Omega \backslash 2 k B} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

Proof First recall that $h_{m} \rightarrow h$ in $C^{\infty}(\Omega \backslash k \bar{B})$. Let $\psi \in C^{\infty}\left(\mathbf{R}^{n}\right)$ such that

$$
\psi= \begin{cases}0 & \text { in a neighbourhood of } k \bar{B} \\ 1 & \text { in a neighbourhood of } \mathbf{R}^{n} \backslash 2 k B\end{cases}
$$

Take d from Condition 4 for the ball $2 k B$ and the pair (L, V). Since we have that $\psi h_{m} \rightarrow \psi h$ in $C^{\infty}(\Omega)$, there exists $M \in \mathbf{Z}_{+}$such that for $m \geq M$, one has

$$
h_{m}^{*} \equiv \psi\left(h-h_{m}\right)=O\left(|x|^{-d}\right) \quad \text { as }|x| \rightarrow \infty
$$

Using Condition 4 when $m \geq M$, we can find $v_{m} \in L(\Omega)$ such that $\left(h_{m}^{*}-v_{m}\right) \in V$ and

$$
\left\|h_{m}^{*}-v_{m}\right\| \leq C\left\|h_{m}^{*}\right\|_{6 k \bar{B}} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

By definition, $\left(h-h_{m}-v_{m}\right) \in V(\Omega \backslash 2 k B)$ and

$$
\left\|h-h_{m}-v_{m}\right\|_{\Omega \backslash 2 k B} \leq\left\|h_{m}^{*}-v_{m}\right\| \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

The lemma is proved.
Proof of Theorem 1 The proof relies on a localization technique. Let f be a function L-analytic on some neighbourhood U of F in Ω and U_{1} be a neighbourhood of F, with $\bar{U}_{1} \subset U$. We extend f to a function (also denoted by f) in $C^{\infty}(\Omega)$ so that f is still L-analytic in a neighbourhood of \bar{U}_{1}. We can find a family of couples $\left\{B\left(a_{j}, \delta_{j}\right), \varphi_{j}\right\}_{j=1}^{\infty}$ where the family of balls $\left\{B_{j}=B\left(a_{j}, \delta_{j}\right\}\right.$ is locally finite in Ω, $6 k \bar{B}_{j} \subset \Omega \backslash F$, each $\varphi_{j} \in C_{0}^{\infty}\left(B_{j}\right)$, with $0 \leq \varphi_{j} \leq 1$ and $\sum_{j=1}^{\infty} \varphi_{j}=1$ on some neighbourhood U_{2} of $\Omega \backslash U_{1}$.

Let $f_{j}=\mathcal{V}_{\varphi_{j}} f=\Phi *\left(\varphi_{j} L f\right)$. Each f_{j} is in $C^{\infty}\left(\mathbf{R}^{n}\right)$. Let $\left\{X_{i}\right\}, i \geq 1$, be the sequence of compact sets described before Proposition 3. Put $J_{i}=\left\{j \mid B_{j} \cap X_{i+1} \neq\right.$ $\varnothing\}$. Note that $L\left(f-\sum_{j \in J_{1}} f_{j}\right)=L f-\sum_{j \in J_{1}} \varphi_{j} L f=L f\left(1-\sum_{j \in J_{1}} \varphi_{j}\right)=0$ (i.e. $f-\sum_{j \in J_{1}} f_{j}$ is L-analytic) in X_{2}°. By Proposition 3, one can find $P_{1} \in L(\Omega)$ such that

$$
\left\|f-\left(\sum_{J_{1}} f_{j}\right)-P_{1}\right\|_{X_{1}}<\frac{1}{2}
$$

Now, since $f-\left(\sum_{J_{1}} f_{j}\right)-P_{1}-\left(\sum_{J_{2} \backslash J_{1}} f_{j}\right)$ is L-analytic in X_{3}°, there exists $P_{2} \in L(\Omega)$ such that

$$
\left\|f-\left(\sum_{J_{1}} f_{j}\right)-P_{1}-\left(\sum_{J_{2} \backslash J_{1}} f_{j}\right)-P_{2}\right\|_{X_{2}}<\frac{1}{2^{2}}
$$

Inductively, we can thus find $P_{i} \in L(\Omega)$ such that

$$
\left\|f-\left(\sum_{J_{1}} f_{j}\right)-P_{1}-\left(\sum_{J_{2} \backslash J_{1}} f_{j}\right)-P_{2}-\cdots-\left(\sum_{J_{i} \backslash J_{i-1}} f_{j}\right)-P_{i}\right\|_{X_{i}}<\frac{1}{2^{i}}
$$

so that, setting $J_{0}=\varnothing$, the equality

$$
f=\sum_{i=1}^{\infty}\left(\sum_{J_{i} \backslash J_{i-1}} f_{j}+P_{i}\right)
$$

holds in $V_{\text {loc }}(\Omega)$.
Now, from (3), each f_{j} has a Laurent series expansion

$$
f_{j}(x)=\sum_{|\alpha| \geq 0} c_{\alpha}^{j} \partial^{\alpha} \Phi\left(x-a_{j}\right)
$$

valid outside $k \bar{B}_{j}$, and thus on a neighbourhood of F. Using Lemma 1, given any $\eta_{j}>0$, there exists $m_{j} \in \mathbf{Z}_{+}$and $v_{j} \in L(\Omega)$ such that if

$$
g_{j}(x)=\sum_{|\alpha|=0}^{m_{j}} c_{\alpha}^{j} \partial^{\alpha} \Phi\left(x-a_{j}\right)
$$

then $\left(f_{j}-g_{j}-v_{j}\right) \in V\left(\Omega \backslash 2 k B_{j}\right)$ and $\left\|f_{j}-g_{j}-v_{j}\right\|_{\Omega \backslash 2 k B_{j}}<\eta_{j}$.
Put $F_{1}=\Omega \backslash \cup_{j}\left(2 k B_{j}\right)$; then $F \subset F_{1}^{\circ}$ and, for all $j,\left(f_{j}-g_{j}-v_{j}\right) \in V\left(F_{1}\right)$, $\left\|f_{j}-g_{j}-v_{j}\right\|_{F_{1}}<\eta_{j}$. Fix $\varepsilon>0$ and choose the sequence $\left\{\eta_{j}\right\}, \eta_{j}>0$, such that $\sum_{j} \eta_{j}<\varepsilon$. Define

$$
g=\sum_{i=1}^{\infty}\left(\sum_{J_{i} \backslash J_{i-1}}\left(g_{j}+v_{j}\right)+P_{i}\right)
$$

Since for each $m \geq 1$ the series

$$
\sum_{i=m+1}^{+\infty}\left(\sum_{J_{i} \backslash J_{i-1}}\left(g_{j}+v_{j}\right)+P_{i}\right)
$$

converges in $V\left(X_{m}\right), g$ is L-meromorphic in Ω with "poles" only (possibly) at a_{j}, $j=1,2, \ldots$ Moreover $g \in V_{\text {loc }}\left(F_{1}\right)$ and

$$
(f-g)_{\left(F_{1}\right), \mathrm{loc}}=\sum_{i=1}^{\infty}\left(\sum_{J_{i} \backslash J_{i-1}}\left(f_{j}-g_{j}-v_{j}\right)_{\left(F_{1}\right), \mathrm{loc}}\right)
$$

But then $f-g \in V(F)$ and

$$
\|f-g\|_{F}<\varepsilon
$$

since $(f-g)_{(F), \text { loc }}$ can be defined by the element

$$
\sum_{i=1}^{\infty}\left(\sum_{J_{i} \backslash J_{i-1}} \Psi_{j}\right)
$$

where $\Psi_{j} \in V$ are such that $\left(\Psi_{j}\right)_{\left(\Omega \backslash 2 k B_{j}\right)}=\left(f_{j}-g_{j}-v_{j}\right)_{\left(\Omega \backslash 2 k B_{j}\right)}$ and $\left\|\Psi_{j}\right\| \leq \eta_{j}$. This proves the first part of Theorem 1.

Now assume that F is a RKL-set in Ω, i.e. $\Omega^{*} \backslash F$ is connected and locally connected. It suffices to show that there exists a function $h \in L(\Omega)$ such that

$$
\|g-h\|_{F}<\varepsilon
$$

Let $\left\{a_{j}\right\}_{j \geq 1}$ be the sequence of "poles" of g in Ω. Each $a_{j} \in \Omega \backslash F$ and the sequence has no limit points in Ω. Since $\Omega^{*} \backslash F$ is connected and locally connected at the "point" *, we can find paths σ_{j} from a_{j} to $*, \sigma_{j} \subset \Omega \backslash F$, such that the family of curves $\left\{\sigma_{j}\right\}$ is locally finite in Ω.

For a fixed j, we can find sequences $\left\{a_{j_{m}}\right\}_{m=0}^{\infty} \subset \sigma_{j}$ and $\left\{r_{j_{m}}\right\}_{m=0}^{\infty} \subset(0,1)$ such that $a_{j_{0}}=a_{j}, a_{j_{m}} \rightarrow *$ as $m \rightarrow \infty,\left|a_{j_{m}}-a_{j_{m+1}}\right|<r_{j_{m+1}}, B_{j_{m}}=B\left(a_{j_{m}}, 7 k r_{j_{m}}\right) \subset \Omega \backslash F$. Additionally we can require that the family of balls $\left\{B_{j_{m}}\right\}$ is locally finite in Ω. If $G_{j}=\bigcup_{m=0}^{\infty} B_{j_{m}}$ then $\bar{G}_{j} \cap F=\varnothing$ and $\left\{G_{j}\right\}$ is also locally finite in Ω.

Set $h_{0}=g$. We construct a sequence of functions h_{j} such that h_{j} is L-meromorphic on Ω, h_{j} has the same poles (and singular parts) as h_{j-1} except at a_{j} where h_{j} is L-analytic, and such that

$$
\left\|h_{j-1}-h_{j}\right\|_{\Omega \backslash G_{j}}<\frac{\varepsilon}{2^{j}} .
$$

If such a sequence exists, then $h=\lim _{j \rightarrow \infty} h_{j}$ is in $L(\Omega)$. Indeed, by construction (since $\left\{G_{j}\right\}$ is locally finite), we have $G_{j} \rightarrow\{*\}$ as $j \rightarrow \infty$, and thus $\left\{h_{j}\right\}$ is a Cauchy sequence in $V\left(X_{i}\right)$ for each i. Moreover convergence in $V_{\text {loc }}(\Omega)$ preserves L-analyticity. Finally we would have

$$
\|g-h\|_{F}<\varepsilon
$$

as desired.
To construct the functions $h_{j}\left(h_{0}=g\right)$, assume that h_{ℓ} has been constructed for $\ell \leq j-1$. Let s_{0} be the singular part of h_{j-1} at $a_{j}=a_{j_{0}}$. By Lemma 1 (applied to $h=s_{0}$ and $a=a_{j_{1}}$), we can find an L-meromorphic function s_{1} in Ω whose only singularity is at $a_{j_{1}}$ and such that

$$
\left\|s_{0}-s_{1}\right\|_{\Omega \backslash B_{j_{1}}}<\left(\frac{1}{2}\right) \frac{\varepsilon}{2^{j}} .
$$

By induction, construct an L-meromorphic function s_{m} whose only singularity is at $a_{j_{m}}$ and such that

$$
\left\|s_{m-1}-s_{m}\right\|_{\Omega \backslash B_{j}}<\left(\frac{1}{2^{m}}\right) \frac{\varepsilon}{2^{j}} .
$$

Finally set

$$
h_{j}=h_{j-1}+\sum_{m=1}^{\infty}\left(s_{m}-s_{m-1}\right)
$$

The function h_{j} has the desired properties.
The proofs of Theorems 2, 3 and 4 are also very similar to the proofs of the corresponding Theorems in [2], and will not be reproduced here. We simply note that \mathbf{R}^{n} is to be replaced everywhere by $\Omega,\{\infty\}$ (of \mathbf{R}_{∞}^{n}) by $\{*\}, P_{L V}$ by $E_{L V}$, "bounded" by "precompact in Ω " and so on. Our Theorem 1 above replaces the corresponding Theorem 1 of [2]. Balls also sometimes need to be replaced by sets having appropriate properties. For example, in the proof of Theorem 1 above, balls $\bar{B}(0, i)$ were replaced by sets X_{i}, where, for each $i, \Omega^{*} \backslash X_{i}$ was connected. In Theorem 3, the balls $B(0, R), B(0,2 R)$ and $B(0,3 R)$ need to be replaced respectively by Ω-precompact domains U, U_{1} and U_{2} such that ∂U is smooth, $\bar{U} \subset U_{1} \subset \overline{U_{1}} \subset U_{2}$ and the union of all Ω-precompact components of $(\Omega \backslash F) \backslash \bar{U}$ is not precompact in Ω. The existence of such domains follows from the existence of an exhaustion of Ω by smooth domains (which are precompact in Ω) and the assumption made in the proof that $\Omega^{*} \backslash F$ is not locally connected (see also [5, Chapter IV, Section 2 B]). Of course, the corresponding conditions on D_{m} and a_{m} need to be changed accordingly. Moreover, the following version of [2, Lemma 5] is needed in Theorem 3.

Lemma 2 For each open sets U_{1}, U_{2} such that $\bar{U}_{1} \subset U_{2} \subset \bar{U}_{2} \subset \Omega$, there exists a positive constant A (depending only on the space V and the sets U_{1} and U_{2}) such that for any compact set K and for each $f_{(K)} \in V(K)$ one has

$$
\|f\|_{K} \leq A\left(\|f\|_{K \cap \tilde{U}_{2}}+\|f\|_{K \backslash U_{1}}\right)
$$

We leave the details to the reader.

6 Boundary Behaviour of L-Analytic Functions

Let $£_{r}^{n}$ stand for the class of all homogeneous elliptic operators of order r in $\mathbf{R}^{n}(n \geq$ $2, r \geq 1$) with constant complex coefficients (see Section 2 above).

In this section, given $L \in £_{r}^{n}$ and a domain Ω satisfying some mild conditions, we will construct in Ω solutions of the equation $L u=0$ having some prescribed boundary behaviour.

6.1 No Limits at the Boundary

Let Ω be a domain in $\mathbf{R}^{n}, n \geq 2, \Omega \neq \mathbf{R}^{n}$, and let $b \in \partial \Omega$. We shall say that a (continuous) path $\gamma:[0,1] \rightarrow \mathbf{R}^{n}$ is admissible for Ω with end point b if $\gamma:[0,1) \rightarrow \Omega$ and $\gamma(1)=b$. Given a continuous function f in Ω, denote by $\mathcal{C}_{\gamma}(f)$ the cluster set of f along γ at b, that is:

$$
\begin{aligned}
\mathcal{C}_{\gamma}(f)=\left\{w \in \mathbf{C}^{*} \mid\right. & \text { there exists a sequence }\left\{t_{n}\right\} \subset[0,1) \\
& \text { such that } \left.t_{n} \rightarrow 1 \text { and } f\left(\gamma\left(t_{n}\right)\right) \rightarrow w \text { as } n \rightarrow \infty\right\} .
\end{aligned}
$$

Theorem 5 Let $L \in £_{r}^{n}$, and let $\Omega \subset \mathbf{R}^{n}, \Omega \neq \mathbf{R}^{n}$, be a domain such that its boundary $\partial \Omega$ has no (connected) components that consist of a single point. Then there exists $g \in$ $L(\Omega)$ with the property that for each $b \in \partial \Omega$, for each admissible path γ for Ω ending at b and for each $\alpha \in \mathbf{Z}_{+}^{n}$, one has

$$
\mathcal{C}_{\gamma}\left(\partial^{\alpha} g\right)=\mathbf{C}^{*}
$$

The following proposition and remark show that, at least for $L=\Delta$ in \mathbf{R}^{n} and $L=\partial / \partial \bar{z}$ in \mathbf{R}^{2}, our theorem is close to being sharp.

Proposition 4 If Ω is a domain in \mathbf{R}^{n} such that $\partial \Omega$ has an isolated point $b \in \mathbf{R}^{n} \cup$ $\{\infty\}$, then for each function f harmonic in Ω or $($ if $n=2)$ for each function f holomorphic in Ω, there exists an admissible path γ for Ω ending at b such that $\mathcal{C}_{\gamma}(f)$ is a single point in \mathbf{C}^{*}.

Remark 3 It follows from Proposition 4 that for each $\alpha \in \mathbf{Z}_{+}^{n}$ there exists an admissible path γ_{α} for Ω ending at b such that $\mathcal{C}_{\gamma_{\alpha}}\left(\partial^{\alpha} f\right)$ is just a single point in \mathbf{C}^{*} since the point b is also an isolated singularity of the harmonic (or holomorphic) function $\partial^{\alpha} f$.

Proof of Proposition 4 It is well known that if f is bounded at b (that is in some punctured neighbourhood of b), then f has a removable singularity at b and that consequently the proposition holds for every admissible path.

If f is unbounded at b, then the result follows from a generalization of a theorem of Iversen due to B. Fuglede (see [4, Corollary 1]).

Lemma 3 Let $L \in £_{r}^{n}$. For each $\beta \in \mathbf{Z}_{+}^{n}$ there exists a homogeneous polynomial $P_{\beta} \in L\left(\mathbf{R}^{n}\right)$ of degree $|\beta|$ with $\partial^{\beta} P_{\beta} \equiv 1$.

Proof The lemma is obvious if $|\beta|<r$. So let us assume that $|\beta| \geq r$. We claim that $\partial^{\beta} \Phi \not \equiv 0$ on $\mathbf{R}^{n} \backslash\{0\}$, where Φ is a special fundamental solution for L as before (see Section 2).

Assuming the claim, fix a point $a \neq 0$ where $\partial^{\beta} \Phi(a) \neq 0$. By Taylor's formula, we have

$$
\Phi(x)=\sum_{k=0}^{\infty} Q_{k}(x)
$$

where

$$
Q_{k}(x)=\sum_{|\alpha|=k} \frac{\partial^{\alpha} \Phi(a)}{\alpha!}(x-a)^{\alpha}
$$

belongs to $L\left(\mathbf{R}^{n}\right)$ (see [2, Section 2.4]). It suffices to take

$$
P_{\beta}=\frac{Q_{|\beta|}}{\partial^{\beta} \Phi(a)}
$$

To prove the claim, note that by [15, Lemma 1.1], one has in fact that

$$
\partial^{\beta} \Phi(x)=\sum_{|\alpha|=|\beta|-r} c_{\alpha} \partial^{\alpha} \delta(x)+K(x)
$$

where $\delta(\cdot)$ is the Dirac delta function, $c_{\alpha} \in \mathbf{C}$ and K is a Calderón-Zygmund ($n+$ $|\beta|-r)$-dimensional kernel. Assuming that $\partial^{\beta} \Phi(x)=0$ for all $x \neq 0$, then $K(x) \equiv 0$. Thus

$$
(-i)^{r} \xi^{\beta} \tilde{\Phi}(\xi)=\sum_{|\alpha|=|\beta|-r} c_{\alpha} \xi^{\alpha}
$$

where $\tilde{\Phi}$ denotes the Fourier transform of Φ. On the other hand, since $L \Phi=\delta(\cdot)$, one has

$$
(-i)^{r} L(\xi) \tilde{\Phi}(\xi) \equiv 1
$$

It follows that $\xi^{\beta}=A(\xi) L(\xi)$, where A is a polynomial. Choose $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$ with $\eta_{j}>0, j=1, \ldots, n$, and fix $\left(\xi_{2}, \ldots, \xi_{n}\right)=\left(\eta_{2}, \ldots, \eta_{n}\right)$. We have, for all ξ_{1} (after division by $\eta_{2}^{\beta_{2}} \cdots \eta_{n}^{\beta_{n}}$):

$$
\xi_{1}^{\beta_{1}}=A_{1}\left(\xi_{1}\right) L_{1}\left(\xi_{1}\right)
$$

where $L_{1}\left(\xi_{1}\right)=L\left(\xi_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ and $A_{1}\left(\xi_{1}\right)$ are also polynomials. The polynomial $L_{1}\left(\xi_{1}\right)$ has no zeros (on \mathbf{R}) and divides $\xi_{1}^{\beta_{1}}$, so that it is constant. Similarly, we can show that L is constant on each line through η which is parallel to a coordinate axis. Since this is true for each point η in the open cone $\left\{\eta \mid \eta_{j}>0, j=1, \ldots, n\right\}$, we conclude that the polynomial $L(\xi)$ is constant in this cone and hence identically constant. Thus $L=L(0)=0$, since L is homogeneous of order $r \geq 1$. This contradicts the ellipticity hypothesis, proves the claim and ends the proof of the lemma.

Proof of Theorem 5 Following the idea of the proof of [5, Chapter IV, Section 5, Theorem 4], we will construct a set of Carleman approximation which must be intersected infinitely often by every admissible path.

By Whitney's approximation theorem [9, Theorem 1.6.5], we can find a real analytic function Ψ on Ω such that for each $x \in \Omega$ one has

$$
\begin{equation*}
\frac{1}{2} \min \left(\operatorname{dist}(x, \partial \Omega), \frac{1}{|x|}\right) \leq \Psi(x) \leq 2 \min \left(\operatorname{dist}(x, \partial \Omega), \frac{1}{|x|}\right) \tag{6}
\end{equation*}
$$

From Sard's theorem [9, Theorem 1.4.6], we can find a sequence $\left\{\rho_{j}\right\}_{j=0}^{\infty}, \rho_{j} \searrow 0$ as $j \rightarrow \infty$ such that the level sets $R_{j}=\left\{x \in \Omega \mid \Psi(x)=\rho_{j}\right\}$ do not contain any critical point of Ψ, i.e. $\nabla \Psi \neq 0$ on R_{j} and R_{j} consists of only finitely many $C^{\infty}{ }_{-}$ smooth (in fact real analytic) hypersurfaces. Let $\Omega_{j}=\left\{x \in \Omega \mid \Psi(x)>\rho_{j}\right\}$. We additionally require (as we can) that $\left(\overline{\Omega_{j}}\right)^{\wedge} \subset \Omega_{j+1}$. We define $E_{j}=\partial\left(\left(\overline{\Omega_{j}}\right)^{\wedge}\right)$ and note that E_{j} also consists of finitely many C^{∞}-smooth closed hypersurfaces which we denote $E_{j \nu}, 1 \leq \nu \leq k_{j}$.

For positive but small enough δ_{j}, the δ_{j}-neighbourhood Ω_{j}^{\prime} of $\left(\overline{\Omega_{j}}\right)^{\wedge}$ is $C^{\infty_{-}}$ smooth, $\left(\overline{\Omega_{j}^{\prime}}\right)^{\wedge}=\overline{\Omega_{j}^{\prime}}$ and $E_{j}^{\prime}=\partial \Omega_{j}^{\prime}$ has the same number k_{j} of components $E_{j \nu}^{\prime}$
as E_{j}. The sequence $\left\{\delta_{j}\right\}$ is also chosen to satisfy $\delta_{j} \searrow 0$ as $j \rightarrow \infty, \overline{\Omega_{j}^{\prime}} \subset \Omega_{j+1}$, $\operatorname{dist}\left(E_{j}^{\prime}, E_{j+1}\right) \geq 2 \delta_{j}$ and $\delta_{j}<\min _{\nu}\left(\operatorname{diam} E_{j \nu}\right) / 10$. Choose $a_{j \nu} \in E_{j \nu}$ and $a_{j \nu}^{\prime} \in E_{j \nu}^{\prime}$ such that

$$
\begin{equation*}
\left|a_{j \nu}-a_{j \nu}^{\prime}\right| \geq \frac{\operatorname{diam}\left(E_{j \nu}\right)}{2} \tag{7}
\end{equation*}
$$

Now let

$$
\begin{gathered}
K_{j}=\overline{\Omega_{j}^{\prime}} \\
F_{j}=\bigcup_{\nu=1}^{k_{j}}\left\{\left(E_{j \nu} \backslash B\left(a_{j \nu}, \delta_{j}\right)\right) \cup\left(E_{j \nu}^{\prime} \backslash B\left(a_{j \nu}^{\prime}, \delta_{j}\right)\right)\right\},
\end{gathered}
$$

and define

$$
F=\bigcup_{j=0}^{\infty} F_{j} .
$$

For each j, we can find disjoint closed η_{j}-neighbourhoods G_{j} of F_{j} (with $0<$ $\left.\eta_{j}<\delta_{j} / 4\right)$ such that $G_{j+1} \cap K_{j}=\varnothing$ and $\Omega^{*} \backslash\left(G_{j+1} \cup K_{j}\right)$ is connected.

Finally we define the function f, L-analytic in some neighbourhood of the set $G=\bigcup_{j=0}^{\infty} G_{j}$ as follows. For each $\beta \in \mathbf{Z}_{+}^{n}$, we can find $I_{\beta} \subset \mathbf{Z}_{+}$such that $\bigcup_{\beta \in \mathbf{Z}_{+}^{n}} I_{\beta}=$ \mathbf{Z}_{+}, each I_{β} contains infinitely many elements and $I_{\beta} \cap I_{\beta^{\prime}}=\varnothing$ for $\beta \neq \beta^{\prime}$. Let $\left\{\lambda_{i}^{\beta}\right\}_{i \in I_{\beta}}$ be a fixed sequence in \mathbf{C} such that \mathbf{C}^{*} is the set of its limit points. Now fix $j \in \mathbf{Z}_{+}$. Then j is in position i_{j} in I_{β} for some (unique) $\beta \in \mathbf{Z}_{+}^{n}$. Let $P_{\beta} \in L\left(\mathbf{R}^{n}\right)$ be a polynomial of degree $|\beta|$ with $\partial^{\beta} P_{\beta} \equiv 1$ (see Lemma 3), and let U_{j} be pairwise disjoint (open) neighbourhoods of G_{j} such that $\overline{U_{j+1}} \cap K_{j}=\varnothing$ for all j. Then define f on U_{j} as

$$
f(x)=\lambda_{i_{j}}^{\beta} P_{\beta}(x)
$$

We will need the following "Carleman-type" approximation lemma.
Lemma 4 Let f and G be as above. Then for any sequence $\left\{\varepsilon_{j}\right\}_{j=0}^{\infty}, \varepsilon_{j} \searrow 0$ as $j \rightarrow \infty$, there exists $g \in L(\Omega)$ such that

$$
\begin{equation*}
\|f-g\|_{0, G_{j}} \leq \varepsilon_{j} \tag{8}
\end{equation*}
$$

where $\|\cdot\|_{0, E}$, as before, denotes the uniform norm on E.
Assuming the lemma, fix a sequence $\left\{\tau_{j}\right\}_{j=0}^{\infty}, \tau_{j} \searrow 0$ as $j \rightarrow \infty$. Now choose a sequence $\left\{\varepsilon_{j}\right\}, \varepsilon_{j} \searrow 0$ as $j \rightarrow \infty$ such that if (8) is satisfied for a function $g \in L(\Omega)$, then

$$
\begin{equation*}
\left\|\partial^{\beta} g-\lambda_{i_{j}}^{\beta}\right\|_{0, F_{j}}<\tau_{j}, \quad j \in I_{\beta} \tag{9}
\end{equation*}
$$

This can be done by choosing ε_{j} small enough, since $\partial^{\beta} f=\lambda_{i_{j}}^{\beta}$ on F_{j}.

The function g has the desired properties. Indeed, let γ be an admissible path for Ω with end point $b \in \partial \Omega$. Then we claim that $[\gamma]=\gamma([0,1])$ must intersect all F_{j}, except possibly finitely many of them. Combining the claim with (9) and the choice of $\left\{\lambda_{i}^{\beta}\right\}$ proves the theorem.

To prove the claim, assume that $[\gamma]$ does not intersect infinitely many F_{j}, say $\left\{F_{j_{m}}\right\}_{m=1}^{\infty}$ with $j_{m} \nearrow \infty$ as $m \rightarrow \infty$. It then follows that there exists an m_{0} such that for each $m>m_{0}$, one can find $\nu=\nu\left(j_{m}\right)$ such that $[\gamma]$ intersects $B\left(a_{j_{m} \nu}, \delta_{j}\right)$ and $B\left(a_{j_{m} \nu}^{\prime}, \delta_{j}\right)$ and where each $E_{j_{m} \nu}$ is either the outer boundary (in \mathbf{R}^{n}) of $\left(\overline{\Omega_{j_{m}}}\right)^{\wedge}$ or $E_{j_{m} \nu}$ surrounds the point b. Notice that by (7),

$$
\left|a_{j_{m} \nu}-a_{j_{m \nu}}^{\prime}\right| \geq \frac{\operatorname{diam}\left(E_{j_{m} \nu}\right)}{2} \geq 5 \delta_{j}
$$

and thus, from the continuity of γ at b, we must have that $\operatorname{diam}\left(E_{j_{m} \nu}\right) \rightarrow 0$ as $j_{m} \rightarrow \infty$. But this is impossible. In fact, if $E_{j_{m} \nu}$ is the boundary of the unbounded component of $\left(\overline{\Omega_{j_{m}}}\right) \wedge$, then $\operatorname{diam}\left(E_{j_{m} \nu}\right)=\operatorname{diam}\left(\Omega_{j_{m}}\right)$ which grows with m, so that all but a finite number of $E_{j_{m} \nu}$ must be "inner" components of the boundary of $\left(\overline{\Omega_{j_{m}}}\right)^{\wedge}$ which surround the component of the boundary of Ω containing b. But our assumption on the boundary of Ω also makes this impossible. This proves the claim and completes the proof of Theorem 5.

Proof of Lemma 4 Lemma 4 is a consequence of a rather general theorem of A. Sinclair [13, Theorem 1], but we include the following relatively simple proof for the reader's convenience.

Let $\left\{\varepsilon_{k}^{\prime}\right\}_{k=0}^{\infty}$ be the sequence of positive numbers satisfying $\varepsilon_{j}=\sum_{k \geq j} \varepsilon_{k}^{\prime}$. Since G_{0} is an Ω-RKL set and $f \in L\left(U_{0}\right)$, then by Theorem 1 , one can find $g_{0} \in L(\Omega)$ with

$$
\left\|f-g_{0}\right\|_{0, G_{0}} \leq \varepsilon_{0}^{\prime}
$$

Let U_{j}^{\prime} be a neighbourhood of K_{j} such that $U_{j}^{\prime} \cap U_{j+1}=\varnothing$. Define

$$
f_{1}(x)= \begin{cases}g_{0}(x), & x \in U_{0}^{\prime} \\ f(x), & x \in U_{1}\end{cases}
$$

Since $K_{0} \cup G_{1}$ is a RKL-set in Ω and $f_{1} \in L\left(U_{0}^{\prime} \cup U_{1}\right)$, we can find $g_{1} \in L(\Omega)$ such that

$$
\left\|f_{1}-g_{1}\right\|_{0, K_{0} \cup G_{1}} \leq \varepsilon_{1}^{\prime} .
$$

Inductively, for $j \geq 1$, we define

$$
f_{j+1}(x)= \begin{cases}g_{j}(x), & x \in U_{j}^{\prime} \\ f(x), & x \in U_{j+1}\end{cases}
$$

and choose $g_{j+1} \in L(\Omega)$ such that

$$
\left\|f_{j+1}-g_{j+1}\right\|_{0, K_{j} \cup G_{j+1}} \leq \varepsilon_{j+1}^{\prime}
$$

Since $K_{j} \nearrow \Omega$, we have that

$$
g=\lim _{j \rightarrow \infty} g_{j} \quad(\in L(\Omega))
$$

satisfies the lemma.

6.2 A Dirichlet Problem

Our next example is in some sense in the opposite direction of the first one. Given a (smooth) domain Ω, we would like to prescribe (almost everywhere on $\partial \Omega$) the boundary values of an L-analytic function in Ω, together with the boundary values of a fixed number of its derivatives, as we approach the boundary of Ω in the normal direction (a "weakened" Dirichlet problem).

We first prove an abstract Carleman-type approximation theorem when F is without interior.

Proposition 5 Let $L \in £_{r}^{n}, \Omega$ be a domain in \mathbf{R}^{n} and let $V=V(\Omega)$ be a Banach space such that the pair (L, V) satisfies Conditions 1 and 2. Let F be a closed subset of Ω with $F^{\circ}=\varnothing$ and assume that there exists an exhaustion of Ω by compact sets K_{j} (that is, $K_{0}=\varnothing, K_{j} \subset K_{j+1}^{\circ}$ and $\bigcup_{j=0}^{\infty} K_{j}=\Omega$) which is "compatible" with F in the sense that for each $j \geq 0$, one has

$$
\begin{equation*}
V_{L}\left(K_{j} \cup\left(K_{j+2} \cap F\right)\right)=E_{L V}\left(K_{j} \cup\left(K_{j+2} \cap F\right)\right) \tag{10}
\end{equation*}
$$

Then for each sequence $\left\{\varepsilon_{j}\right\}_{j=0}^{\infty}, \varepsilon_{j} \searrow 0$ as $j \rightarrow \infty$ and for each $f \in V_{\mathrm{loc}}(F)$, one can find $g \in L(\Omega)$ such that, for all $j \geq 0$,

$$
\|f-g\|_{F \backslash K_{j}^{\circ}}<\varepsilon_{j}
$$

Proof Fix $\left\{\delta_{j}\right\}_{j=0}^{\infty} \subset(0, \infty)$, with $\sum_{j=0}^{\infty} \delta_{j}<\infty$. Let $g_{0}=f$. For each $j \geq 1$, we shall find $g_{j} \in V_{\text {loc }}(\Omega) \cap L\left(K_{j}\right)$ such that

$$
\begin{equation*}
\left\|g_{j-1}-g_{j}\right\|_{K_{j-1}}<\delta_{j-1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|g_{j-1}-g_{j}\right\|_{F \backslash K_{k}^{\circ}}<\frac{\varepsilon_{k}}{2^{j}} \quad \text { for each } k \geq 0 \tag{12}
\end{equation*}
$$

Letting $g=\lim _{j \rightarrow \infty} g_{j}=g_{0}+\sum_{j=1}^{\infty}\left(g_{j}-g_{j-1}\right)$ will give the result.
First, for each $j \geq 1$, fix $\varphi_{j} \in C_{0}^{\infty}\left(K_{j+1}^{\circ}\right), 0 \leq \varphi_{j} \leq 1$ and $\varphi_{j} \equiv 1$ on some neighbourhood of K_{j}. We now proceed by induction on j. By (10) with $j=0$, we can find $h_{1} \in L(\Omega)$ such that

$$
\left\|g_{0}-h_{1}\right\|_{K_{2} \cap F}<\mu_{1}
$$

where $\mu_{1} \in(0, \infty)$ will be specified below. Let

$$
g_{1}=h_{1} \varphi_{1}+g_{0}\left(1-\varphi_{1}\right)
$$

Then $g_{1} \in V_{\text {loc }}(\Omega) \cap L\left(K_{1}\right)$, and it follow from Condition 1 that

$$
\left\|g_{0}-g_{1}\right\|_{F}=\left\|\left(g_{0}-h_{1}\right) \varphi_{1}\right\|_{F} \leq C\left(\varphi_{1}\right)\left\|g_{0}-h_{1}\right\|_{K_{2} \cap F}<C\left(\varphi_{1}\right) \mu_{1}
$$

and

$$
\left\|g_{0}-g_{1}\right\|_{F \backslash K_{2}^{\circ}}=0
$$

Consequently, (11) and (12) hold for $j=1$ if $C\left(\varphi_{1}\right) \mu_{1} \leq \varepsilon_{1} / 2$. Note that (11) is an empty condition at this stage since K_{0} is the empty set.

Suppose now that we have found g_{0}, \ldots, g_{J} such that (11) and (12) hold for $1 \leq$ $j \leq J$. By (10) with $j=J$, one can finds $h_{J+1} \in L(\Omega)$ such that

$$
\begin{equation*}
\left\|g_{J}-h_{J+1}\right\|_{K_{J} \cup\left(K_{J+2} \cap F\right)}<\mu_{J+1} \tag{13}
\end{equation*}
$$

where μ_{J+1} is a small positive constant to be chosen later. Let

$$
g_{J+1}=h_{J+1} \varphi_{J+1}+g_{J}\left(1-\varphi_{J+1}\right)
$$

Then

$$
\left\|g_{J}-g_{J+1}\right\|_{K_{J}}=\left\|\left(g_{J}-h_{J+1}\right) \varphi_{J+1}\right\|_{K_{J}}=\left\|g_{J}-h_{J+1}\right\|_{K_{J}}<\mu_{J+1}
$$

which gives (11) (with $j=J+1$) whenever $\mu_{J+1} \leq \delta_{J}$. Since $\left\|g_{J}-g_{J+1}\right\|_{F \backslash K_{J+2}}=0$, it is enough, in order to get (12), to require that

$$
\left\|g_{J}-g_{J+1}\right\|_{F}<\frac{\varepsilon_{J+1}}{2^{J+1}}
$$

But this follows from (13) and Condition 1 if μ_{J+1} is small enough. Indeed,

$$
\begin{aligned}
\left\|g_{J}-g_{J+1}\right\|_{F} & =\left\|\left(g_{J}-h_{J+1}\right) \varphi_{J+1}\right\|_{F} \leq C\left(\varphi_{J+1}\right)\left\|g_{J}-h_{J+1}\right\|_{F \cap K_{J+2}} \\
& <C\left(\varphi_{J+1}\right) \mu_{J+1},
\end{aligned}
$$

and thus it suffices to take $\mu_{J+1}=\min \left(\delta_{J}, \varepsilon_{J+1} /\left(2^{J+1} C\left(\varphi_{J+1}\right)\right)\right)$. This completes the proof.

We shall also need the following lemma.
Lemma 5 For $0<d<1$, denote by $Q_{d}^{\prime}=[-d, d]_{y_{1}} \times[-d, d]_{y_{2}} \times \cdots \times[-d, d]_{y_{n-1}}$ the $n-1$ dimensional closed cube centered at zero in \mathbf{R}^{n-1} and let $Q_{d}=Q_{d}^{\prime} \times[0,2 d]_{y_{n}}$. Let $s \in \mathbf{Z}_{+}$be fixed. Given $h_{0}, \ldots, h_{s} \in C\left(Q_{d}^{\prime}\right)$, there exists a function $H \in$ $C^{\infty}\left(Q_{d} \backslash\left(Q_{d}^{\prime} \times\{0\}\right)\right) \cap C\left(Q_{d}\right)$ such that, if $y^{\prime}=\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$, then

$$
\begin{equation*}
\frac{\partial^{k} H}{\partial y_{n}^{k}}\left(y^{\prime}, y_{n}\right) \rightarrow h_{k}\left(y^{\prime}\right) \tag{14}
\end{equation*}
$$

uniformly on Q_{d}^{\prime} as $y_{n} \rightarrow 0,0 \leq k \leq s$.
Remark 4 We first note that (14) and the mean-value theorem implies that the onesided derivatives at zero exist and

$$
\left.\frac{\partial^{k} H}{\partial y_{n}^{k}}\right|_{\left(y^{\prime}, 0+\right)}=h_{k}\left(y^{\prime}\right)
$$

Remark 5 The lemma is easily proved if we assume that $h_{0}, h_{1}, \ldots, h_{s} \in C^{\infty}\left(Q_{d}^{\prime}\right)$ since in this case it suffices to take

$$
H\left(y^{\prime}, y_{n}\right)=\sum_{k=0}^{s} \frac{y_{n}^{k}}{k!} h_{k}\left(y^{\prime}\right)
$$

The proof of the general case is an adaptation of this idea using approximation and a partition of unity.

Proof of Lemma 5 Let $\left\{\varphi_{j}\right\}, j=2,3, \ldots, \varphi_{j} \in C^{\infty}(\mathbf{R})$ such that $\operatorname{supp}\left(\varphi_{j}\right) \subset$ $\left(\frac{1}{j+1}, \frac{1}{j-1}\right), 0 \leq \varphi_{j} \leq 1$, and $\sum_{j=2}^{\infty} \varphi_{j} \equiv 1$ on $(0,1 / 2)$. Let $\left\|\varphi_{j}^{(k)}\right\|_{0}=: \lambda_{k j}$ and $M:=\max _{0 \leq k \leq s}\left\|h_{k}\right\|_{0, Q_{d}^{\prime}}$. Let $\left\{\varepsilon_{j}\right\}_{j=2}^{\infty} \subset(0,1)$ be a sequence of decreasing numbers tending to zero. By the Weierstrass approximation theorem in several variables, for each k and $j, 0 \leq k<s$ and $j=2,3, \ldots$, we can find $h_{k j} \in C^{\infty}\left(Q^{\prime}\right)$ (in fact polynomials) such that

$$
\left\|h_{k j}-h_{k}\right\|_{0, Q_{d}^{\prime}}<\varepsilon_{j} .
$$

We claim that the function

$$
\begin{gathered}
H\left(y^{\prime}, y_{n}\right)=\sum_{k=0}^{s} \sum_{j=2}^{\infty} \frac{y_{n}^{k}}{k!} h_{k j}\left(y^{\prime}\right) \varphi_{j}\left(y_{n}\right), \quad \text { when } y_{n}>0 \\
H\left(y^{\prime}, 0\right)=h_{0}\left(y^{\prime}\right)
\end{gathered}
$$

has the desired properties whenever the sequence $\left\{\varepsilon_{j}\right\}$ is chosen to satisfy $\sum_{j \geq 2} \varepsilon_{j} \lambda_{k j}<\infty$, for each $k, 0 \leq k<s$. Indeed let us assume that $0<y_{n}<$ $\frac{1}{j_{0}+1}<1 / 2$. Then

$$
\begin{aligned}
\left|H\left(y^{\prime}, y_{n}\right)-h_{0}\left(y^{\prime}\right)\right| & =\left\lvert\, \sum_{j=2}^{\infty}\left(\left.h_{0 j}\left(y^{\prime}\right)-h_{0}\left(y^{\prime}\right) \varphi_{j}\left(y_{n}\right)+\sum_{k=1}^{s} \sum_{j=2}^{\infty} \frac{y_{n}^{k}}{k!} h_{k j}\left(y^{\prime}\right) \varphi_{j}\left(y_{n}\right) \right\rvert\,\right.\right. \\
& \leq 2 \varepsilon_{j_{0}}+(M+1) \sum_{k=1}^{s} \frac{y_{n}^{k}}{k!}
\end{aligned}
$$

and thus $\left|H\left(y^{\prime}, y_{n}\right)-h_{0}\left(y^{\prime}\right)\right| \rightarrow 0$ uniformly as $y_{n} \rightarrow 0$. Similarly, since

$$
\begin{aligned}
\sum_{j \geq 2} \varphi_{j}^{\prime}\left(y_{n}\right)=0,0<y_{n}< & 1 / 2 \text {, we have } \\
\left|\frac{\partial H}{\partial y_{n}}\left(y^{\prime}, y_{n}\right)-h_{1}\left(y^{\prime}\right)\right|= & \left\lvert\, \sum_{k=1}^{s} \sum_{j=2}^{\infty} \frac{y_{n}^{k-1}}{(k-1)!} h_{k j}\left(y^{\prime}\right) \varphi_{j}\left(y_{n}\right)\right. \\
& \left.+\sum_{k=0}^{s} \sum_{j=2}^{\infty} \frac{y_{n}^{k}}{k!} h_{k j}\left(y^{\prime}\right) \varphi_{j}^{\prime}\left(y_{n}\right)-\sum_{j=2}^{\infty} h_{1}\left(y^{\prime}\right) \varphi_{j}\left(y_{n}\right) \right\rvert\, \\
\leq \mid & \sum_{j=2}^{\infty}\left(h_{1 j}\left(y^{\prime}\right)-h_{1}\left(y^{\prime}\right)\right) \varphi_{j}\left(y_{n}\right) \mid \\
& +\left|\sum_{k=2}^{s} \sum_{j=2}^{\infty} \frac{y_{n}^{k-1}}{(k-1)!} h_{k j}\left(y^{\prime}\right) \varphi_{j}\left(y_{n}\right)\right| \\
& +\left|\sum_{k=0}^{s} \sum_{j=2}^{\infty} \frac{y_{n}^{k}}{k!}\left(h_{k j}\left(y^{\prime}\right)-h_{k}\left(y^{\prime}\right)\right) \varphi_{j}^{\prime}\left(y_{n}\right)\right| \\
\leq & 2 \varepsilon_{j_{0}}+(M+1) \sum_{k=2}^{s} \frac{y_{n}^{k-1}}{(k-1)!}+\sum_{k=0}^{s} \sum_{j \geq j_{0}} \frac{y_{n}^{k}}{(k)!} \varepsilon_{j} \lambda_{1 j},
\end{aligned}
$$

assuming that $0<y_{n}<\frac{1}{j_{0}+1}$. Thus $\left|\frac{\partial H}{\partial y_{n}}\left(y^{\prime}, y_{n}\right)-h_{1}\left(y^{\prime}\right)\right| \rightarrow 0$ uniformly as $y_{n} \rightarrow 0$. The proof of the other cases is very similar.

Theorem 6 Let $L \in £_{r}^{n}$ and let Ω be a domain of class C^{r+1} in \mathbf{R}^{n}. Let $h_{k}, k=$ $0,1, \ldots, r-1$, be σ-measurable functions which are finite σ-almost everywhere, where σ is the $n-1$ dimensional Lebesgue measure on $\partial \Omega$. Then there exists $h \in L(\Omega)$ such that, for $k=0, \ldots, r-1$, and for σ-almost all $x \in \partial \Omega$, the limit of $\frac{\partial^{k} h}{\partial \vec{n}_{x}^{k}}(y)$ is equal to $h_{k}(x)$, where the derivatives are taken in the direction of the outer normal at x, and $y \in \Omega$ tends to $x \in \partial \Omega$ along that normal direction.

Proof We will begin the proof by constructing a special family of C^{r}-diffeomorphisms from n-dimensional closed cubes into $\bar{\Omega}$. We will use the notations introduced in Lemma 5. Fix a point b on the boundary of Ω and choose an (orthonormal) coordinate system $y=\left(y_{1}, \ldots, y_{n}\right)$ such that $y(b)=0$ and for some $\delta>0$ there is $\psi \in C^{r+1}\left(Q_{\delta}^{\prime}\right)$ with $\psi\left(0^{\prime}\right)=0,\left.\frac{\partial \psi}{\partial y_{k}}\right|_{0^{\prime}}=0(k=1,2, \ldots, n-1)$ such that

$$
\left\{y\left|y=\left(y^{\prime}, y_{n}\right) \in \partial \Omega, y^{\prime} \in Q_{\delta}^{\prime},\left|y_{n}\right|<2 \delta\right\}=\left\{y \mid y_{n}=\psi\left(y^{\prime}\right), y^{\prime} \in Q_{\delta}^{\prime}\right\}\right.
$$

Moreover we suppose that

$$
\left\{y \mid \psi\left(y^{\prime}\right)<y_{n}<2 \delta, y^{\prime} \in Q_{\delta}^{\prime}\right\} \subset \Omega .
$$

Let us define $\Psi: Q_{\delta}^{\prime} \times \mathbf{R} \rightarrow \mathbf{R}^{n}$ by:

$$
\Psi\left(y^{\prime}, y_{n}\right)=\left(y^{\prime}, \psi\left(y^{\prime}\right)\right)-y_{n} \vec{n}_{\tilde{y}}
$$

Here $\vec{n}_{\tilde{y}}$ denotes the outer normal (unit) vector to $\partial \Omega$ at the point $\tilde{y}=\left(y^{\prime}, \psi\left(y^{\prime}\right)\right)$. The Jacobian of Ψ at the origin is the identity. By the inverse mapping theorem, there exists $d, 0<d<\delta$, such that Ψ is a C^{r}-diffeomorphism of Q_{d} on $\Psi\left(Q_{d}\right)$ and such that $\Psi\left(Q_{d}\right) \subset \bar{\Omega}$.

Using the fact that $\partial \Omega$ is compact, we now choose a finite family of maps Ψ_{ν} and closed cubes $Q_{(\nu)}:=Q_{d_{\nu}}=Q_{d_{\nu}}^{\prime} \times\left[0,2 d_{\nu}\right]=: Q_{(\nu)}^{\prime} \times\left[0,2 d_{\nu}\right]$ such that $\left.\Psi_{\nu}\right|_{Q_{(\nu)}}$ is a C^{r}-diffeormophism, $\Psi_{\nu}\left(Q_{(\nu)}^{\prime} \times\{0\}\right) \subset \partial \Omega, \Psi_{\nu}\left(Q_{(\nu)} \backslash\left(Q_{(\nu)}^{\prime} \times\{0\}\right)\right) \subset \Omega$ and $\partial \Omega \subset \cup_{\nu} \Psi_{\nu}\left(U_{(\nu)} \times\{0\}\right)$, where $U_{(\nu)}:=\left(-d_{\nu}, d_{\nu}\right)_{y_{1}} \times \cdots \times\left(-d_{\nu}, d_{\nu}\right)_{y_{n-1}}$.

Let h_{0}, \ldots, h_{r-1} be any $r \sigma$-measurable functions defined and σ-finite almost everywhere on $\partial \Omega$. We can construct a family $\left\{E_{m}\right\}_{m=1}^{\infty}, E_{m} \subset \partial \Omega$ with the following properties:
a) The sets $E_{m}, m=1,2, \ldots$, are compact, pairwise disjoint, nowhere dense subsets of $\partial \Omega$ with $\sigma\left(E_{m}\right) \neq 0$.
b) For each $k \in\{0,1, \ldots, r-1\}$ and $m \in\{1,2, \ldots\}$, we have $h_{k} \in C\left(E_{m}\right)$.
c) $\sigma\left(\partial \Omega \backslash\left(\cup_{m} E_{m}\right)\right)=0$.
d) For each $m \in\{1,2, \ldots\}$, there exists ν_{m} such that $\Psi_{\nu_{m}}^{-1}\left(E_{m}\right) \subset\left(U_{\left(\nu_{m}\right)} \times 0\right)$ where $\Psi_{\nu_{m}}$ belongs to the finite family of diffeomorphisms chosen above.
e) For some fixed $\mu \in(0,1)$ and for each $m \in\{1,2, \ldots\}$ there is a $c>0$ such that for any $x \in E_{m}$ and $\varepsilon<d_{\nu_{m}}$ one has

$$
\begin{equation*}
M^{n-2+\mu}\left(\left\{B(x, \varepsilon) \cap \Psi_{\nu_{m}}\left(Q_{\left(\nu_{m}\right)}^{\prime} \times\{0\}\right)\right\} \backslash E_{m}\right) \geq c \varepsilon^{n-2+\mu} \tag{15}
\end{equation*}
$$

where M^{λ} denotes the λ-dimensional Hausdorff content.
For example, the first three properties are obtained using Lusin's theorem [12, Theorem 2.24], and the fourth follows easily. In order to have additionally property (e), we use the following lemma, taking products of the set E from this lemma with $n-2$ dimensional closed cubes which gives an n-1-dimensional analog of the lemma, that is (15).

Lemma 6 For each $\mu \in(0,1)$ and $\eta>0$, there exist a compact set $E \subset[0,1]$ and a constant $c>0$ (independent of η) such that $M^{1}(E)>1-\eta$ and for each $t \in \mathbf{R}$ and each $\varepsilon>0$, one has

$$
M^{\mu}(\{\tau| | \tau-t \mid<\varepsilon\} \backslash E) \geq c \varepsilon^{\mu}
$$

Proof Fix μ and η. It is well known (see [8, Section 4.10] and use the fact that a Hausdorff measure and the corresponding Hausdorff content have the same zero sets) that there exists a Cantor-type set $K \subset[0,1]$ with $M^{1}(K)=0$ and $M^{\mu}(K)>0$. For $m \in \mathbf{Z}_{+}$and $j \in\left\{0, \ldots, 2^{m}-1\right\}$, define $K_{m}^{j}=\left\{(\tau+j) 2^{-m} \mid \tau \in K\right\}$. Since $M^{1}\left(K_{m}^{j}\right)=0$, there are open sets U_{m}^{j} containing K_{m}^{j} with $M^{1}\left(U_{m}^{j}\right)<\eta 2^{-2 m-1}$. It suffices to take (as can be easily checked)

$$
E=[0,1] \backslash \bigcup_{m=0}^{\infty} \bigcup_{j=0}^{2^{m}-1} U_{m}^{j}
$$

We now return to the proof of Theorem 6. Given $\left\{E_{m}\right\}$ as above, define

$$
F_{1}=\Psi_{\nu_{1}}\left(\Psi_{\nu_{1}}^{-1}\left(E_{1}\right) \times\left(0, \delta_{1}\right]\right)
$$

where $0<\delta_{1} \leq d_{\nu_{1}}$, and for $m \geq 2$,

$$
F_{m}=\Psi_{\nu_{m}}\left(\Psi_{\nu_{m}}^{-1}\left(E_{m}\right) \times\left(0, \delta_{m}\right]\right)
$$

where $0<\delta_{m} \leq \min \left\{d_{\nu_{m}}, \delta_{m-1} / 2\right\}$ is so small that F_{m} is disjoint from $F_{1} \cup \cdots \cup F_{m-1}$ and $\left\{F_{m}\right\}$ is a locally finite family in Ω.

Let $F=\bigcup_{m=1}^{\infty} F_{m}$. We note that F is a (relatively) closed Ω-RKL set with no interior. Let $G_{m}=\Psi_{\nu_{m}}^{-1}\left(E_{m}\right)$ and $h_{k, m}^{\star}\left(y^{\prime}\right)=h_{k}\left(\Psi_{\nu_{m}}\left(y^{\prime}, 0\right)\right)$ and note that $h_{k, m}^{\star}$ is (defined and) continuous on G_{m}. We extend $h_{k, m}^{\star}$ continuously to all of $Q_{\left(\nu_{m}\right)}^{\prime}$ and still denote this extension by $h_{k, m}^{\star}$. Using Lemma 5 with $s=r-1$, for each $m \geq 1$, there exist functions $H_{m}^{\star} \in C^{\infty}\left(Q_{\left(\nu_{m}\right)} \backslash\left(Q_{\left(\nu_{m}\right)}^{\prime} \times\{0\}\right)\right) \cap C\left(Q_{\left(\nu_{m}\right)}\right)$ such that for each k, $0 \leq k \leq r-1$,

$$
\frac{\partial^{k} H_{m}^{\star}}{\partial y_{n}^{k}}\left(y^{\prime}, y_{n}\right) \rightarrow h_{k, m}^{\star}\left(y^{\prime}\right)
$$

uniformly on $Q_{\left(\nu_{m}\right)}^{\prime}$ as $y_{n} \rightarrow 0^{+}$. Define H_{m} in $C^{r}\left(\Psi_{\nu_{m}}\left(Q_{\left(\nu_{m}\right)}^{\circ}\right)\right)$ by $H_{m}(x)=$ $H_{m}^{\star}\left(\Psi_{\nu_{m}}^{-1}(x)\right)$.

From our construction, it follows that one can choose (open) neighbourhoods Ω_{m} of F_{m} such that the sets Ω_{m} are still pairwise disjoint and $\Omega_{m} \subset \Psi_{\nu_{m}}\left(Q_{\left(\nu_{m}\right)}^{\circ}\right)$. Define

$$
\left.f\right|_{\Omega_{m}}=\left.H_{m}\right|_{\Omega_{m}}
$$

If V is the space $B C^{r-1+\mu}(\Omega)$ then $f \in V_{\text {loc }}(F)$ (note that f can be extended from (possibly smaller) neighbourhoods Ω_{m}^{\prime} of F_{m} to a function in $V_{\text {loc }}(\Omega)$).

It follows also from our construction of F (recalling (15)) that there exists an exhaustion of Ω by compact sets K_{j} such that

1) each $Y_{j}=K_{j} \cup\left(K_{j+2} \cap F\right)$ is an Ω-RKL set;
2) for each Y_{j}, there exists a constant $c_{j}=c\left(Y_{j}\right)>1$ such that for all balls $B(x, \varepsilon) \subset$ Ω we have

$$
c_{j} M^{n-1+\mu}\left(B(x, \varepsilon) \backslash Y_{j}\right) \geq \varepsilon^{n-1+\mu} \geq M_{*}^{n-1+\mu}\left(B(x, \varepsilon) \backslash Y_{j}^{\circ}\right)
$$

It then follows from Theorem $4\left((\mathrm{i})\right.$ and (iv)) that $V_{L}\left(Y_{j}\right)=M_{L V}\left(Y_{j}\right)=E_{L V}\left(Y_{j}\right)$. Thus by Proposition 5, one can find $h \in L(\Omega)$ such that

$$
\|f-h\|_{F \backslash K_{j}^{\circ}}<\frac{1}{j}
$$

The function h has the desired properties.
It can be proved that Theorem 6 remains true if we require only C^{r}-smoothness of $\partial \Omega$.

References

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems. D. Van Nostrand, Princeton, Toronto, New York, London, 1965.
[2] A. Boivin and P. V. Paramonov, Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions. Mat. Sb. (4) 189(1998), 481-502.
[3] A. Dufresnoy, P. M. Gauthier and W. H. Ow, Uniform approximation on closed sets by solutions of elliptic partial differential equations. Complex Variables. 6(1986), 235-247.
[4] B. Fuglede, Asymptotic paths for subharmonic functions. Math. Ann. 213(1975), 261-274.
[5] D. Gaier, Lectures on Complex Approximation. Birkhäuser, Boston, Basel, Stuttgart, 1987.
[6] S. J. Gardiner, Harmonic Approximation. London Math. Society Lecture Notes 221, Cambridge University Press, 1995.
[7] L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer-Verlag, Berlin, New York, 1983.
[8] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.
[9] R. Narasimhan, Analysis on Real and Complex Manifolds. North-Holland, Amsterdam, New York, Oxford, 1968.
[10] A. G. O'Farrell, T-invariance. Proc. Roy. Irish Acad. (2) 92A(1992), 185-203.
[11] P. V. Paramonov and J. Verdera, Approximation by solutions of elliptic equations on closed subsets of Euclidean space. Math. Scand. 74(1994), 249-259.
[12] W. Rudin, Real and Complex Analysis. Third Edition, McGraw Hill, New York \& als, 1987.
[13] A. Sinclair, A general solution for a class of approximation problems. Pacific J. Math. 8(1958), 857-866.
[14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, New Jersey, 1970.
[15] J. Verdera, C^{m} approximation by solutions of elliptic equations, and Calderón-Zygmund operators. Duke Math. J. 55(1987), 157-187.

Department of Mathematics
University of Western Ontario
London, Ontario
N6A 5B7
e-mail: boivin@uwo.ca
Département de mathématiques et de statistique
Université de Montréal
CP 6128, Succ. Centre-ville
Montréal, Québec
H3C 3J7
e-mail: gauthier@dms.umontreal.ca

Mechanics and Mathematics Faculty
Moscow State (Lomonosov) University
119899 Moscow
Russia
e-mail: petr@paramonov.msk.ru

[^0]: Received by the editors September 28, 2000.
 The first author was supported by a grant from NSERC of Canada. The second author was partially supported by grants from NSERC of Canada and FCAR Québec. The third author was supported by grants RFFR 00-01-00618 and RFFR 00-15-96008 (Russia).

 AMS subject classification: Primary: 30D40, 30E10, 31B35, 35Jxx, 35J67; secondary: 41A30.
 Keywords: approximation on closed sets, elliptic operator, strongly elliptic operator, L-meromorphic and L-analytic functions, localization operator, Banach space of distributions, Dirichlet problem.
 (C)Canadian Mathematical Society 2002.

