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Approximation on Closed Sets by Analytic
or Meromorphic Solutions
of Elliptic Equations and Applications

André Boivin, Paul M. Gauthier and Petr V. Paramonov

Abstract. Given a homogeneous elliptic partial differential operator L with constant complex coeffi-
cients and a class of functions (jet-distributions) which are defined on a (relatively) closed subset of a
domain 2 in R” and which belong locally to a Banach space V, we consider the problem of approxi-
mating in the norm of V' the functions in this class by “analytic” and “meromorphic” solutions of the
equation Lu = 0. We establish new Roth, Arakelyan (including tangential) and Carleman type theo-
rems for a large class of Banach spaces V and operators L. Important applications to boundary value
problems of solutions of homogeneous elliptic partial differential equations are obtained, including
the solution of a generalized Dirichlet problem.

1 Introduction

Let L be a homogeneous elliptic partial differential operator with constant complex
coefficients (such as powers of the Cauchy-Riemann operator 0 or the Laplacean A).
In [2], given a Banach space (V, || ||) of functions (distributions) on R”, n > 2, we
studied the problem of approximating, on a closed subset F of R”, the solutions of the
equation Lu = 0 by global (L-analytic or L-meromorphic) solutions of the equation.
Approximation theorems of Runge-type and Arakelyan-type were obtained when-
ever the operator L and the Banach space V satisfied certain conditions.

In this paper, we first generalize the results of [2] and [11] to Banach spaces
of functions (distributions) defined on any domain Q of R"” (n > 2). As already
mentioned in [2], the only purpose of one of the important conditions on L and V
([2, Condition (4)]) was to obtain a “special maximum principle” ([2, Lemma 1]).
Weakened assumptions of this lemma have now become our new Condition 4 (see
Section 2 below), and consequently our proof has been slightly modified (and im-
proved). For all operators L under consideration, our conditions are satisfied by a
large class of classical (non-weighted) spaces.

Using results on the solution of the Dirichlet problem for strongly elliptic equa-
tions in bounded smooth domains, we find (see Proposition 2 below) that in this case
our conditions are also satisfied by a wide class of spaces, for which an application of

Received by the editors September 28, 2000.

The first author was supported by a grant from NSERC of Canada. The second author was partially
supported by grants from NSERC of Canada and FCAR Québec. The third author was supported by grants
RFFR 00-01-00618 and RFFR 00-15-96008 (Russia).

AMS subject classification: Primary: 30D40, 30E10, 31B35, 35]Jxx, 35J67; secondary: 41A30.

Keywords: approximation on closed sets, elliptic operator, strongly elliptic operator, L-meromorphic
and L-analytic functions, localization operator, Banach space of distributions, Dirichlet problem.

(©Canadian Mathematical Society 2002.

945

https://doi.org/10.4153/CJM-2002-035-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-035-4

946 André Boivin, Paul M. Gauthier and Petr V. Paramonov

our theorems gives important new examples in the theory of tangential approxima-
tion (see Theorem 4(iii)).

Using Carleman-type approximation results (see Lemma 4 and Proposition 5),
we obtain in Section 6 some very interesting examples of the possible boundary be-
haviour of solutions of homogeneous elliptic partial differential equations, analogous
to those described in [5, Chapter IV, Section 5B] for functions holomorphicin a disc.
First, given a domain (2 satisfying some mild conditions, we construct an L-analytic
function f in €2 such that the limit of f and of all its derivatives along any path end-
ing at the boundary of Q2 does not exist (Theorem 5). To our knowledge, only very
special cases of this result were known for the O equation in R? and the Laplacean in
R", n > 2 (see [5, Chapter IV, Section 5], [6, Section 8]).

When the boundary of €2 is sufficiently smooth, we are also able to solve (see The-
orem 6) a “weakened” Dirichlet problem where the boundary values of an L-analytic
function, together with the boundary values of a fixed number of its derivatives are
prescribed (almost everywhere on 0€2) as we approach the boundary in the normal
direction.

2 Definitions and Notation

For the reader’s convenience, we summarize the definitions and main notation of [2].
Note that in [2], these were given only for R”, but here we extend them very naturally
to general domains.

Let €2 be any fixed domain in R*, n > 2. Welet V. = V() stand for a Banach
space, whose norm is denoted by || ||, which contains C§°(€2), the set of test functions
in  and is contained in (C(‘)X’ (Q)) *, the space of distributions on {2. We make some
additional assumptions on V.

Conditions 1 and 2 We assume that V is a topological C§°(£2)-submodule of
(C5° (D) *, which means that for f € Vand ¢ € C§°(2), we have p f € V with

(1) lefll < Cle)|f]l
and
(2) I(f, o) < C@@Ifll,

where (f, @) denotes the action in € of the distribution f on the test function ¢ and
C(p) is a constant independent of f. We note that this implies that the imbeddings
Cr(2) = VandV — (C(‘)’O(Q)) * are continuous (see [2, Section 2.1]).

Given a closed subset F in €2, let I(F) be the closure in V' of (the family of) those
f € V whose support in 2 in the sense of distributions (which will be denoted
by supp(f)) is disjoint from F, and let V(F) = V /I(F). The Banach space V (F),
endowed with the quotient norm, should be viewed as the natural (Whitney type)
version of V on F (see [14, Chapter 6]). We will write ||f||r for the norm of the
equivalence class (jet) fip) := f + I(F) in V(F) of the distribution f € V.
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For any open set D in €2, let
Viee(D) = { f € (C®(D)) " | fo €V foreach p € C*(D)},

where o and f¢ are extended to be identically zero in Q \ D. We endow V. (D) with
the projective limit topology of the spaces V (K) partially ordered by inclusion of the
compact sets K C D. For a closed set F in 2, define Vi, (F) = Vi (2)/ J(F), where
J(F) is the closure in Vi, (£2) of the family of those distributions in V,.(€2) whose
support is disjoint from F. The topology on Vi, (F) will be the quotient topology.
Note that for compact sets K, the topological spaces V (K) and V,. (K) are identical.

For f € Vioc(Q), we put fip)joc := f + J(F). If D is a neighbourhood of F in €2,
then each h € V), (D) naturally defines an element (jet) h(p) joc in Vioc (F) by taking
h(p)1oc to be the closure in Vi, (2) of the set of f € Vi (€2) such that f = h (as
distributions) in some neighbourhood (depending on f) of F. In particular, this
works for each h € C®(D) C Vioc (D). For fip)joc € Vioc (F), we will write fir)joc €
V(F) (or more briefly f € V(F)),if VN fig)1oc # . We will then write || f(F) joc || > OF
equivalently || ||, to mean ||g||s, where g € V N fip) joc. Practically the same proof
as in [2, Section 2.1] shows that V N J(F) = I(F) holds for each closed set F in €2,
which means that || fr) 1oc || is well-defined.

For a multi-index o = (ay,..., ), with a; € Z,(:= {0,1,2,...}), we let
ol =ar+-+apal =arl o, x* =% - x% forx = (x1,... ,%,) € R"and
0% = (0/0x1)™ -+ - (0] Dx,) ™.

We denote by B(a, §) (respectively B(a, 6)) the open (respectively closed) ball with
center a € R” and radius 6 > 0. If B = B(a,d) and 6 > 0 then 6B = B(a, 66) and
0B = B(a, 06).

Throughout this paper we let L(§) = Z\a|:r a,€", & € R", be a fixed homoge-
neous polynomial of degree r (r > 1) with complex constant coefficients and which
satisfies the ellipticity condition L(§) # 0, £ # 0. We associate to L the homogeneous
elliptic operator of order r

L=L(O) = Z a,0°.

la|=r

Let D be an open set in R” and denote by L(D) the set of distributions f in D such
that Lf = 0 in D in the sense of distributions. It is well known [7, Theorem 4.4.1]
that L(D) < C°°(D). Therefore if D C , then L(D) C Vio.(D), and if { f,,} is
a sequence in L(D) with f,, — f in Vio(D) as m — oo, then f € L(D), since
convergence in Vi (D) is stronger than convergence in the sense of distributions,
which preserves L(D) [7, Theorem 4.4.2].

Functions from L(D) will be called L-analytic in D. We shall also say that a dis-
tribution g in D is L-meromorphic in D if supp(Lg) is discrete in D and for each
a € supp(Lg) (a € D) there exist h, which is L-analytic in a neighbourhood of a,
ke Z,and A\, € C,0 < || <k, such that

glx) =h(x)+ > A0"®(x — a)

|| <k
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in some neighbourhood of a, where ® is a special fundamental solution of L as de-
scribed in [7, Theorem 7.1.20]. The points a € supp(Lg) will be called the poles of
g

We recall (see [3, p. 239] or [15, p. 163]) that there exists a k > 1 such that if T is
a distribution with compact support contained in B(a, d) and f = ® * T, then, for
|x — a| > kd, we have the Laurent-type expansion:

(3) f) = (T(), (x—y)) = > ca0*@(x —a),

lal>0

where ¢, = (—1)I*/(a!)~"(T(y), (y — a)®). The series converges in C*({|x — a| >
ké}), which means that the series can be differentiated term by term and all such
series converge uniformly on {|x — a| > k’6}, k' > k.

Let ¢ € C§°(Q). The Vitushkin localisation operator V,: (C§° (1)) R
(C3°(92)) " associated to L and ¢ is defined as Vo f = (@ * (oLf)) | o> Where in
the last equality * denotes the convolution operator in R".

Condition 3 We require that for each ¢ € C§°(£2), the operator V,, be invariant
on Vio.(92), i.e. 'V, must send continuously V1o (€2) into Vi (£2). This means that
if K is a compact subset of €2 and supp(¢) C K, then for each f € V},.(€2) one has
Vof € Viee(Q) and

(4) Ve fllx < Clifllx,

where C is independent of f.
We make one more assumption on V in relation with L.

Condition 4 For each open ball B with 3B C , there exist d > 0 and C > 0 such
that for each h € C*°(R") satisfying Lh = 0 outside of B and h(x) = O(|x|~9) as
|x] — o0, one can find v € L(Q2) with

(5) (h—v)eV and [h—v[]| <C|h]ss.

In this assumption, instead of the constant 3, one can take any fixed real number
greater than 1.

3 Some Remarks on Conditions 1 to 4

All Conditions 1 to 4 are satisfied by classical (non-weighted) spaces on any domain
Q in R", for example BC™(£2), BC™*(2), VMO(£2) and the Sobolev spaces wh(Q),
1 < p < co. We shall give the definitions and prove this assertion only for the spaces
V = BC™(Q) and BC™#(£).

For m € Z., let BC™(£2) be the space of all m-times continuously differentiable
functions f: Q — C with (finite) norm

[ 1o = max sup[0° f(x)].
|a|§meQ
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IfmeZ,and0 < p < 1, then
BC™™H(Q) = {f € BC™(Q) | w (f,00) < coandwy(f,6) — 0asd — 0},

W , the supremum being taken over all multi-index
a such that |a| = mand all x, y € Q with 0 < |x — y| < 4. The norm in this space

is defined as

where w[f(f, d) = sup

[ s = max{[| fllme; wpi'(f; 00)}-

We shall omit the index €2 in the last norm whenever {2 = R". Finally, for any p > 0,
we set CP(Q2) = (BC"’(Q)) loc*
Proposition 1 Let Q) be a domain in R, n > 2, and let p > 0. Then the pair
(L, V(Q)) with V() = BCP(Q) satisfies Conditions 1, 2, 3 and satisfies Condition 4
withv = 0.

Proof Conditions 1 and 2 are easily verified. Condition 3 is proved in [10, Corol-
lary 5.6] in the case £2 = R" for all spaces mentioned above, since C5°(R") is locally
dense in each of them. As Condition 3 is local, it holds for each pair ( L, V(Q)) under
consideration.

To obtain Condition 4 with v = 0, we can easily use [2, Lemma 1] (see also [11,
Lemma 2]). In fact, by this lemma, for each open ball B with 3B C (), we even can
find d > 0 and C > 0 such that if & satisfies the hypotheses of Condition 4 with this
d, then

]l < Clhl, 5.

Since ||A]|,.0 < ||h||,, the proofis complete. [ |

In [2, Corollary 1] (see also the brief discussion thereafter) and [11, Theorem 4]
one sees how (whenever Conditions 1 to 3 are satisfied) Condition 4 can affect L-
meromorphic and L-analytic approximation in the special case of weighted uniform
holomorphic approximation (n = 2, L = 0).

We also wish to present here an example of a pair (L, V') satisfying Conditions 1, 2
and 4 (with v = 0), but not 3. Hence, this example eludes our method. The example
seems new even without considering Condition 4.

Take L = 0, Q = R*(= C), B, = {z € C| |z| < 1} (the unit disk), and let

1B, }-

Conditions 1 and 2 are easily verified. Condition 4 (with v = 0, d = 1) follows
from the maximum principle and from trivial estimates of derivatives (outside 2B)
of a function, holomorphic outside B and vanishing at co. Finally, fixing any ¢ €
C§°(3By) such that ¢(z) = Z on 2By, one can check that there exists f € BC°(R?),
f = 0in By, with V. f|, not in BC'(B,). In fact, in this case

V = BC°(R*) N BC'(B,) with norm IF Il = max{|| fllo, || f

Vo f(w) = f(w)p(w) — %/% dxidx; z=x +ix,
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so that one needs only to study the behavior (in B;) of the function

/ ﬂ dx1 dXQ.
2

B, \B, (w—2)?
Easily, there is g € C(R?), g > 0, supp(g) C {x1 > 2|x2|} N By, such that

g(_z) dxy dx; = +o0.

|2
Itis enough to take f(z) = g(z—1) andletw € (0, 1) tend to 1. Indeed, set 1 —w = 4.
Then, it is enough to show that

g(2)
(z+ )2

dX1 de

is unbounded as § tends to zero. In fact,

1 1
>
Re((z+5)2> = 20z+ 0]

on supp(g), and if the integrals

z
ﬁ dx; dx;

were uniformly bounded for § € (0, 1), then by Fatou’s lemma, the integral with
0 = 0 would be convergent, which is not the case.

The following proposition provides us with another class of examples for which
Conditions 1 to 4 are satisfied. These in turn will allow us to obtain in Section 4

new results on “tangential” approximation. Given m and q in Z, with ¢ < m, and a
bounded domain (2, set

BCJ'() = {f € BC™(Q) | foreach a, |a| < g, lim 9°f(x) = 0},
x—00

which is a Banach space with the norm || f|| ..

Proposition 2 Let L be a strongly elliptic operator of order r = 20,0 € Z, £ > 1 (see
[1,p.46]). Let m,q € Z,, m > £ —1,q < £ — 1. If Q is bounded and 02 is of class C°,
s = max{2/, [n/2] + 1+ m} (see [1, p. 128]), then the pair (L, V= BC;”(Q)) satisfies
Conditions 1 to 4.

Proof Since (BCZ“(Q))loc = C™(Q)), Conditions 1, 2 and 3 are satisfied. Let us
prove Condition 4. Fix any ball B, 3B C {2, and take any h € C*°(R") with Lh = 0
outside B. Now, results on solvability and regularity of the classical Dirichlet problem
applied to the operator L (see [1, Theorem 8.2 and Lemma 7.7, Theorem 9.8 and
Lemma 9.1, Theorem 3.9]) show that under the hypotheses of Proposition 2, there
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exists vo € C™(Q) N L(Q) such that uy = h — v, satisfies 9" uy|an = 0 for each a,
|a] < £€—1 (sothath — vy € V), and moreover

o]l = lluollme < Crllhlls0;
where C, is independent of h. We observe that we have not used here the property

Lh = 0in R" \ B. We also remark that our notations for m and || - ||,»,q are different
from those of [1], and that the last inequality follows from [1, (9.23)] since

l[uoll2) < lluollwzey < Callhllwz)
by [1, Theorems 8.1 and 8.2].
By [11, Lemmas 1 and 3], we can choose d > 0 and C; > 0 (independently of h)
such that if additionally h(x) = O(|x|~9) as |x| — oo, then (see also [2, Lemma 1])
h=®«Lh, and |h|ma < ||hllmre < Cs||h|m35-

Fix x € C§°(3B), x = 1 on B. Then for x € R" \ 2B, we get

) = [ S LX) dy = [ L= ) H) dy
and so since €2 is bounded,
Villoonas < Callhllo s < Callhllmas.
We can now find a function h; € C*®°(R"), h; = hon R" \ 2B such that
[h1llse < Csl|hlls0\28 < Céllhllm,35-

Let now v; and u; = h; — v; satisfy the same properties as the functions vy and ug
above, but taken with h; instead of h. Then

[t1[lme < Calmllse < Crllhllmss-
The function v = vy is as desired. In fact, since 9*u; = 0 on 99 for |a| < £ — 1, then
0%(h —v)|og = 0% (hy —v1)|on =0
for |a| < ¢ —1,so that h — v € V(). Finally
1B = Vllme = k= h +h = villma < [[Bllma + Ihllma + [willme < Cllhllm3s,

since clearly
11llme < [[Bllse < Cellf]lmss-

Note that the constants C; to C; and C are independent of h. This ends the proof.
| ]
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Let 2 be any domain in R". Denote by * = Q U {x} the one point compactifi-
cation of {2 and by X° the interior of a set X. Fori > 1, let

X; = {x € Q| dist(x,00) > 1/i, |x| < i}.

Then each X; is a compact subset of 2 such that both Q* \ X; and Q* \ X? are
connected and such that X; C X7 ;.
In the next sections, we shall need frequently the following easy consequence of a

very general version of Runge’s theorem.

Proposition3  Assume V. = V(Q) satisfies Conditions 1 and 2. Then, given i > 1,
gi > 0and f € L(X},,), one can find h; € L(Y) such that

If = hil

Proof By the generalization of Runge’s theorem found in [7, Theorem 4.4.5], there
exists a sequence {gn 9o, C L() such that g,, — f in C*(X?,,) and hence g,, —
f in V(X;) as m — oo, which gives the result if one takes h; = g, for some m
sufficiently large. ]

x; <&

4 Approximation Theorems

Asin [2, Section 3], a closed set F in €2 will be called a Roth-Keldysh-Lavrent’ev set in
Q, or more simply an Q-RKL set, if 2* \ F is connected and locally connected. In this
section, we formulate our main approximation results. They extend the analogous
ones of [2] from R" to general domains §2. Using Proposition 2, concrete new appli-
cations to “tangential” approximation are also obtained (see Theorem 4(iii)). Note
that Carleman-type approximation results will also be presented in Section 6 with
interesting applications to the boundary behaviour of L-analytic functions.

We first obtain sufficient conditions for approximation of Runge-type on closed
sets.

Theorem 1 Let Q be a domain in R", n > 2. Let (L,V(Q)) be a pair satisfying
Conditions 1 to 4, F be a (relatively) closed subset of S0, and f be L-analytic in some
neighbourhood of F in Q2. Then, for each € > 0, there exists an L-meromorphic function
g on Q with poles off F such that (fir)joc — §(F)joc) € V(F) and

If—glr <e.
Moreover, if F is an Q-RKL set, then g can be chosen in L({).

The next theorem deals with approximation of a single function and shows that
the problem is essentially local.

Theorem 2  Let ) be a domain in R" (n > 2), (L, V(Q)) be a pair satisfying Condi-

tions 1 to 4, F be a (relatively) closed subset of 2, and f € Vo (). Then the following
are equivalent:
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(i)  for each positive number ¢, there exists an L-meromorphic function g in Q with
poles off F such that ( fr)joc — &P joc) € V(F) and IIf—gllr <&

(ii) for each ball B, B C ) and positive number €, there exists g such that Lg = 0 on
some neighbourhood of F N Band || f — gllprg < &

(iii) the previous property is satisfied by each ball from some locally finite family of balls
{B;} covering F, where B_; C Q for each j.

For any subset X of R”, we let L(X) stand for the collection of all functions f
defined and L-analytic in some neighbourhood (depending on f) of X. For a closed
set F in {2 we denote by My (F) (respectively Epy (F)) the space of all fig) joc € Vioc (F)
which satisfy the following property: for each £ > 0 there exists an L-meromorphic
function g in  with poles outside of F (respectively a function g € L(2)) such that
f—g e V(F)and || f — g||z < . We also introduce the space V(F) = Vjo.(F) N
L(F°). Whenever Conditions 1 to 4 hold, we have that by Theorem 1, My (F) is the
closure in Vi (F) of the space {h(g)joc € Viec(F) | h € L(F)}. Moreover, if F is an
-RKL set, then MLv(F) = ELv(F)

We now study the necessity of being a 2-RKL set for approximation by L-analytic
functions.

Let K be a compact set in §2. Denote by K the union of K and all the (connected)
components of 2 \ K which are pre-compact in §2. Obviously, the property K = K
means precisely that Q* \ K is connected, so that K is a 2-RKL set.

Define

N(K) = Ny (K) = {a € K\ K | (®)) € Ewv (K)},

where ®,(x) = ®(x — a).

Condition N We shall say that a pair (L, V(f)) satisfies Condition N (“nonremov-
ability of holes”) if N(K) # @ for each compact set K with “holes”, i.e. such that
K #K.

Remark 1 The same proof as in [2, Proposition 2] shows that (L, V(Q)) satisfies
Condition N whenever all of the following conditions hold:

(1) (L, V() satisfies Conditions 1 and 2;
(2) n=2orn > 3and L has the following symbol:

L(&) = P2(§)Qr—2(§), £ €R,

where P, is some homogeneous (elliptic) polynomial of order two with real coef-
ficients (so that P, has constant sign in R”\{0}), and Q,_, is some homogeneous
polynomial of order r — 2;

(3) Ord(V)>r—1.

For the definition of Ord(V') when 2 is R", see [2, Section 4.3]. Replacing R" by Q2
everywhere in that definition, we get the corresponding definition of Ord (V()) for
an arbitrary domain (2.

One can also find in [2, Section 4.2] some informative examples concerning Con-
dition N.
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Theorem 3 If(L, V(Q)) satisfies Conditions 1 to 4, then the following statements are
equivalent:

(i)  for each (relatively) closed set F C €1 one has
My (F) = Ery (F) <= {Fis a Q-RKL set};
(ii) for each compact set K C €,
My (K) = Epy (K) <= {Q* \ K is connected};
(iii) the pair (L, V(Q)) satisfies Condition N.

Remark 2 Our proof of (ii) = (iii) in fact shows that if for some compact set K in
Q there is a function f € L(K) which is not in Epy (K), then the same is true for some
®,a€ K\ K.

From Theorems 2 and 3, it is not difficult to obtain the corresponding approxi-
mation (reduction) theorems for classes of functions (jets), analogous to that of [2,
Proposition 1]. In this direction, we present only the following result which extends
[2, Theorem 4]. Note that (iii) is a result on tangential approximation.

Theorem 4  Let L (of order r) satisfy property (2) of Remark 1, Q be an arbitrary
domain in R" and F be a closed subset of Q).

(i) ForV = BC”(Q)) , where p € (r — 1, 1) (see Section 3), the equality V(F) =
My (F) holds if and only if there exists a constant A € (0, +00) such that for each
ball B in 2

M="P(B\ F°) < AM"~"*(B\ F).

(i) ForV =BC™(Q) (m=rr+1,...)orV = BCP(Q) (p > 1, p & Z) the equality
V1(F) = My (F) holds if and only if F° is dense in F.

(iii) Let L, Q and V. = BCJ'(2) be as in Proposition 2, and additionally suppose that
m > r. Then the equality Vi (F) = My (F) holds if and only if F° is dense in F.

(iv) For each space V (S2), which is mentioned in (i), (ii) or (iii), the equality V(F) =
Epry (F) holds if and only if VL.(F) = My (F) and (at the same time) F is a Q-RKL
set.

Here M"~™7(.) and My~ " (-) are the Hausdorff and lower Hausdorff contents of

order n — r + p respectively (cf. [15]).

5 Proofs of Theorems 1, 2, 3 and 4

Fix a pair (L, V() satisfying Conditions 1 to 4, and let k = k(L) > 1 be the
constant which appears in (3).
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Lemmal LetB = B(a,d) bea ball in Q with 6kB C Q and T be a distribution with
supp(T) C B. Set h = ®xT and let

hy = Z 0“®(x — a)

0<]al<m
be the partial sums of the Laurent series expansion of h outside kB (see (3)). Then
there exists M € Z, such that for all m > M, one can find v,, € L() such that
h—hy — vy € V(X 2kB) and

|h — By — Vimllo\oks — 0 as m — oco.

Proof First recall that h,, — hin C>®(Q \ kB). Let ¢» € C*°(R") such that

P =

0 in a neighbourhood of kB
1 inaneighbourhood of R" \ 2kB.

Take d from Condition 4 for the ball 2kB and the pair (L, V). Since we have that
Yh,, — Yhin C* (), there exists M € Z. such that for m > M, one has

B = ap(h— hy) = O(x| 7% as |x| — oo.

Using Condition 4 when m > M, we can find v, € L(2) such that (b}, —v,,) € V
and

|hy = vl < CllRS ks — 0 as m — oo.

By definition, (h — h,, — v,,,) € V(Q \ 2kB) and
| = hw — vimllovaks < By, — V|| = 0 as m — oo.
The lemma is proved. ]

Proof of Theorem 1 The proof relies on a localization technique. Let f be a func-
tion L-analytic on some neighbourhood U of F in €2 and U, be a neighbourhood
of F, with U; C U. We extend f to a function (also denoted by f) in C*°(£2) so
that f is still L-analytic in a neighbourhood of U;. We can find a family of couples
{B(aj,d;),¢;}32, where the family of balls {B; = B(a;,;} is locally finite in ,
6kB]- C Q\ F, each p; € Cg°(B)), with 0 < ; < 1and Z;’il @; = 1 on some
neighbourhood U, of Q \ Uj.

Let fj = V,.f = ®x(p;Lf). Each f; is in C*°(R"). Let {X;}, i > 1, be the

sequence of compact sets described before Proposition 3. Put J; = {j | B; N Xy #

@} Notethat L(f — >_ic; fi) = Lf =2 ic; pilf = Lf(1 = X ;e i) = 0 (iee.
f- Zjeh fj is L-analytic) in X3. By Proposition 3, one can find P; € L(2) such that

|r=(35) -»

<1
x5 2
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Now, since f — (Zh fi)—P1— (le\h fj) is L-analytic in X3, there exists P, € L(2)

such that .
= (325) —n= (2 5) -2 <z

Inductively, we can thus find P; € L(£2) such that

= (£0) 1= (S 1) -nerm (£ 1) -2l

AV Ji\Ji—

21

so that, setting J, = o, the equality
F=3( 3 fi+m)
=1 J\Ji—1
holds in V},. ().
Now, from (3), each f; has a Laurent series expansion
fi) = cJo"®(x — aj)
la|>0

valid outside kBj, and thus on a neighbourhood of F. Using Lemma 1, given any
n; > 0, there exists m; € Z; and v; € L({2) such that if

mj
gi(x) = Z cl0®(x — aj),
|ar]=0
then (f; —g; —v;) € V(Q\ 2kB;) and || f; — V]HQ\Zkg < 77]

Put F1 =~ 0\ U;(2KkB;); then F C F? and, for al i (fi — g — vj) € V(E),
| fi — & — vjll, < mj. Fixe > 0 and choose the sequence {17]} n] > 0, such that
> < e. Define

g= Z( > (gj+Vj)+Pi)-
=1 J\Ji-1

Since for each m > 1 the series

f ( Z (g]-—i-vj)—I—Pi)

i=m+l L\ Jio,

converges in V(X,,), g is L-meromorphic in {2 with “poles” only (possibly) at a;,
j=1,2,.... Moreover g € Vi, (F;) and

(f =& E)oc = Z( Z (fi—g — Vj)(Fl),loc) .

i=1  Ji\Ji—1
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But then f — g € V(F) and
If =gl <e,

since (f — g)(p)loc can be defined by the element

S(Y W)

i=1  J\Ji-1

where ¥; € V are such that (V) o\as,) = (fi — & — vj)as)) and [[¥;]| < n;.
This proves the first part of Theorem 1.

Now assume that F is a RKL-set in §2, i.e. 2*\ F is connected and locally connected.
It suffices to show that there exists a function i € L({2) such that

lg = hllr <e.

Let {a;}j>1 be the sequence of “poles” of g in €). Each a; € Q\ F and the sequence
has no limit points in Q. Since Q* \ F is connected and locally connected at the
“point” *, we can find paths o; from a; to *, 0; C Q \ F, such that the family of
curves {0} is locally finite in Q2.

For a fixed j, we can find sequences {a;, }52, C O'] and {r;, }n>y C (0,1) such
thataj = aj,aj, — xasm — oo, |a;, —aj,..| <7j,.>Bj, = B(a] ,7kr;) C Q\F.
Additionally we can require that the family of balls {B;, } is locally finite in €. If
G;j = U, Bj, then G; N F = @ and {G;} is also locally finite in 2.

Set hy = g. We construct a sequence of functions /; such that /; is L-meromor-
phic on €2, h; has the same poles (and singular parts) as h;_, except at a; where h; is
L-analytic, and such that

€

hj—1 = hillove; < 55-

If such a sequence exists, then h = lim;_, o, ; is in L(£2). Indeed, by construction

(since {Gj} is locally finite), we have G; — {*} as j — oo, and thus {h;} is a

Cauchy sequence in V(X;) for each i. Moreover convergence in Vi, (£2) preserves
L-analyticity. Finally we would have

||g - h”F <g,

as desired.

To construct the functions h; (hy = g), assume that h, has been constructed for
¢ < j — 1. Let s be the singular part of h;_; at a; = a;,. By Lemma 1 (applied to
h = spand a = a;,), we can find an L-meromorphic function s, in £ whose only
singularity is at a;, and such that

1\ ¢
lls0 _SlHQ\Bh < <§) 5

By induction, construct an L-meromorphic function s,, whose only singularity is at
a;, and such that

1 5
Ism—1 — SMHQ\Blm (2_"1) 2
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Finally set
oo
hi=hj_+ Z(sm — Sm_1).
m=1
The function h; has the desired properties. ]

The proofs of Theorems 2, 3 and 4 are also very similar to the proofs of the cor-
responding Theorems in [2], and will not be reproduced here. We simply note that
R" is to be replaced everywhere by , {co} (of R ) by {*}, Pry by Ery, “bounded”
by “precompact in 2” and so on. Our Theorem 1 above replaces the corresponding
Theorem 1 of [2]. Balls also sometimes need to be replaced by sets having appro-
priate properties. For example, in the proof of Theorem 1 above, balls B(0, i) were
replaced by sets X;, where, for each i, Q* \ X; was connected. In Theorem 3, the balls
B(0, R), B(0,2R) and B(0, 3R) need to be replaced respectively by Q2-precompact do-
mains U, U, and U, such that AU is smooth, U C U, C U, C U, and the union
of all Q-precompact components of (2 \ F) \ U is not precompact in 2. The exis-
tence of such domains follows from the existence of an exhaustion of {2 by smooth
domains (which are precompact in 2) and the assumption made in the proof that
Q* \ Fis not locally connected (see also [5, Chapter IV, Section 2 B]). Of course, the
corresponding conditions on D,, and a,, need to be changed accordingly. Moreover,
the following version of [2, Lemma 5] is needed in Theorem 3.

Lemma2 For each open sets Uy, U, such that Uy C U, C U, C Q, there exists a
positive constant A (depending only on the space V and the sets Uy and U,) such that
for any compact set K and for each fx) € V(K) one has

I fllx <Al fllkno, + I fllx\w,)-
WEe leave the details to the reader.

6 Boundary Behaviour of L-Analytic Functions

Let £7 stand for the class of all homogeneous elliptic operators of order r in R" (n >
2, r > 1) with constant complex coefficients (see Section 2 above).

In this section, given L € £7 and a domain (2 satisfying some mild conditions,
we will construct in 2 solutions of the equation Lu = 0 having some prescribed
boundary behaviour.

6.1 No Limits at the Boundary

Let Q2 be a domain in R", n > 2, 2 # R”, and let b € 0. We shall say that a
(continuous) path y: [0, 1] — R" is admissible for Q with end point bify: [0,1) — Q
and y(1) = b. Given a continuous function f in 2, denote by C, (f) the cluster set of
f along «y at b, that is:

C(f) = {W € C* | there exists a sequence {t,} C [0,1)

such that t, — L and f(y(t,)) — wasn — co}.
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Theorem5 LetL € £V, andletQ) C R", Q # R", be a domain such that its boundary
0N has no (connected) components that consist of a single point. Then there exists g €
L(QY) with the property that for each b € 0SQ, for each admissible path -y for ) ending at
b and for each a € Z1, one has

e, (0"g) = C*.

The following proposition and remark show that, at least for L = A in R" and
L = 9/0z in R?, our theorem is close to being sharp.

Proposition 4 If Q) is a domain in R" such that 0S) has an isolated point b € R" U
{00}, then for each function f harmonic in Q or (if n = 2) for each function f holo-
morphic in Q, there exists an admissible path «y for Q ending at b such that C,(f) isa
single point in C*.

Remark 3 1t follows from Proposition 4 that for each o € Z7 there exists an admis-
sible path «, for Q ending at b such that C,_ (0°f) is just a single point in C* since
the point b is also an isolated singularity of the harmonic (or holomorphic) function

9 f.

Proof of Proposition 4 It is well known that if f is bounded at b (that is in some
punctured neighbourhood of b), then f has a removable singularity at b and that
consequently the proposition holds for every admissible path.

If f is unbounded at b, then the result follows from a generalization of a theorem
of Iversen due to B. Fuglede (see [4, Corollary 1]). [ |

Lemma3 LetL € L. Foreach 3 € Z there exists a homogeneous polynomial
Ps € L(R") of degree | 3| with 0°Py = 1.

Proof The lemma is obvious if | 3] < r. So let us assume that | 3| > r. We claim that
0°® # 0onR"\ {0}, where @ is a special fundamental solution for L as before (see

Section 2).
Assuming the claim, fix a point a # 0 where 9°®(a) # 0. By Taylor’s formula, we
have
D(x) = Y Qulx)
k=0
where

Q) = Y T2 gy

laf=k

belongs to L(R") (see [2, Section 2.4]). It suffices to take

_ _Qp
B 950(a)
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To prove the claim, note that by [15, Lemma 1.1], one has in fact that

d(x)= > cad6(x) +K(x),
=11~

where §(-) is the Dirac delta function, ¢, € C and K is a Calder6n-Zygmund (n +
| 3| —r)-dimensional kernel. Assuming that 0°®(x) = 0 forall x # 0, then K(x) = 0.
Thus
(=)o) = D et
la|=|8]—r

where ® denotes the Fourier transform of ®. On the other hand, since L& = §(-),
one has

(=)L) = 1.

It follows that 7 = A(£)L(€), where A is a polynomial. Choose p = (11, ..., 7,)
withn; >0, j = 1,...,n,and fix (&,...,&) = (02,...,M4). We have, for all &
(after division by nfz B

& = Ay (€D (&),

where Ly (&) = L(&1,m2,- - -, M) and A1 (&) are also polynomials. The polynomial
L1(&1) has no zeros (on R) and divides 5? ', so that it is constant. Similarly, we can
show that L is constant on each line through 7 which is parallel to a coordinate axis.
Since this is true for each point 7 in the open cone {n | n; > 0,j = 1,...,n}, we
conclude that the polynomial L() is constant in this cone and hence identically con-
stant. Thus L = L(0) = 0, since L is homogeneous of order » > 1. This contradicts
the ellipticity hypothesis, proves the claim and ends the proof of the lemma. ]

Proof of Theorem 5 Following the idea of the proof of [5, Chapter IV, Section 5,
Theorem 4], we will construct a set of Carleman approximation which must be in-
tersected infinitely often by every admissible path.

By Whitney’s approximation theorem [9, Theorem 1.6.5], we can find a real ana-
lytic function ¥ on € such that for each x € {2 one has

1
[

©6) %min(dist(x, 2Q), ) < U(x) < 2min<dist(x, 2Q), i)

[

From Sard’s theorem [9, Theorem 1.4.6], we can find a sequence {p;}3%, pj "\, 0
as j — oo such that the level sets R; = {x € Q | ¥(x) = p;} do not contain any
critical point of ¥, i.e. V¥ # 0 on R; and R; consists of only finitely many C*°-
smooth (in fact real analytic) hypersurfaces. Let Q; = {x € Q | ¥U(x) > p;}. We
additionally require (as we can) that (Q_j)/\ C Q1. We define E; = 6( (Q_j)/\) and
note that E; also consists of finitely many C°°-smooth closed hypersurfaces which we
denote Ej,, 1 <v < k;.

For positive but small enough d;, the §;-neighbourhood Qf of ()" is C*°-

smooth, (ST;)A = Qij’ and E]’ = 8(2]‘ has the same number k; of components E]’,,
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as Ej. The sequence {4;} is also chosen to satisfy d; \, 0 as j — oo, Q_; C Qjy1,
dist(E;,Ej+1) > 24 and ¢; < min,(diam E;,)/10. Choose a;j, € Ej, and a}u € E](V

such that
diam(E;,)
?) @i =l 2 ==
Now let
K;=Q/,
kj
Fy = (J{ (Eiv \ B(a;u,6))) U (E], \ B(a},,5))) },
v=I1

and define oS

j=0

For each j, we can find disjoint closed n;-neighbourhoods G; of F; (with 0 <
nj < 0;/4) such that Gj;; N K; = @ and Q* \ (Gj;; U K;) is connected.

Finally we define the function f, L-analytic in some neighbourhood of the set
G= U;’ZO Gj as follows. For each 8 € Z!, we can find Is C Z, such that gy, Is =
Z., each I contains infinitely many elements and I3 N Igr = @ for B # (’. Let

; fie1, be a fixed sequence 1n C such that 1s the set of 1ts limit points. Now fix
AYier, be a fixed seq in C such that C* is th f its limit points. Now fi
j € Z,. Then j is in position i; in I for some (unique) 8 € Z!. Let P3 € L(R")
be a polynomial of degree |3| with 8°P3 = 1 (see Lemma 3), and let U, be pairwise
disjoint (open) neighbourhoods of G; such that U;;; NK; = @ forall j. Then define
fonUjas

F) = X Py(x).

We will need the following “Carleman-type” approximation lemma.

Lemma4  Let f and G be as above. Then for any sequence {€;}7°,, £; \, 0 as
j — o0, there exists g € L(QY) such that

(8) 1 = gllog, <€j
where || - ||o.g, as before, denotes the uniform norm on E.

Assuming the lemma, fix a sequence {7;}%), 7; , 0 as j — co. Now choose a
sequence {€j}, £j 0 as j — oo such that if (8) is satisfied for a function g € L(€2),
then

©) 10°g = X llo, <75, j € Is.

This can be done by choosing £ ; small enough, since 9° f = )\g on F;.
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The function g has the desired properties. Indeed, let v be an admissible path for
) with end point b € 9Q. Then we claim that [y] = ([0, 1]) must intersect all F;,
except possibly finitely many of them. Combining the claim with (9) and the choice
of {\’} proves the theorem.

To prove the claim, assume that [y] does not intersect infinitely many F;, say
{Fj, Yo, with j, " oo asm — oco. It then follows that there exists an m, such
that for each m > my, one can find v = v(j,,) such that [~] intersects B(aj,,,d;)
and B(a]‘m,,, 0;) and where each E; , is either the outer boundary (in R") of (Q_jm)A
or E;,,, surrounds the point b. Notice that by (7),
diam(E;,,,)

2

|aj,, —aj, | > > 54j,

and thus, from the continuity of vy at b, we must have that diam(E; ,) — 0 as
jm — oo. But this is impossible. In fact, if E; , is the boundary of the unbounded

component of (Q_jm)/\, then diam(E;, ) = diam(£2;, ) which grows with m, so that all
but a finite number of E;,, must be “inner” components of the boundary of (Q2;, )"
which surround the component of the boundary of {2 containing b. But our assump-
tion on the boundary of €2 also makes this impossible. This proves the claim and

completes the proof of Theorem 5. ]

Proof of Lemma4 Lemma 4 is a consequence of a rather general theorem of A. Sin-
clair [13, Theorem 1], but we include the following relatively simple proof for the
reader’s convenience.

Let {€;}{Z, be the sequence of positive numbers satisfying €; = > ; &;. Since
Gy is an Q2-RKL set and f € L(Uy), then by Theorem 1, one can find g, € L({2) with
I1f = gollocy < €o-

Let U]{ be a neighbourhood of K such that U]( NUjq1 = @. Define

) ax), xeUg
ﬁ(x){f(x), xe U,

Since Ky U G is a RKL-set in Q and f; € L(Ug U U;), we can find g; € L(2) such
that
1A = gilloxue < e

Inductively, for j > 1, we define

: _ gix), xe€ U;
f]+1(x) {f(x), xe Uj+17

and choose g;;1 € L(2) such that

| fiv1 — gj1llog;uG,, < 51/41.
Since K; 7 €2, we have that

g = lim g (e L))

satisfies the lemma. [ |
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6.2 A Dirichlet Problem

Our next example is in some sense in the opposite direction of the first one. Given
a (smooth) domain €2, we would like to prescribe (almost everywhere on 0f2) the
boundary values of an L-analytic function in €2, together with the boundary values
of a fixed number of its derivatives, as we approach the boundary of €2 in the normal
direction (a “weakened” Dirichlet problem).

We first prove an abstract Carleman-type approximation theorem when F is with-
out interior.

Proposition5 Let L € £7, Q) be a domain in R" and let V.= V(Q2) be a Banach
space such that the pair (L, V') satisfies Conditions 1 and 2. Let F be a closed subset of ()
with F° = @ and assume that there exists an exhaustion of {} by compact sets K; (that
is, K = &, K; C K;’H and U?ZO K; = Q) which is “compatible” with F in the sense
that for each j > 0, one has

(10) V(KU (K2 NF)) = Ey (KU (K2 NF)).

Then for each sequence {€;}5%, €; , 0 as j — oo and for each f € Vioc(F), one can
find g € L(Q) such that, for all j > 0,

If = gllrke <&

Proof Fix {4;}32, C (0, c0), with Z]Oio 0; < oo. Let gy = f. Foreach j > 1, we
shall find g; € V1o (£2) N L(K;) such that

(11) Igi—1 — &ill;—, <81,
and
Ek
(12) ”gj—l _gj”F\Kk" < E for each k > 0.

Letting g = lim;_, o gj = go + Z;’il(gj — gj—1) will give the result.

First, for each j > 1, fix ; € ch(K;H), 0 < p; < 1land p; = 1 on some

neighbourhood of K;. We now proceed by induction on j. By (10) with j = 0, we
can find h; € L(Q) such that

g0 — Mllxnr < p,

where p; € (0, 00) will be specified below. Let

& =hipr + g1 — ).

Then g; € Vi (£2) N L(K}), and it follow from Condition 1 that

||go - g1HF = ||(g0 - h1)<P1HF < C(S01)||g0 - h1||K2mF < C(§01)M1
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and
g0 — g1llrke = 0.

Consequently, (11) and (12) hold for j = 1if C(¢1)u1 < €1/2. Note that (11) is an
empty condition at this stage since Kj is the empty set.

Suppose now that we have found g, . . ., gy such that (11) and (12) hold for 1 <
7 < J. By (10) with j = ], one can finds hy,; € L(€2) such that

(13) g7 — hrallum;ne < pp,

where p1741 is a small positive constant to be chosen later. Let

g1 = hapr + g (1 — o).

Then
ligr — gre1llx, = 1187 — hpeD)@rnllk, = g7 — hyllx, < pryen,s

which gives (11) (with j = J + 1) whenever ;. < d;. Since ||g7 — g741 [k, = 0
it is enough, in order to get (12), to require that

E1+1
lgr — grllr < 217:1

But this follows from (13) and Condition 1 if y; is small enough. Indeed,

ligr — gre1llr = 1(g7 — hpr)egsille < Clor)llgr — Brllrnky.,
< C(@]+1)M}+17

and thus it suffices to take iy = min(é;, e/ (271Cp1)) ) . This completes
the proof. ]

We shall also need the following lemma.

Lemma5 For0 < d < 1,denoteby Q) = [—d,d],, x [—d,d],, x---x[-d,d],,_,
the n — 1 dimensional closed cube centered at zero in R" ! and let Q; = Q} %< [0,2d],,.
Let s € Z, be fixed. Given hy,...,h; € C(Q)), there exists a function H €

CO"(Qd \ (Q) x {0})) N C(Qg) such that, if y' = (y1, Y2, -, Yn_1), then

O*H
(14) a—yﬁ(}//d’n) = h(y")

uniformly on Q}as y, — 0,0 < k <.

Remark 4 We first note that (14) and the mean-value theorem implies that the one-
sided derivatives at zero exist and
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OH

2= = In(y).
By | o Ky

Remark 5 The lemma is easily proved if we assume that hg, by, ..., h, € C(Q))
since in this case it suffices to take

H(y', yn) = E: MW)

The proof of the general case is an adaptation of this idea using approximation and a
partition of unity.

Proof of Lemma 5 Let {¢;}, j = 2,3,..., ¢; € C>(R) such that supp(p;) C

]il’] ), 0 < ¢; < 1, and Z] ,¢j = lon (0,1/2). Let ||ga§~k)|\0 =: X and
M := maxp<i<; ”hk”OxQé Let {51}022 C (0, 1) be a sequence of decreasing numbers
tending to zero. By the Weierstrass approximation theorem in several variables, for
each kand j, 0 < k < sand j = 2,3,..., we can find h; € C*°(Q’) (in fact

polynomials) such that

||hkj r < Ej.

We claim that the function

H(y',yn) = }ljc_ k(¥ )ei(yn), wheny, >0,

wan:mw>

has the desired properties whenever the sequence {e;} is chosen to satisfy
Z]>2 €jAkj < 00, for each k, 0 < k < 5. Indeed let us assume that 0 < y, <
- - < 1/2. Then

[HO, p0) = holy)] = \Z(ho]w ) = oy ;) + ZZ 1y ) ()
k=1 j=2

<2g]0+(M+1)Z o

and thus |H(y',y,) — ho(y’)] — 0 uniformly as y, — 0. Similarly, since
YLy y yasy Y,
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D52 #j(7n) = 0,0 <y, < 1/2, we have

BH / / ﬁ_l /
a—yn(J’ s yn) — i (y") ﬁhkj(y )i (¥n)
+ZZ hkj(y )@ () — Zhl(y )i (7n)
k=0 j=2 j=2

< |22 (") = ) 5)
j=2

Z Z s 1)'hk]()’ )i (yn)

k=2 j=2
k
‘ZZ (hi(y") = h(y") @3 (ym)
k=0 j=2
<2ejo+(M+1)Z(kn o ZZ T )'eJAU,

k=0 j>jo

assuming that 0 < y, < + ——. Thus \ (¥', ¥n) — h1(y")] — 0 uniformly as y, — 0.

The proof of the other cases is very 31m11ar ]

Theorem 6 Let L € £ and let Q be a domain of class C™' in R". Let hy, k =
0,1,...,r — 1, be c-measurable functions which are finite o-almost everywhere, where
o is the n — 1 dimensional Lebesgue measure on 9. Then there exists h € L() such

that, fork = 0,...,r — 1, and for o-almost all x € 9, the limit of £ {ﬂ " (y) is equal

to hi(x), where the derivatives are taken in the direction of the outer normal at x, and
y € Q tends to x € 052 along that normal direction.

Proof We will begin the proof by constructing a special family of C"-diffeomorph-
isms from n-dimensional closed cubes into Q. We will use the notations introduced
in Lemma 5. Fix a point b on the boundary of €2 and choose an (orthonormal)
coordinate system y = (yq,... ,yn) such that y(b) = 0 and for some § > 0 there is
¥ € C™H(Q}) with 4(0) = 0, a =0(k=1,2,...,n— 1) such that

ly=0" )€,y €Qslyal <20} ={y | ya=v("),y" € Qs}.

Moreover we suppose that

{y v <yn<28,y €Qj} C Q.

Let us define ¥: Q§ x R — R” by:

\Ij(}//7)/n) = ()//ﬂﬁ(}’/)) - y"ﬁi‘

https://doi.org/10.4153/CJM-2002-035-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-035-4

Approximation on Closed Sets 967

Here 7i; denotes the outer normal (unit) vector to 0€) at the point j = (y’, L/)(y’)) .
The Jacobian of W at the origin is the identity. By the inverse mapping theorem, there
exists d, 0 < d < 6, such that ¥ is a C"-diffeomorphism of Q; on ¥(Q,) and such
that ¥(Q,) C Q.

Using the fact that 912 is compact, we now choose a finite family of maps ¥,, and
closed cubes Q) := Q4 = Q;I,/ x [0,2d,] =: Q('V) x [0,2d,] such that ¥, |q,, is
a C"-diffeormophism, \Il,,(Q(’V) x {0}) C 09, \IJD(Q(,,) \ (Q(’V) X {0})) C Qand
00 C U, ¥, (U x {0}), where Uy == (—d,,d,)y, X -+ X (=dy,dy),,_,.

Let hg, . .., h,_ be any r o-measurable functions defined and o-finite almost ev-
erywhere on 9). We can construct a family {E,,}52,, E,, C 9 with the following
properties:

a) Thesets E,,, m = 1,2,. .., are compact, pairwise disjoint, nowhere dense subsets
of 00 with o(E,,) # 0.

b) Foreachk € {0,1,...,r—1}andm € {1,2,... }, we have hy € C(E,,).

) o(992\ (UnEn) = 0.

d) Foreachm € {1,2,...}, there exists v, such that \I/,jml (Em) C (U, x 0) where
V¥, belongs to the finite family of diffeomorphisms chosen above.

e) For some fixed u € (0,1) and for each m € {1,2,...} thereis a ¢ > 0 such that
forany x € E,, and € < d,,, one has

(15) M2 ({B(x,e) N ¥, (Q(, ) X {OD} \ Em) > ce"**,

where M* denotes the \-dimensional Hausdorff content.

For example, the first three properties are obtained using Lusin’s theorem [12, The-
orem 2.24], and the fourth follows easily. In order to have additionally property (e),
we use the following lemma, taking products of the set E from this lemma with n — 2-
dimensional closed cubes which gives an n— 1-dimensional analog of the lemma, that
is (15).

Lemma 6 Foreach pu € (0,1) andn > 0, there exist a compact set E C [0,1] and a
constant ¢ > 0 (independent of n) such that M*(E) > 1 — n and for eacht € R and
each e > 0, one has

M ({7]||r—t|<e} \ E) >ce™.

Proof Fix p and 7. It is well known (see [8, Section 4.10] and use the fact that a
Hausdorff measure and the corresponding Hausdorff content have the same zero sets)
that there exists a Cantor-type set K C [0, 1] with M!(K) = 0 and M*(K) > 0.
Form € Z, and j € {0,...,2™ — 1}, define K;, = {(7 + j)27™ | 7 € K}. Since
MY(K3,) = 0, there are open sets Uj, containing Kj, with M'(Uj,) < n272"=L It
suffices to take (as can be easily checked)
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We now return to the proof of Theorem 6. Given {E,, } as above, define
Fy =¥, (9, (E) x (0,8]),
where 0 < §; < d,,, and for m > 2,
Fu =0, (¥ [(Ey) % (0,3,]),

where 0 < 4, < min{d,, , §,,—1/2} is so small that F,, is disjoint from F;U- - -UF,,,_;
and {F,,} is a locally finite family in .

Let F = U:f:l F,,. We note that F is a (relatively) closed Q2-RKL set with no
interior. Let G,, = \I/;ml (E,;) and h}:’m(y’) = hk(\lll,m(y’, 0)) and note that h , is
(defined and) continuous on G,,. We extend h;((,m continuously to all of Q(’Vm) and still
denote this extension by kj , . Using Lemma 5 with s = r — 1, for each m > 1, there

exist functions H}, € COO(Q(UM) \ (Q(/u,,,) X {0})) N C(Qqy,,)) such that for each k,

0<k<r-—1,

OrHy, .

9yt ' yn) = hi ()
uniformly on Q(’I/m) as y, — 0. Define H,, in C’(\Il,,m(Qf’Vm))) by Hp(x) =
H;, (9, 1(x).

From our construction, it follows that one can choose (open) neighbourhoods 2,
of F,, such that the sets §2,, are still pairwise disjoint and Q,,, C ¥, (nym)). Define

fla, = Hula,,-

If V is the space BC""!*#(Q) then f € Vo (F) (note that f can be extended from
(possibly smaller) neighbourhoods 2/, of F,, to a function in Vi, (£2)).

It follows also from our construction of F (recalling (15)) that there exists an ex-
haustion of {2 by compact sets K; such that

1) eachY; = K; U (Kj;» N F) is an Q-RKL set;
2) for each Y, there exists a constant ¢; = ¢(Y;) > 1 such that for all balls B(x, €) C
) we have

¢iM" " H(B(x,e) \ V) > " > MITTH(B(x, ) \ Y7).

It then follows from Theorem 4((i) and (iv)) that V(Y;) = M (Y;) = Epv(Y;).
Thus by Proposition 5, one can find h € L(£2) such that

1
||f_h||F\K].° < 7

The function h has the desired properties.

It can be proved that Theorem 6 remains true if we require only C"-smoothness
of 00).
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