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Approximation on Closed Sets by Analytic
or Meromorphic Solutions
of Elliptic Equations and Applications

André Boivin, Paul M. Gauthier and Petr V. Paramonov

Abstract. Given a homogeneous elliptic partial differential operator L with constant complex coeffi-

cients and a class of functions (jet-distributions) which are defined on a (relatively) closed subset of a

domain Ω in Rn and which belong locally to a Banach space V , we consider the problem of approxi-

mating in the norm of V the functions in this class by “analytic” and “meromorphic” solutions of the

equation Lu = 0. We establish new Roth, Arakelyan (including tangential) and Carleman type theo-

rems for a large class of Banach spaces V and operators L. Important applications to boundary value

problems of solutions of homogeneous elliptic partial differential equations are obtained, including

the solution of a generalized Dirichlet problem.

1 Introduction

Let L be a homogeneous elliptic partial differential operator with constant complex
coefficients (such as powers of the Cauchy-Riemann operator ∂̄ or the Laplacean∆).
In [2], given a Banach space (V, ‖ ‖) of functions (distributions) on Rn, n ≥ 2, we

studied the problem of approximating, on a closed subset F of Rn, the solutions of the
equation Lu = 0 by global (L-analytic or L-meromorphic) solutions of the equation.
Approximation theorems of Runge-type and Arakelyan-type were obtained when-
ever the operator L and the Banach space V satisfied certain conditions.

In this paper, we first generalize the results of [2] and [11] to Banach spaces
of functions (distributions) defined on any domain Ω of Rn (n ≥ 2). As already
mentioned in [2], the only purpose of one of the important conditions on L and V

([2, Condition (4)]) was to obtain a “special maximum principle” ([2, Lemma 1]).
Weakened assumptions of this lemma have now become our new Condition 4 (see
Section 2 below), and consequently our proof has been slightly modified (and im-
proved). For all operators L under consideration, our conditions are satisfied by a

large class of classical (non-weighted) spaces.

Using results on the solution of the Dirichlet problem for strongly elliptic equa-
tions in bounded smooth domains, we find (see Proposition 2 below) that in this case

our conditions are also satisfied by a wide class of spaces, for which an application of

Received by the editors September 28, 2000.
The first author was supported by a grant from NSERC of Canada. The second author was partially

supported by grants from NSERC of Canada and FCAR Québec. The third author was supported by grants
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our theorems gives important new examples in the theory of tangential approxima-
tion (see Theorem 4(iii)).

Using Carleman-type approximation results (see Lemma 4 and Proposition 5),
we obtain in Section 6 some very interesting examples of the possible boundary be-
haviour of solutions of homogeneous elliptic partial differential equations, analogous
to those described in [5, Chapter IV, Section 5B] for functions holomorphic in a disc.

First, given a domain Ω satisfying some mild conditions, we construct an L-analytic
function f in Ω such that the limit of f and of all its derivatives along any path end-
ing at the boundary of Ω does not exist (Theorem 5). To our knowledge, only very
special cases of this result were known for the ∂̄ equation in R2 and the Laplacean in

Rn, n ≥ 2 (see [5, Chapter IV, Section 5], [6, Section 8]).

When the boundary ofΩ is sufficiently smooth, we are also able to solve (see The-
orem 6) a “weakened” Dirichlet problem where the boundary values of an L-analytic

function, together with the boundary values of a fixed number of its derivatives are
prescribed (almost everywhere on ∂Ω) as we approach the boundary in the normal
direction.

2 Definitions and Notation

For the reader’s convenience, we summarize the definitions and main notation of [2].
Note that in [2], these were given only for Rn, but here we extend them very naturally

to general domains.

Let Ω be any fixed domain in Rn, n ≥ 2. We let V = V (Ω) stand for a Banach
space, whose norm is denoted by ‖ ‖, which contains C∞0 (Ω), the set of test functions

in Ω and is contained in
(

C∞0 (Ω)
) ∗

, the space of distributions on Ω. We make some
additional assumptions on V .

Conditions 1 and 2 We assume that V is a topological C∞0 (Ω)-submodule of
(

C∞0 (Ω)
)∗

, which means that for f ∈ V and ϕ ∈ C∞0 (Ω), we have ϕ f ∈ V with

‖ϕ f ‖ ≤ C(ϕ)‖ f ‖(1)

and

|〈 f , ϕ〉| ≤ C(ϕ)‖ f ‖,(2)

where 〈 f , ϕ〉 denotes the action in Ω of the distribution f on the test function ϕ and
C(ϕ) is a constant independent of f . We note that this implies that the imbeddings

C∞0 (Ω) ↪→ V and V ↪→
(

C∞0 (Ω)
) ∗

are continuous (see [2, Section 2.1]).

Given a closed subset F in Ω, let I(F) be the closure in V of (the family of) those
f ∈ V whose support in Ω in the sense of distributions (which will be denoted

by supp( f )) is disjoint from F, and let V (F) = V/I(F). The Banach space V (F),
endowed with the quotient norm, should be viewed as the natural (Whitney type)
version of V on F (see [14, Chapter 6]). We will write ‖ f ‖F for the norm of the
equivalence class (jet) f(F) := f + I(F) in V (F) of the distribution f ∈ V .
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For any open set D in Ω, let

Vloc (D) =
{

f ∈
(

C∞0 (D)
) ∗ ∣
∣ fϕ ∈ V for each ϕ ∈ C∞0 (D)

}

,

where ϕ and fϕ are extended to be identically zero in Ω \D. We endow V loc (D) with
the projective limit topology of the spaces V (K) partially ordered by inclusion of the

compact sets K ⊂ D. For a closed set F in Ω, define V loc (F) = Vloc (Ω)/ J(F), where
J(F) is the closure in V loc (Ω) of the family of those distributions in V loc (Ω) whose
support is disjoint from F. The topology on V loc (F) will be the quotient topology.
Note that for compact sets K, the topological spaces V (K) and V loc (K) are identical.

For f ∈ V loc (Ω), we put f(F),loc := f + J(F). If D is a neighbourhood of F in Ω,
then each h ∈ V loc (D) naturally defines an element (jet) h(F),loc in Vloc (F) by taking
h(F),loc to be the closure in V loc (Ω) of the set of f ∈ V loc (Ω) such that f = h (as
distributions) in some neighbourhood (depending on f ) of F. In particular, this

works for each h ∈ C∞(D) ⊂ Vloc (D). For f(F),loc ∈ Vloc (F), we will write f(F),loc ∈
V (F) (or more briefly f ∈ V (F)), if V ∩ f(F),loc 6= ∅. We will then write ‖ f(F),loc‖F , or
equivalently ‖ f ‖F , to mean ‖g‖F , where g ∈ V ∩ f(F),loc . Practically the same proof
as in [2, Section 2.1] shows that V ∩ J(F) = I(F) holds for each closed set F in Ω,

which means that ‖ f(F),loc‖F is well-defined.
For a multi-index α = (α1, . . . , αn), with α j ∈ Z+(:= {0, 1, 2, . . . }), we let

|α| = α1 + · · ·+αn, α! = α1! · · ·αn!, xα = xα1

1 · · · x
αn
n for x = (x1, . . . , xn) ∈ Rn and

∂α = (∂/∂x1)α1 · · · (∂/∂xn)αn .

We denote by B(a, δ) (respectively B̄(a, δ)) the open (respectively closed) ball with
center a ∈ Rn and radius δ > 0. If B = B(a, δ) and θ > 0 then θB = B(a, θδ) and
θB̄ = B̄(a, θδ).

Throughout this paper we let L(ξ) =
∑

|α|=r aαξ
α, ξ ∈ Rn, be a fixed homoge-

neous polynomial of degree r (r ≥ 1) with complex constant coefficients and which
satisfies the ellipticity condition L(ξ) 6= 0, ξ 6= 0. We associate to L the homogeneous
elliptic operator of order r

L = L(∂) =
∑

|α|=r

aα∂
α.

Let D be an open set in Rn and denote by L(D) the set of distributions f in D such
that L f = 0 in D in the sense of distributions. It is well known [7, Theorem 4.4.1]
that L(D) ↪→ C∞(D). Therefore if D ⊂ Ω, then L(D) ⊂ V loc (D), and if { fm} is

a sequence in L(D) with fm → f in Vloc (D) as m → ∞, then f ∈ L(D), since
convergence in V loc (D) is stronger than convergence in the sense of distributions,
which preserves L(D) [7, Theorem 4.4.2].

Functions from L(D) will be called L-analytic in D. We shall also say that a dis-

tribution g in D is L-meromorphic in D if supp(Lg) is discrete in D and for each
a ∈ supp(Lg) (a ∈ D) there exist h, which is L-analytic in a neighbourhood of a,
k ∈ Z+ and λα ∈ C, 0 ≤ |α| ≤ k, such that

g(x) = h(x) +
∑

|α|≤k

λα∂
α
Φ(x − a)
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in some neighbourhood of a, where Φ is a special fundamental solution of L as de-
scribed in [7, Theorem 7.1.20]. The points a ∈ supp(Lg) will be called the poles of

g.
We recall (see [3, p. 239] or [15, p. 163]) that there exists a k > 1 such that if T is

a distribution with compact support contained in B(a, δ) and f = Φ ∗ T, then, for
|x − a| > kδ, we have the Laurent-type expansion:

f (x) = 〈T(y),Φ(x − y)〉 =
∑

|α|≥0

cα∂
α
Φ(x − a),(3)

where cα = (−1)|α|(α!)−1〈T(y), (y − a)α〉. The series converges in C∞({|x − a| >
kδ}), which means that the series can be differentiated term by term and all such
series converge uniformly on {|x − a| ≥ k ′δ}, k ′ > k.

Let ϕ ∈ C∞0 (Ω). The Vitushkin localisation operator Vϕ :
(

C∞0 (Ω)
) ∗
→

(

C∞0 (Ω)
)∗

associated to L and ϕ is defined as Vϕ f =
(

Φ ∗ (ϕL f )
)
∣

∣

Ω
, where in

the last equality ∗ denotes the convolution operator in Rn.

Condition 3 We require that for each ϕ ∈ C∞0 (Ω), the operator Vϕ be invariant
on Vloc (Ω), i.e. Vϕ must send continuously V loc (Ω) into Vloc (Ω). This means that
if K is a compact subset of Ω and supp(ϕ) ⊂ K, then for each f ∈ V loc (Ω) one has

Vϕ f ∈ Vloc (Ω) and

‖Vϕ f ‖K ≤ C‖ f ‖K ,(4)

where C is independent of f .
We make one more assumption on V in relation with L.

Condition 4 For each open ball B with 3B̄ ⊂ Ω, there exist d > 0 and C > 0 such
that for each h ∈ C∞(Rn) satisfying Lh = 0 outside of B and h(x) = O(|x|−d) as
|x| → ∞, one can find v ∈ L(Ω) with

(h− v) ∈ V and ‖h− v‖ ≤ C‖h‖3B̄.(5)

In this assumption, instead of the constant 3, one can take any fixed real number
greater than 1.

3 Some Remarks on Conditions 1 to 4

All Conditions 1 to 4 are satisfied by classical (non-weighted) spaces on any domain
Ω in Rn, for example BCm(Ω), BCm+µ(Ω), VMO(Ω) and the Sobolev spaces W

p
m(Ω),

1 ≤ p <∞. We shall give the definitions and prove this assertion only for the spaces
V = BCm(Ω) and BCm+µ(Ω).

For m ∈ Z+, let BCm(Ω) be the space of all m-times continuously differentiable
functions f : Ω→ C with (finite) norm

‖ f ‖m,Ω = max
|α|≤m

sup
x∈Ω
|∂α f (x)|.
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If m ∈ Z+ and 0 < µ < 1, then

BCm+µ(Ω) = { f ∈ BCm(Ω) | ωm
µ ( f ,∞) <∞ and ωm

µ ( f , δ)→ 0 as δ → 0},

whereωm
µ ( f , δ) = sup

|∂α f (x)−∂α f (y)|
|x−y|µ , the supremum being taken over all multi-index

α such that |α| = m and all x, y ∈ Ω with 0 < |x − y| < δ. The norm in this space
is defined as

‖ f ‖m+µ,Ω = max{‖ f ‖m,Ω, ω
m
µ ( f ,∞)}.

We shall omit the index Ω in the last norm wheneverΩ = Rn. Finally, for any ρ ≥ 0,
we set Cρ(Ω) =

(

BCρ(Ω)
)

loc
.

Proposition 1 Let Ω be a domain in Rn, n ≥ 2, and let ρ ≥ 0. Then the pair
(

L,V (Ω)
)

with V (Ω) = BCρ(Ω) satisfies Conditions 1, 2, 3 and satisfies Condition 4
with v = 0.

Proof Conditions 1 and 2 are easily verified. Condition 3 is proved in [10, Corol-

lary 5.6] in the case Ω = Rn for all spaces mentioned above, since C∞0 (Rn) is locally
dense in each of them. As Condition 3 is local, it holds for each pair

(

L,V (Ω)
)

under
consideration.

To obtain Condition 4 with v = 0, we can easily use [2, Lemma 1] (see also [11,

Lemma 2]). In fact, by this lemma, for each open ball B with 3B̄ ⊂ Ω, we even can
find d > 0 and C > 0 such that if h satisfies the hypotheses of Condition 4 with this
d, then

‖h‖ρ ≤ C‖h‖ρ,3B̄.

Since ‖h‖ρ,Ω ≤ ‖h‖ρ, the proof is complete.

In [2, Corollary 1] (see also the brief discussion thereafter) and [11, Theorem 4]
one sees how (whenever Conditions 1 to 3 are satisfied) Condition 4 can affect L-
meromorphic and L-analytic approximation in the special case of weighted uniform
holomorphic approximation (n = 2, L = ∂̄).

We also wish to present here an example of a pair (L,V ) satisfying Conditions 1, 2
and 4 (with v = 0), but not 3. Hence, this example eludes our method. The example
seems new even without considering Condition 4.

Take L = ∂̄, Ω = R2(= C), B1 = {z ∈ C | |z| < 1} (the unit disk), and let

V = BC0(R2) ∩ BC1(B1) with norm ‖ f ‖ = max{‖ f ‖0, ‖ f ‖1,B1
}.

Conditions 1 and 2 are easily verified. Condition 4 (with v = 0, d = 1) follows
from the maximum principle and from trivial estimates of derivatives (outside 2B̄)

of a function, holomorphic outside B̄ and vanishing at ∞. Finally, fixing any ϕ ∈
C∞0 (3B1) such that ϕ(z) = z̄ on 2B1, one can check that there exists f ∈ BC0(R2),
f = 0 in B1, with Vϕ f |B1

not in BC1(B1). In fact, in this case

Vϕ f (w) = f (w)ϕ(w)−
1

π

∫

f (z)∂̄ϕ(z)

w − z
dx1 dx2 z = x1 + ix2,
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so that one needs only to study the behavior (in B1) of the function

∫

2B1\B1

f (z)

(w − z)2
dx1 dx2.

Easily, there is g ∈ C(R2), g ≥ 0, supp(g) ⊂ {x1 ≥ 2|x2|} ∩ B1, such that

∫

g(z)

|z|2
dx1 dx2 = +∞.

It is enough to take f (z) = g(z−1) and let w ∈ (0, 1) tend to 1. Indeed, set 1−w = δ.
Then, it is enough to show that

∫

g(z)

(z + δ)2
dx1 dx2

is unbounded as δ tends to zero. In fact,

Re

(

1

(z + δ)2

)

≥
1

2|z + δ|2

on supp(g), and if the integrals

∫

g(z)

|z + δ|2
dx1 dx2

were uniformly bounded for δ ∈ (0, 1), then by Fatou’s lemma, the integral with

δ = 0 would be convergent, which is not the case.
The following proposition provides us with another class of examples for which

Conditions 1 to 4 are satisfied. These in turn will allow us to obtain in Section 4
new results on “tangential” approximation. Given m and q in Z+, with q ≤ m, and a

bounded domain Ω, set

BCm
q (Ω) = { f ∈ BCm(Ω) | for each α, |α| ≤ q, lim

x→∂Ω
∂α f (x) = 0},

which is a Banach space with the norm ‖ f ‖m,Ω.

Proposition 2 Let L be a strongly elliptic operator of order r = 2`, ` ∈ Z+, ` ≥ 1 (see
[1, p. 46]). Let m, q ∈ Z+, m ≥ `− 1, q ≤ `− 1. If Ω is bounded and ∂Ω is of class C s,
s = max{2`, [n/2] + 1 + m} (see [1, p. 128]), then the pair

(

L,V = BCm
q (Ω)

)

satisfies
Conditions 1 to 4.

Proof Since
(

BCm
q (Ω)

)

loc
= Cm(Ω), Conditions 1, 2 and 3 are satisfied. Let us

prove Condition 4. Fix any ball B, 3B̄ ⊂ Ω, and take any h ∈ C∞(Rn) with Lh = 0
outside B. Now, results on solvability and regularity of the classical Dirichlet problem
applied to the operator L (see [1, Theorem 8.2 and Lemma 7.7, Theorem 9.8 and
Lemma 9.1, Theorem 3.9]) show that under the hypotheses of Proposition 2, there
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exists v0 ∈ Cm(Ω̄) ∩ L(Ω) such that u0 = h − v0 satisfies ∂αu0|∂Ω = 0 for each α,
|α| ≤ `− 1 (so that h− v0 ∈ V ), and moreover

‖u0‖ ≡ ‖u0‖m,Ω ≤ C1‖h‖s,Ω,

where C1 is independent of h. We observe that we have not used here the property
Lh = 0 in Rn \ B. We also remark that our notations for m and ‖ · ‖m,Ω are different

from those of [1], and that the last inequality follows from [1, (9.23)] since

‖u0‖L2(Ω) ≤ ‖u0‖W 2
` (Ω) ≤ C2‖h‖W 2

` (Ω),

by [1, Theorems 8.1 and 8.2].
By [11, Lemmas 1 and 3], we can choose d > 0 and C3 > 0 (independently of h)

such that if additionally h(x) = O(|x|−d) as |x| → ∞, then (see also [2, Lemma 1])

h = Φ ∗ Lh, and ‖h‖m,Ω ≤ ‖h‖m,Rn ≤ C3‖h‖m,3B.

Fix χ ∈ C∞0 ( 3
2
B), χ = 1 on B. Then for x ∈ Rn \ 2B̄, we get

h(x) =

∫

B

Φ(x − y)Lh(y)χ(y) dy =

∫

B

L
(

χ(y)Φ(x − y)
)

h(y) dy

and so since Ω is bounded,

‖h‖s,Ω\2B̄ ≤ C4‖h‖0, 3
2

B ≤ C4‖h‖m,3B.

We can now find a function h1 ∈ C∞(Rn), h1 = h on Rn \ 2B̄ such that

‖h1‖s,Ω ≤ C5‖h‖s,Ω\2B̄ ≤ C6‖h‖m,3B.

Let now v1 and u1 = h1 − v1 satisfy the same properties as the functions v0 and u0

above, but taken with h1 instead of h. Then

‖u1‖m,Ω ≤ C2‖h1‖s,Ω ≤ C7‖h‖m,3B.

The function v = v1 is as desired. In fact, since ∂αu1 = 0 on ∂Ω for |α| ≤ `− 1, then

∂α(h− v)|∂Ω = ∂
α(h1 − v1)|∂Ω = 0

for |α| ≤ `− 1, so that h− v ∈ V (Ω). Finally

‖h− v‖m,Ω = ‖h− h1 + h1 − v1‖m,Ω ≤ ‖h‖m,Ω + ‖h1‖m,Ω + ‖u1‖m,Ω ≤ C‖h‖m,3B,

since clearly

‖h1‖m,Ω ≤ ‖h1‖s,Ω ≤ C6‖h‖m,3B.

Note that the constants C2 to C7 and C are independent of h. This ends the proof.
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Let Ω be any domain in Rn. Denote by Ω∗ = Ω ∪ {∗} the one point compactifi-
cation of Ω and by X◦ the interior of a set X. For i ≥ 1, let

Xi = {x ∈ Ω | dist(x, ∂Ω) ≥ 1/i, |x| ≤ i}.

Then each Xi is a compact subset of Ω such that both Ω∗ \ Xi and Ω∗ \ X◦i are
connected and such that Xi ⊂ X◦i+1.

In the next sections, we shall need frequently the following easy consequence of a

very general version of Runge’s theorem.

Proposition 3 Assume V = V (Ω) satisfies Conditions 1 and 2. Then, given i ≥ 1,
εi > 0 and f ∈ L(X◦i+1), one can find hi ∈ L(Ω) such that

‖ f − hi‖Xi
≤ εi .

Proof By the generalization of Runge’s theorem found in [7, Theorem 4.4.5], there

exists a sequence {gm}
∞
m=1 ⊂ L(Ω) such that gm → f in C∞(X◦i+1) and hence gm →

f in V (Xi) as m → ∞, which gives the result if one takes hi = gm for some m
sufficiently large.

4 Approximation Theorems

As in [2, Section 3], a closed set F inΩ will be called a Roth-Keldysh-Lavrent’ev set in
Ω, or more simply anΩ-RKL set, ifΩ∗ \F is connected and locally connected. In this

section, we formulate our main approximation results. They extend the analogous
ones of [2] from Rn to general domains Ω. Using Proposition 2, concrete new appli-
cations to “tangential” approximation are also obtained (see Theorem 4(iii)). Note
that Carleman-type approximation results will also be presented in Section 6 with

interesting applications to the boundary behaviour of L-analytic functions.
We first obtain sufficient conditions for approximation of Runge-type on closed

sets.

Theorem 1 Let Ω be a domain in Rn, n ≥ 2. Let
(

L,V (Ω)
)

be a pair satisfying
Conditions 1 to 4, F be a (relatively) closed subset of Ω, and f be L-analytic in some

neighbourhood of F in Ω. Then, for each ε > 0, there exists an L-meromorphic function
g on Ω with poles off F such that ( f(F),loc − g(F),loc ) ∈ V (F) and

‖ f − g‖F < ε.

Moreover, if F is an Ω-RKL set, then g can be chosen in L(Ω).

The next theorem deals with approximation of a single function and shows that
the problem is essentially local.

Theorem 2 Let Ω be a domain in Rn (n ≥ 2),
(

L,V (Ω)
)

be a pair satisfying Condi-
tions 1 to 4, F be a (relatively) closed subset of Ω, and f ∈ V loc (Ω). Then the following
are equivalent:
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(i) for each positive number ε, there exists an L-meromorphic function g in Ω with
poles off F such that ( f(F),loc − g(F),loc ) ∈ V (F) and ‖ f − g‖F < ε;

(ii) for each ball B, B̄ ⊂ Ω and positive number ε, there exists g such that Lg = 0 on
some neighbourhood of F ∩ B̄ and ‖ f − g‖F∩B̄ < ε;

(iii) the previous property is satisfied by each ball from some locally finite family of balls
{B ′j} covering F, where B ′j ⊂ Ω for each j.

For any subset X of Rn, we let L(X) stand for the collection of all functions f
defined and L-analytic in some neighbourhood (depending on f ) of X. For a closed
set F inΩwe denote by MLV (F) (respectively ELV (F)) the space of all f(F),loc ∈ Vloc (F)
which satisfy the following property: for each ε > 0 there exists an L-meromorphic

function g in Ω with poles outside of F (respectively a function g ∈ L(Ω)) such that
f − g ∈ V (F) and ‖ f − g‖F < ε. We also introduce the space VL(F) = Vloc (F) ∩
L(F◦). Whenever Conditions 1 to 4 hold, we have that by Theorem 1, MLV (F) is the
closure in V loc (F) of the space {h(F),loc ∈ Vloc (F) | h ∈ L(F)}. Moreover, if F is an

Ω-RKL set, then MLV (F) = ELV (F).
We now study the necessity of being a Ω-RKL set for approximation by L-analytic

functions.
Let K be a compact set in Ω. Denote by K̂ the union of K and all the (connected)

components of Ω \ K which are pre-compact in Ω. Obviously, the property K̂ = K
means precisely that Ω∗ \ K is connected, so that K is a Ω-RKL set.

Define

N(K) = NLV (K) = {a ∈ K̂ \ K | (Φa)(K) 6∈ ELV (K)},

where Φa(x) = Φ(x − a).

Condition N We shall say that a pair
(

L,V (Ω)
)

satisfies Condition N (“nonremov-
ability of holes”) if N(K) 6= ∅ for each compact set K with “holes”, i.e. such that
K 6= K̂ .

Remark 1 The same proof as in [2, Proposition 2] shows that
(

L,V (Ω)
)

satisfies
Condition N whenever all of the following conditions hold:

(1)
(

L,V (Ω)
)

satisfies Conditions 1 and 2;
(2) n = 2 or n ≥ 3 and L has the following symbol:

L(ξ) = P2(ξ)Qr−2(ξ), ξ ∈ Rn,

where P2 is some homogeneous (elliptic) polynomial of order two with real coef-

ficients (so that P2 has constant sign in Rn\{0}), and Qr−2 is some homogeneous
polynomial of order r − 2;

(3) Ord(V ) ≥ r − 1.

For the definition of Ord(V ) when Ω is Rn, see [2, Section 4.3]. Replacing Rn by Ω
everywhere in that definition, we get the corresponding definition of Ord

(

V (Ω)
)

for
an arbitrary domain Ω.

One can also find in [2, Section 4.2] some informative examples concerning Con-

dition N.
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Theorem 3 If
(

L,V (Ω)
)

satisfies Conditions 1 to 4, then the following statements are
equivalent:

(i) for each (relatively) closed set F ⊂ Ω one has

MLV (F) = ELV (F)⇐⇒ {F is a Ω-RKL set};

(ii) for each compact set K ⊂ Ω,

MLV (K) = ELV (K)⇐⇒ {Ω∗ \ K is connected};

(iii) the pair
(

L,V (Ω)
)

satisfies Condition N.

Remark 2 Our proof of (ii)⇒ (iii) in fact shows that if for some compact set K in
Ω there is a function f ∈ L(K) which is not in ELV (K), then the same is true for some
Φa, a ∈ K̂ \ K.

From Theorems 2 and 3, it is not difficult to obtain the corresponding approxi-
mation (reduction) theorems for classes of functions (jets), analogous to that of [2,

Proposition 1]. In this direction, we present only the following result which extends
[2, Theorem 4]. Note that (iii) is a result on tangential approximation.

Theorem 4 Let L (of order r) satisfy property (2) of Remark 1, Ω be an arbitrary
domain in Rn and F be a closed subset of Ω.

(i) For V = BCρ
(

Ω)
)

, where ρ ∈ (r − 1, r) (see Section 3), the equality VL(F) =
MLV (F) holds if and only if there exists a constant A ∈ (0,+∞) such that for each
ball B in Ω

Mn−r+ρ
∗ (B \ F◦) ≤ AMn−r+ρ(B \ F).

(ii) For V = BCm(Ω) (m = r, r + 1, . . . ) or V = BCρ(Ω) (ρ > r, ρ 6∈ Z) the equality
VL(F) = MLV (F) holds if and only if F◦ is dense in F.

(iii) Let L, Ω and V = BCm
q (Ω) be as in Proposition 2, and additionally suppose that

m ≥ r. Then the equality VL(F) = MLV (F) holds if and only if F◦ is dense in F.
(iv) For each space V (Ω), which is mentioned in (i), (ii) or (iii), the equality VL(F) =

ELV (F) holds if and only if VL(F) = MLV (F) and (at the same time) F is a Ω-RKL

set.

Here Mn−r+ρ(·) and M
n−r+ρ
∗ (·) are the Hausdorff and lower Hausdorff contents of

order n− r + ρ respectively (cf. [15]).

5 Proofs of Theorems 1, 2, 3 and 4

Fix a pair
(

L,V (Ω)
)

satisfying Conditions 1 to 4, and let k = k(L) > 1 be the
constant which appears in (3).
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Lemma 1 Let B = B(a, δ) be a ball in Ω with 6kB̄ ⊂ Ω and T be a distribution with
supp(T) ⊂ B. Set h = Φ∗T and let

hm =

∑

0≤|α|≤m

cα∂
α
Φ(x − a)

be the partial sums of the Laurent series expansion of h outside kB̄ (see (3)). Then

there exists M ∈ Z+ such that for all m ≥ M, one can find vm ∈ L(Ω) such that
h− hm − vm ∈ V (Ω \ 2kB) and

‖h− hm − vm‖Ω\2kB → 0 as m→∞.

Proof First recall that hm → h in C∞(Ω \ kB̄). Let ψ ∈ C∞(Rn) such that

ψ =

{

0 in a neighbourhood of kB̄

1 in a neighbourhood of Rn \ 2kB.

Take d from Condition 4 for the ball 2kB and the pair (L,V ). Since we have that
ψhm → ψh in C∞(Ω), there exists M ∈ Z+ such that for m ≥ M, one has

h∗m ≡ ψ(h− hm) = O(|x|−d) as |x| → ∞.

Using Condition 4 when m ≥ M, we can find vm ∈ L(Ω) such that (h∗m − vm) ∈ V
and

‖h∗m − vm‖ ≤ C‖h∗m‖6kB̄ → 0 as m→∞.

By definition, (h− hm − vm) ∈ V (Ω \ 2kB) and

‖h− hm − vm‖Ω\2kB ≤ ‖h
∗
m − vm‖ → 0 as m→∞.

The lemma is proved.

Proof of Theorem 1 The proof relies on a localization technique. Let f be a func-
tion L-analytic on some neighbourhood U of F in Ω and U1 be a neighbourhood
of F, with Ū1 ⊂ U . We extend f to a function (also denoted by f ) in C∞(Ω) so

that f is still L-analytic in a neighbourhood of Ū1. We can find a family of couples
{B(a j , δ j), ϕ j}

∞
j=1 where the family of balls {B j = B(a j , δ j} is locally finite in Ω,

6kB̄ j ⊂ Ω \ F, each ϕ j ∈ C∞0 (B j), with 0 ≤ ϕ j ≤ 1 and
∑∞

j=1 ϕ j = 1 on some

neighbourhood U2 of Ω \U1.
Let f j = Vϕ j

f = Φ∗(ϕ jL f ). Each f j is in C∞(Rn). Let {Xi}, i ≥ 1, be the

sequence of compact sets described before Proposition 3. Put Ji = { j | B j ∩ Xi+1 6=
∅}. Note that L( f −

∑

j∈ J1
f j) = L f −

∑

j∈ J1
ϕ jL f = L f (1 −

∑

j∈ J1
ϕ j) = 0 (i.e.

f −
∑

j∈ J1
f j is L-analytic) in X◦2 . By Proposition 3, one can find P1 ∈ L(Ω) such that

∥

∥

∥
f −
(

∑

J1

f j

)

− P1

∥

∥

∥

X1

<
1

2
.
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Now, since f − (
∑

J1
f j)−P1− (

∑

J2\ J1
f j) is L-analytic in X◦3 , there exists P2 ∈ L(Ω)

such that
∥

∥

∥
f −
(

∑

J1

f j

)

− P1 −
(

∑

J2\ J1

f j

)

− P2

∥

∥

∥

X2

<
1

22
.

Inductively, we can thus find Pi ∈ L(Ω) such that

∥

∥

∥
f −
(

∑

J1

f j

)

− P1 −
(

∑

J2\ J1

f j

)

− P2 − · · · −
(

∑

Ji\ Ji−1

f j

)

− Pi

∥

∥

∥

Xi

<
1

2i
.

so that, setting J0 = ∅, the equality

f =

∞
∑

i=1

(

∑

Ji\ Ji−1

f j + Pi

)

holds in V loc (Ω).
Now, from (3), each f j has a Laurent series expansion

f j(x) =
∑

|α|≥0

c j
α∂

α
Φ(x − a j)

valid outside kB̄ j , and thus on a neighbourhood of F. Using Lemma 1, given any

η j > 0, there exists m j ∈ Z+ and v j ∈ L(Ω) such that if

g j(x) =

m j
∑

|α|=0

c j
α∂

α
Φ(x − a j),

then ( f j − g j − v j) ∈ V (Ω \ 2kB j) and ‖ f j − g j − v j‖Ω\2kB j
< η j .

Put F1 = Ω \ ∪ j(2kB j); then F ⊂ F◦1 and, for all j, ( f j − g j − v j) ∈ V (F1),

‖ f j − g j − v j‖F1
< η j . Fix ε > 0 and choose the sequence {η j}, η j > 0, such that

∑

j η j < ε. Define

g =

∞
∑

i=1

(

∑

Ji\ Ji−1

(g j + v j) + Pi

)

.

Since for each m ≥ 1 the series

+∞
∑

i=m+1

(

∑

Ji\ Ji−1

(g j + v j) + Pi

)

converges in V (Xm), g is L-meromorphic in Ω with “poles” only (possibly) at a j ,
j = 1, 2, . . . . Moreover g ∈ V loc (F1) and

( f − g)(F1),loc =

∞
∑

i=1

(

∑

Ji\ Ji−1

( f j − g j − v j)(F1),loc

)

.
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But then f − g ∈ V (F) and
‖ f − g‖F < ε,

since ( f − g)(F),loc can be defined by the element

∞
∑

i=1

(

∑

Ji\ Ji−1

Ψ j

)

,

where Ψ j ∈ V are such that (Ψ j)(Ω\2kB j ) = ( f j − g j − v j)(Ω\2kB j ) and ‖Ψ j‖ ≤ η j .

This proves the first part of Theorem 1.
Now assume that F is a RKL-set inΩ, i.e. Ω∗\F is connected and locally connected.

It suffices to show that there exists a function h ∈ L(Ω) such that

‖g − h‖F < ε.

Let {a j} j≥1 be the sequence of “poles” of g in Ω. Each a j ∈ Ω \ F and the sequence

has no limit points in Ω. Since Ω∗ \ F is connected and locally connected at the
“point” ∗, we can find paths σ j from a j to ∗, σ j ⊂ Ω \ F, such that the family of
curves {σ j} is locally finite in Ω.

For a fixed j, we can find sequences {a jm
}∞m=0 ⊂ σ j and {r jm

}∞m=0 ⊂ (0, 1) such

that a j0
= a j , a jm

→ ∗ as m→∞, |a jm
− a jm+1

| < r jm+1
, B jm

= B(a jm
, 7kr jm

) ⊂ Ω\F.
Additionally we can require that the family of balls {B jm

} is locally finite in Ω. If
G j =

⋃∞
m=0 B jm

then Ḡ j ∩ F = ∅ and {G j} is also locally finite in Ω.
Set h0 = g. We construct a sequence of functions h j such that h j is L-meromor-

phic on Ω, h j has the same poles (and singular parts) as h j−1 except at a j where h j is
L-analytic, and such that

‖h j−1 − h j‖Ω\G j
<

ε

2 j
.

If such a sequence exists, then h = lim j→∞ h j is in L(Ω). Indeed, by construction

(since {G j} is locally finite), we have G j → {∗} as j → ∞, and thus {h j} is a
Cauchy sequence in V (Xi) for each i. Moreover convergence in V loc (Ω) preserves
L-analyticity. Finally we would have

‖g − h‖F < ε,

as desired.

To construct the functions h j (h0 = g), assume that h` has been constructed for
` ≤ j − 1. Let s0 be the singular part of h j−1 at a j = a j0

. By Lemma 1 (applied to
h = s0 and a = a j1

), we can find an L-meromorphic function s1 in Ω whose only
singularity is at a j1

and such that

‖s0 − s1‖Ω\B j1
<
( 1

2

) ε

2 j
.

By induction, construct an L-meromorphic function sm whose only singularity is at
a jm

and such that

‖sm−1 − sm‖Ω\B jm
<
( 1

2m

) ε

2 j
.
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Finally set

h j = h j−1 +

∞
∑

m=1

(sm − sm−1).

The function h j has the desired properties.

The proofs of Theorems 2, 3 and 4 are also very similar to the proofs of the cor-
responding Theorems in [2], and will not be reproduced here. We simply note that

Rn is to be replaced everywhere by Ω, {∞} (of Rn
∞) by {∗}, PLV by ELV , “bounded”

by “precompact in Ω” and so on. Our Theorem 1 above replaces the corresponding
Theorem 1 of [2]. Balls also sometimes need to be replaced by sets having appro-
priate properties. For example, in the proof of Theorem 1 above, balls B̄(0, i) were

replaced by sets Xi , where, for each i, Ω∗ \ Xi was connected. In Theorem 3, the balls
B(0,R), B(0, 2R) and B(0, 3R) need to be replaced respectively by Ω-precompact do-
mains U , U1 and U2 such that ∂U is smooth, Ū ⊂ U1 ⊂ U1 ⊂ U2 and the union
of all Ω-precompact components of (Ω \ F) \ Ū is not precompact in Ω. The exis-

tence of such domains follows from the existence of an exhaustion of Ω by smooth
domains (which are precompact in Ω) and the assumption made in the proof that
Ω
∗ \ F is not locally connected (see also [5, Chapter IV, Section 2 B]). Of course, the

corresponding conditions on Dm and am need to be changed accordingly. Moreover,

the following version of [2, Lemma 5] is needed in Theorem 3.

Lemma 2 For each open sets U1, U2 such that Ū1 ⊂ U2 ⊂ Ū2 ⊂ Ω, there exists a
positive constant A (depending only on the space V and the sets U1 and U2) such that
for any compact set K and for each f(K) ∈ V (K) one has

‖ f ‖K ≤ A(‖ f ‖K∩Ū2
+ ‖ f ‖K\U1

).

We leave the details to the reader.

6 Boundary Behaviour of L-Analytic Functions

Let$n
r stand for the class of all homogeneous elliptic operators of order r in Rn (n ≥

2, r ≥ 1) with constant complex coefficients (see Section 2 above).
In this section, given L ∈ $n

r and a domain Ω satisfying some mild conditions,
we will construct in Ω solutions of the equation Lu = 0 having some prescribed

boundary behaviour.

6.1 No Limits at the Boundary

Let Ω be a domain in Rn, n ≥ 2, Ω 6= Rn, and let b ∈ ∂Ω. We shall say that a
(continuous) path γ : [0, 1]→ Rn is admissible forΩwith end point b if γ : [0, 1)→ Ω
and γ(1) = b. Given a continuous function f in Ω, denote by Cγ( f ) the cluster set of

f along γ at b, that is:

Cγ( f ) =
{

w ∈ C∗ | there exists a sequence {tn} ⊂ [0, 1)

such that tn → 1 and f
(

γ(tn)
)

→ w as n→∞
}

.
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Theorem 5 Let L ∈ $n
r , and letΩ ⊂ Rn,Ω 6= Rn, be a domain such that its boundary

∂Ω has no (connected) components that consist of a single point. Then there exists g ∈
L(Ω) with the property that for each b ∈ ∂Ω, for each admissible path γ for Ω ending at
b and for each α ∈ Zn

+, one has

Cγ(∂αg) = C∗.

The following proposition and remark show that, at least for L = ∆ in Rn and
L = ∂/∂ z̄ in R2, our theorem is close to being sharp.

Proposition 4 If Ω is a domain in Rn such that ∂Ω has an isolated point b ∈ Rn ∪
{∞}, then for each function f harmonic in Ω or (if n = 2) for each function f holo-
morphic in Ω, there exists an admissible path γ for Ω ending at b such that Cγ( f ) is a
single point in C∗.

Remark 3 It follows from Proposition 4 that for each α ∈ Zn
+ there exists an admis-

sible path γα for Ω ending at b such that Cγα(∂α f ) is just a single point in C∗ since
the point b is also an isolated singularity of the harmonic (or holomorphic) function

∂α f .

Proof of Proposition 4 It is well known that if f is bounded at b (that is in some
punctured neighbourhood of b), then f has a removable singularity at b and that
consequently the proposition holds for every admissible path.

If f is unbounded at b, then the result follows from a generalization of a theorem
of Iversen due to B. Fuglede (see [4, Corollary 1]).

Lemma 3 Let L ∈ $n
r . For each β ∈ Zn

+ there exists a homogeneous polynomial
Pβ ∈ L(Rn) of degree |β| with ∂βPβ ≡ 1.

Proof The lemma is obvious if |β| < r. So let us assume that |β| ≥ r. We claim that

∂βΦ 6≡ 0 on Rn \ {0}, where Φ is a special fundamental solution for L as before (see
Section 2).

Assuming the claim, fix a point a 6= 0 where ∂βΦ(a) 6= 0. By Taylor’s formula, we
have

Φ(x) =

∞
∑

k=0

Qk(x)

where

Qk(x) =
∑

|α|=k

∂αΦ(a)

α!
(x − a)α

belongs to L(Rn) (see [2, Section 2.4]). It suffices to take

Pβ =
Q|β|

∂βΦ(a)
.
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To prove the claim, note that by [15, Lemma 1.1], one has in fact that

∂βΦ(x) =
∑

|α|=|β|−r

cα∂
αδ(x) + K(x),

where δ(·) is the Dirac delta function, cα ∈ C and K is a Calderón-Zygmund (n +
|β|−r)-dimensional kernel. Assuming that ∂βΦ(x) = 0 for all x 6= 0, then K(x) ≡ 0.
Thus

(−i)rξβΦ̃(ξ) =
∑

|α|=|β|−r

cαξ
α,

where Φ̃ denotes the Fourier transform of Φ. On the other hand, since LΦ = δ(·),
one has

(−i)rL(ξ)Φ̃(ξ) ≡ 1.

It follows that ξβ = A(ξ)L(ξ), where A is a polynomial. Choose η = (η1, . . . , ηn)
with η j > 0, j = 1, . . . , n, and fix (ξ2, . . . , ξn) = (η2, . . . , ηn). We have, for all ξ1

(after division by ηβ2

2 · · · η
βn
n ):

ξβ1

1 = A1(ξ1)L1(ξ1),

where L1(ξ1) = L(ξ1, η2, . . . , ηn) and A1(ξ1) are also polynomials. The polynomial

L1(ξ1) has no zeros (on R) and divides ξβ1

1 , so that it is constant. Similarly, we can
show that L is constant on each line through η which is parallel to a coordinate axis.
Since this is true for each point η in the open cone {η | η j > 0, j = 1, . . . , n}, we
conclude that the polynomial L(ξ) is constant in this cone and hence identically con-

stant. Thus L = L(0) = 0, since L is homogeneous of order r ≥ 1. This contradicts
the ellipticity hypothesis, proves the claim and ends the proof of the lemma.

Proof of Theorem 5 Following the idea of the proof of [5, Chapter IV, Section 5,
Theorem 4], we will construct a set of Carleman approximation which must be in-
tersected infinitely often by every admissible path.

By Whitney’s approximation theorem [9, Theorem 1.6.5], we can find a real ana-
lytic functionΨ on Ω such that for each x ∈ Ω one has

1

2
min

(

dist(x, ∂Ω),
1

|x|

)

≤ Ψ(x) ≤ 2 min

(

dist(x, ∂Ω),
1

|x|

)

(6)

From Sard’s theorem [9, Theorem 1.4.6], we can find a sequence {ρ j}
∞
j=0, ρ j ↘ 0

as j → ∞ such that the level sets R j = {x ∈ Ω | Ψ(x) = ρ j} do not contain any

critical point of Ψ, i.e. ∇Ψ 6= 0 on R j and R j consists of only finitely many C∞-
smooth (in fact real analytic) hypersurfaces. Let Ω j = {x ∈ Ω | Ψ(x) > ρ j}. We

additionally require (as we can) that (Ω j)
∧ ⊂ Ω j+1. We define E j = ∂

(

(Ω j)
∧
)

and
note that E j also consists of finitely many C∞-smooth closed hypersurfaces which we

denote E jν , 1 ≤ ν ≤ k j .

For positive but small enough δ j , the δ j-neighbourhood Ω ′j of (Ω j)
∧ is C∞-

smooth, (Ω ′j)
∧
= Ω ′j and E ′j = ∂Ω ′j has the same number k j of components E ′jν
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as E j . The sequence {δ j} is also chosen to satisfy δ j ↘ 0 as j → ∞, Ω ′j ⊂ Ω j+1,

dist(E ′j , E j+1) ≥ 2δ j and δ j < minν(diam E jν)/10. Choose a jν ∈ E jν and a ′jν ∈ E ′jν
such that

|a jν − a ′jν | ≥
diam(E jν)

2
.(7)

Now let

K j = Ω
′
j ,

F j =

k j
⋃

ν=1

{(

E jν \ B(a jν , δ j)
)

∪
(

E ′jν \ B(a ′jν , δ j)
)}

,

and define

F =

∞
⋃

j=0

F j .

For each j, we can find disjoint closed η j-neighbourhoods G j of F j (with 0 <
η j < δ j/4) such that G j+1 ∩ K j = ∅ and Ω∗ \ (G j+1 ∪ K j) is connected.

Finally we define the function f , L-analytic in some neighbourhood of the set
G =

⋃∞
j=0 G j as follows. For each β ∈ Zn

+, we can find Iβ ⊂ Z+ such that
⋃

β∈Zn
+

Iβ =

Z+, each Iβ contains infinitely many elements and Iβ ∩ Iβ ′ = ∅ for β 6= β ′. Let

{λβi }i∈Iβ be a fixed sequence in C such that C∗ is the set of its limit points. Now fix
j ∈ Z+. Then j is in position i j in Iβ for some (unique) β ∈ Zn

+. Let Pβ ∈ L(Rn)

be a polynomial of degree |β| with ∂βPβ ≡ 1 (see Lemma 3), and let U j be pairwise
disjoint (open) neighbourhoods of G j such that U j+1∩K j = ∅ for all j. Then define
f on U j as

f (x) = λβi j
Pβ(x).

We will need the following “Carleman-type” approximation lemma.

Lemma 4 Let f and G be as above. Then for any sequence {ε j}
∞
j=0, ε j ↘ 0 as

j →∞, there exists g ∈ L(Ω) such that

‖ f − g‖0,G j
≤ ε j(8)

where ‖ · ‖0,E, as before, denotes the uniform norm on E.

Assuming the lemma, fix a sequence {τ j}
∞
j=0, τ j ↘ 0 as j → ∞. Now choose a

sequence {ε j}, ε j ↘ 0 as j →∞ such that if (8) is satisfied for a function g ∈ L(Ω),
then

‖∂βg − λβi j
‖0,F j

< τ j , j ∈ Iβ .(9)

This can be done by choosing ε j small enough, since ∂β f = λβi j
on F j .
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The function g has the desired properties. Indeed, let γ be an admissible path for
Ω with end point b ∈ ∂Ω. Then we claim that [γ] = γ([0, 1]) must intersect all F j ,

except possibly finitely many of them. Combining the claim with (9) and the choice

of {λβi } proves the theorem.
To prove the claim, assume that [γ] does not intersect infinitely many F j , say

{F jm
}∞m=1 with jm ↗ ∞ as m → ∞. It then follows that there exists an m0 such

that for each m > m0, one can find ν = ν( jm) such that [γ] intersects B(a jmν , δ j)

and B(a ′jmν
, δ j) and where each E jmν is either the outer boundary (in Rn) of (Ω jm

)∧

or E jmν surrounds the point b. Notice that by (7),

|a jmν − a ′jmν | ≥
diam(E jmν)

2
≥ 5δ j ,

and thus, from the continuity of γ at b, we must have that diam(E jmν) → 0 as
jm → ∞. But this is impossible. In fact, if E jmν is the boundary of the unbounded

component of (Ω jm
)∧, then diam(E jmν) = diam(Ω jm

) which grows with m, so that all

but a finite number of E jmν must be “inner” components of the boundary of (Ω jm
)∧

which surround the component of the boundary ofΩ containing b. But our assump-

tion on the boundary of Ω also makes this impossible. This proves the claim and
completes the proof of Theorem 5.

Proof of Lemma 4 Lemma 4 is a consequence of a rather general theorem of A. Sin-
clair [13, Theorem 1], but we include the following relatively simple proof for the
reader’s convenience.

Let {ε ′k}
∞
k=0 be the sequence of positive numbers satisfying ε j =

∑

k≥ j ε
′
k. Since

G0 is an Ω-RKL set and f ∈ L(U0), then by Theorem 1, one can find g0 ∈ L(Ω) with

‖ f − g0‖0,G0
≤ ε ′0.

Let U ′j be a neighbourhood of K j such that U ′j ∩U j+1 = ∅. Define

f1(x) =

{

g0(x), x ∈ U ′0
f (x), x ∈ U1.

Since K0 ∪ G1 is a RKL-set in Ω and f1 ∈ L(U ′0 ∪U1), we can find g1 ∈ L(Ω) such

that
‖ f1 − g1‖0,K0∪G1

≤ ε ′1.

Inductively, for j ≥ 1, we define

f j+1(x) =

{

g j(x), x ∈ U ′j
f (x), x ∈ U j+1,

and choose g j+1 ∈ L(Ω) such that

‖ f j+1 − g j+1‖0,K j∪G j+1
≤ ε ′j+1.

Since K j ↗ Ω, we have that

g = lim
j→∞

g j

(

∈ L(Ω)
)

satisfies the lemma.
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6.2 A Dirichlet Problem

Our next example is in some sense in the opposite direction of the first one. Given
a (smooth) domain Ω, we would like to prescribe (almost everywhere on ∂Ω) the
boundary values of an L-analytic function in Ω, together with the boundary values

of a fixed number of its derivatives, as we approach the boundary of Ω in the normal
direction (a “weakened” Dirichlet problem).

We first prove an abstract Carleman-type approximation theorem when F is with-
out interior.

Proposition 5 Let L ∈ $n
r , Ω be a domain in Rn and let V = V (Ω) be a Banach

space such that the pair (L,V ) satisfies Conditions 1 and 2. Let F be a closed subset of Ω
with F◦ = ∅ and assume that there exists an exhaustion of Ω by compact sets K j (that

is, K0 = ∅, K j ⊂ K◦j+1 and
⋃∞

j=0 K j = Ω) which is “compatible” with F in the sense
that for each j ≥ 0, one has

VL

(

K j ∪ (K j+2 ∩ F)
)

= ELV

(

K j ∪ (K j+2 ∩ F)
)

.(10)

Then for each sequence {ε j}
∞
j=0, ε j ↘ 0 as j → ∞ and for each f ∈ V loc (F), one can

find g ∈ L(Ω) such that, for all j ≥ 0,

‖ f − g‖F\K◦j
< ε j .

Proof Fix {δ j}
∞
j=0 ⊂ (0,∞), with

∑∞
j=0 δ j < ∞. Let g0 = f . For each j ≥ 1, we

shall find g j ∈ Vloc (Ω) ∩ L(K j ) such that

‖g j−1 − g j‖K j−1
< δ j−1,(11)

and

‖g j−1 − g j‖F\K◦
k
<
εk

2 j
for each k ≥ 0.(12)

Letting g = lim j→∞ g j = g0 +
∑∞

j=1(g j − g j−1) will give the result.
First, for each j ≥ 1, fix ϕ j ∈ C∞0 (K◦j+1), 0 ≤ ϕ j ≤ 1 and ϕ j ≡ 1 on some

neighbourhood of K j . We now proceed by induction on j. By (10) with j = 0, we
can find h1 ∈ L(Ω) such that

‖g0 − h1‖K2∩F < µ1,

where µ1 ∈ (0,∞) will be specified below. Let

g1 = h1ϕ1 + g0(1− ϕ1).

Then g1 ∈ Vloc (Ω) ∩ L(K1), and it follow from Condition 1 that

‖g0 − g1‖F = ‖(g0 − h1)ϕ1‖F ≤ C(ϕ1)‖g0 − h1‖K2∩F < C(ϕ1)µ1
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and

‖g0 − g1‖F\K◦2
= 0.

Consequently, (11) and (12) hold for j = 1 if C(ϕ1)µ1 ≤ ε1/2. Note that (11) is an
empty condition at this stage since K0 is the empty set.

Suppose now that we have found g0, . . . , g J such that (11) and (12) hold for 1 ≤
j ≤ J. By (10) with j = J, one can finds h J+1 ∈ L(Ω) such that

‖g J − h J+1‖K J∪(K J+2∩F) < µ J+1,(13)

where µ J+1 is a small positive constant to be chosen later. Let

g J+1 = h J+1ϕ J+1 + g J(1− ϕ J+1).

Then

‖g J − g J+1‖K J
= ‖(g J − h J+1)ϕ J+1‖K J

= ‖g J − h J+1‖K J
< µ J+1,

which gives (11) (with j = J + 1) whenever µ J+1 ≤ δ J. Since ‖g J − g J+1‖F\K J+2
= 0,

it is enough, in order to get (12), to require that

‖g J − g J+1‖F <
ε J+1

2 J+1
.

But this follows from (13) and Condition 1 if µ J+1 is small enough. Indeed,

‖g J − g J+1‖F = ‖(g J − h J+1)ϕ J+1‖F ≤ C(ϕ J+1)‖g J − h J+1‖F∩K J+2

< C(ϕ J+1)µ J+1,

and thus it suffices to take µ J+1 = min
(

δ J, ε J+1/
(

2 J+1C(ϕ J+1)
)

)

. This completes

the proof.

We shall also need the following lemma.

Lemma 5 For 0 < d < 1, denote by Q ′d = [−d, d]y1
× [−d, d]y2

×· · ·× [−d, d]yn−1

the n− 1 dimensional closed cube centered at zero in Rn−1 and let Qd = Q ′d× [0, 2d]yn
.

Let s ∈ Z+ be fixed. Given h0, . . . , hs ∈ C(Q ′d), there exists a function H ∈

C∞
(

Qd \ (Q ′d × {0})
)

∩C(Qd) such that, if y ′ = (y1, y2, . . . , yn−1), then

∂kH

∂yk
n

(y ′, yn)→ hk(y ′)(14)

uniformly on Q ′d as yn → 0, 0 ≤ k ≤ s.

Remark 4 We first note that (14) and the mean-value theorem implies that the one-
sided derivatives at zero exist and
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∂kH

∂yk
n

∣

∣

∣

(y ′,0+)
= hk(y ′).

Remark 5 The lemma is easily proved if we assume that h0, h1, . . . , hs ∈ C∞(Q ′d)

since in this case it suffices to take

H(y ′, yn) =

s
∑

k=0

yk
n

k!
hk(y ′).

The proof of the general case is an adaptation of this idea using approximation and a
partition of unity.

Proof of Lemma 5 Let {ϕ j}, j = 2, 3, . . . , ϕ j ∈ C∞(R) such that supp(ϕ j) ⊂

( 1
j+1
, 1

j−1
), 0 ≤ ϕ j ≤ 1, and

∑∞
j=2 ϕ j ≡ 1 on (0, 1/2). Let ‖ϕ(k)

j ‖0 =: λk j and

M := max0≤k≤s ‖hk‖0,Q ′
d
. Let {ε j}

∞
j=2 ⊂ (0, 1) be a sequence of decreasing numbers

tending to zero. By the Weierstrass approximation theorem in several variables, for

each k and j, 0 ≤ k < s and j = 2, 3, . . . , we can find hk j ∈ C∞(Q ′) (in fact
polynomials) such that

‖hk j − hk‖0,Q ′
d
< ε j .

We claim that the function

H(y ′, yn) =

s
∑

k=0

∞
∑

j=2

yk
n

k!
hk j(y ′)ϕ j(yn), when yn > 0,

H(y ′, 0) = h0(y ′)

has the desired properties whenever the sequence {ε j} is chosen to satisfy
∑

j≥2 ε jλk j < ∞, for each k, 0 ≤ k < s. Indeed let us assume that 0 < yn <
1

j0+1
< 1/2. Then

|H(y ′, yn)− h0(y ′)| =
∣

∣

∣

∞
∑

j=2

(h0 j(y ′)− h0(y ′)ϕ j(yn) +

s
∑

k=1

∞
∑

j=2

yk
n

k!
hk j(y ′)ϕ j(yn)

∣

∣

∣

≤ 2ε j0
+ (M + 1)

s
∑

k=1

yk
n

k!
,

and thus |H(y ′, yn) − h0(y ′)| → 0 uniformly as yn → 0. Similarly, since
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∑

j≥2 ϕ
′
j(yn) = 0, 0 < yn < 1/2, we have

∣

∣

∣

∂H

∂yn
(y ′, yn)− h1(y ′)

∣

∣

∣
=

∣

∣

∣

s
∑

k=1

∞
∑

j=2

yk−1
n

(k− 1)!
hk j(y ′)ϕ j(yn)

+

s
∑

k=0

∞
∑

j=2

yk
n

k!
hk j(y ′)ϕ ′j(yn)−

∞
∑

j=2

h1(y ′)ϕ j(yn)
∣

∣

∣

≤
∣

∣

∣

∞
∑

j=2

(

h1 j(y ′)− h1(y ′)
)

ϕ j(yn)
∣

∣

∣

+

∣

∣

∣

∣

s
∑

k=2

∞
∑

j=2

yk−1
n

(k− 1)!
hk j(y ′)ϕ j(yn)

∣

∣

∣

∣

+
∣

∣

∣

s
∑

k=0

∞
∑

j=2

yk
n

k!

(

hk j(y ′)− hk(y ′)
)

ϕ ′j(yn)
∣

∣

∣

≤ 2ε j0
+ (M + 1)

s
∑

k=2

yk−1
n

(k− 1)!
+

s
∑

k=0

∑

j≥ j0

yk
n

(k)!
ε jλ1 j ,

assuming that 0 < yn <
1

j0+1
. Thus | ∂H

∂yn
(y ′, yn)− h1(y ′)| → 0 uniformly as yn → 0.

The proof of the other cases is very similar.

Theorem 6 Let L ∈ $n
r and let Ω be a domain of class C r+1 in Rn. Let hk, k =

0, 1, . . . , r− 1, be σ-measurable functions which are finite σ-almost everywhere, where

σ is the n − 1 dimensional Lebesgue measure on ∂Ω. Then there exists h ∈ L(Ω) such

that, for k = 0, . . . , r − 1, and for σ-almost all x ∈ ∂Ω, the limit of ∂kh
∂~nk

x
(y) is equal

to hk(x), where the derivatives are taken in the direction of the outer normal at x, and
y ∈ Ω tends to x ∈ ∂Ω along that normal direction.

Proof We will begin the proof by constructing a special family of C r-diffeomorph-

isms from n-dimensional closed cubes into Ω̄. We will use the notations introduced
in Lemma 5. Fix a point b on the boundary of Ω and choose an (orthonormal)
coordinate system y = (y1, . . . , yn) such that y(b) = 0 and for some δ > 0 there is
ψ ∈ Cr+1(Q ′δ) with ψ(0 ′) = 0, ∂ψ

∂yk

∣

∣

0 ′
= 0 (k = 1, 2, . . . , n− 1) such that

{y | y = (y ′, yn) ∈ ∂Ω, y ′ ∈ Q ′δ, |yn| < 2δ} = {y | yn = ψ(y ′), y ′ ∈ Q ′δ}.

Moreover we suppose that

{y | ψ(y ′) < yn < 2δ, y ′ ∈ Q ′δ} ⊂ Ω.

Let us defineΨ : Q ′δ × R→ Rn by:

Ψ(y ′, yn) =
(

y ′, ψ(y ′)
)

− yn~n ỹ .
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Here~n ỹ denotes the outer normal (unit) vector to ∂Ω at the point ỹ =
(

y ′, ψ(y ′)
)

.
The Jacobian ofΨ at the origin is the identity. By the inverse mapping theorem, there

exists d, 0 < d < δ, such that Ψ is a C r-diffeomorphism of Qd on Ψ(Qd) and such
thatΨ(Qd) ⊂ Ω̄.

Using the fact that ∂Ω is compact, we now choose a finite family of maps Ψν and
closed cubes Q(ν) := Qdν = Q ′dν × [0, 2dν] =: Q ′(ν) × [0, 2dν] such that Ψν |Q(ν)

is

a Cr-diffeormophism, Ψν(Q ′(ν) × {0}) ⊂ ∂Ω, Ψν
(

Q(ν) \ (Q ′(ν) × {0})
)

⊂ Ω and
∂Ω ⊂ ∪νΨν(U(ν) × {0}), where U(ν) := (−dν , dν)y1

× · · · × (−dν , dν)yn−1
.

Let h0, . . . , hr−1 be any r σ-measurable functions defined and σ-finite almost ev-
erywhere on ∂Ω. We can construct a family {Em}

∞
m=1, Em ⊂ ∂Ω with the following

properties:

a) The sets Em, m = 1, 2, . . . , are compact, pairwise disjoint, nowhere dense subsets

of ∂Ω with σ(Em) 6= 0.
b) For each k ∈ {0, 1, . . . , r − 1} and m ∈ {1, 2, . . . }, we have hk ∈ C(Em).
c) σ

(

∂Ω \ (∪mEm)
)

= 0.
d) For each m ∈ {1, 2, . . . }, there exists νm such thatΨ−1

νm
(Em) ⊂ (U(νm)× 0) where

Ψνm
belongs to the finite family of diffeomorphisms chosen above.

e) For some fixed µ ∈ (0, 1) and for each m ∈ {1, 2, . . . } there is a c > 0 such that
for any x ∈ Em and ε < dνm

one has

Mn−2+µ
({

B(x, ε) ∩Ψνm
(Q ′(νm) × {0})

} ∖

Em

)

≥ cεn−2+µ,(15)

where Mλ denotes the λ-dimensional Hausdorff content.

For example, the first three properties are obtained using Lusin’s theorem [12, The-
orem 2.24], and the fourth follows easily. In order to have additionally property (e),
we use the following lemma, taking products of the set E from this lemma with n−2-
dimensional closed cubes which gives an n−1-dimensional analog of the lemma, that

is (15).

Lemma 6 For each µ ∈ (0, 1) and η > 0, there exist a compact set E ⊂ [0, 1] and a
constant c > 0 (independent of η) such that M1(E) > 1 − η and for each t ∈ R and

each ε > 0, one has

Mµ
({

τ
∣

∣ |τ − t| < ε
} ∖

E
)

≥ cεµ.

Proof Fix µ and η. It is well known (see [8, Section 4.10] and use the fact that a

Hausdorff measure and the corresponding Hausdorff content have the same zero sets)
that there exists a Cantor-type set K ⊂ [0, 1] with M1(K) = 0 and Mµ(K) > 0.

For m ∈ Z+ and j ∈ {0, . . . , 2m − 1}, define K
j

m = {(τ + j)2−m | τ ∈ K}. Since

M1(K
j

m) = 0, there are open sets U
j

m containing K
j

m with M1(U
j

m) < η2−2m−1. It
suffices to take (as can be easily checked)

E = [0, 1]
∖

∞
⋃

m=0

2m−1
⋃

j=0

U j
m.
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We now return to the proof of Theorem 6. Given {Em} as above, define

F1 = Ψν1

(

Ψ
−1
ν1

(E1)× (0, δ1]
)

,

where 0 < δ1 ≤ dν1
, and for m ≥ 2,

Fm = Ψνm
(Ψ−1

νm
(Em)× (0, δm]),

where 0 < δm ≤ min{dνm
, δm−1/2} is so small that Fm is disjoint from F1∪· · ·∪Fm−1

and {Fm} is a locally finite family in Ω.

Let F =
⋃∞

m=1 Fm. We note that F is a (relatively) closed Ω-RKL set with no

interior. Let Gm = Ψ
−1
νm

(Em) and h?k,m(y ′) = hk

(

Ψνm
(y ′, 0)

)

and note that h?k,m is

(defined and) continuous on Gm. We extend h?k,m continuously to all of Q ′(νm) and still
denote this extension by h?k,m. Using Lemma 5 with s = r − 1, for each m ≥ 1, there

exist functions H?
m ∈ C∞

(

Q(νm) \ (Q ′(νm) × {0})
)

∩ C(Q(νm)) such that for each k,

0 ≤ k ≤ r − 1,
∂kH?

m

∂yk
n

(y ′, yn)→ h?k,m(y ′)

uniformly on Q ′(νm) as yn → 0+. Define Hm in Cr
(

Ψνm
(Q◦(νm))

)

by Hm(x) =

H?
m

(

Ψ
−1
νm

(x)
)

.

From our construction, it follows that one can choose (open) neighbourhoodsΩm

of Fm such that the sets Ωm are still pairwise disjoint and Ωm ⊂ Ψνm
(Q◦(νm)). Define

f |Ωm
= Hm|Ωm

.

If V is the space BC r−1+µ(Ω) then f ∈ V loc (F) (note that f can be extended from
(possibly smaller) neighbourhoods Ω ′m of Fm to a function in V loc (Ω)).

It follows also from our construction of F (recalling (15)) that there exists an ex-
haustion of Ω by compact sets K j such that

1) each Y j = K j ∪ (K j+2 ∩ F) is an Ω-RKL set;
2) for each Y j , there exists a constant c j = c(Y j) > 1 such that for all balls B(x, ε) ⊂
Ω we have

c jM
n−1+µ(B(x, ε) \ Y j) ≥ ε

n−1+µ ≥ Mn−1+µ
∗ (B(x, ε) \ Y ◦j ).

It then follows from Theorem 4((i) and (iv)) that VL(Y j) = MLV (Y j) = ELV (Y j).
Thus by Proposition 5, one can find h ∈ L(Ω) such that

‖ f − h‖F\K◦j
<

1

j
.

The function h has the desired properties.

It can be proved that Theorem 6 remains true if we require only C r-smoothness
of ∂Ω.
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