Approximation on Closed Sets by Analytic or Meromorphic Solutions of Elliptic Equations and Applications

André Boivin, Paul M. Gauthier and Petr V. Paramonov

Abstract. Given a homogeneous elliptic partial differential operator L with constant complex coefficients and a class of functions (jet-distributions) which are defined on a (relatively) closed subset of a domain Ω in \mathbb{R}^n and which belong locally to a Banach space V, we consider the problem of approximating in the norm of V the functions in this class by "analytic" and "meromorphic" solutions of the equation Lu = 0. We establish new Roth, Arakelyan (including tangential) and Carleman type theorems for a large class of Banach spaces V and operators L. Important applications to boundary value problems of solutions of homogeneous elliptic partial differential equations are obtained, including the solution of a generalized Dirichlet problem.

1 Introduction

Let *L* be a homogeneous elliptic partial differential operator with constant *complex* coefficients (such as powers of the Cauchy-Riemann operator $\bar{\partial}$ or the Laplacean Δ). In [2], given a Banach space (V, || ||) of functions (distributions) on \mathbb{R}^n , $n \ge 2$, we studied the problem of approximating, on a closed subset *F* of \mathbb{R}^n , the solutions of the equation Lu = 0 by global (*L*-analytic or *L*-meromorphic) solutions of the equation. Approximation theorems of Runge-type and Arakelyan-type were obtained whenever the operator *L* and the Banach space *V* satisfied certain conditions.

In this paper, we first generalize the results of [2] and [11] to Banach spaces of functions (distributions) defined on any domain Ω of \mathbb{R}^n $(n \ge 2)$. As already mentioned in [2], the only purpose of one of the important conditions on *L* and *V* ([2, Condition (4)]) was to obtain a "special maximum principle" ([2, Lemma 1]). Weakened assumptions of this lemma have now become our new Condition 4 (see Section 2 below), and consequently our proof has been slightly modified (and improved). For all operators *L* under consideration, our conditions are satisfied by a large class of classical (non-weighted) spaces.

Using results on the solution of the Dirichlet problem for strongly elliptic equations in bounded smooth domains, we find (see Proposition 2 below) that in this case our conditions are also satisfied by a wide class of spaces, for which an application of

Received by the editors September 28, 2000.

The first author was supported by a grant from NSERC of Canada. The second author was partially supported by grants from NSERC of Canada and FCAR Québec. The third author was supported by grants RFFR 00-01-00618 and RFFR 00-15-96008 (Russia).

AMS subject classification: Primary: 30D40, 30E10, 31B35, 35Jxx, 35J67; secondary: 41A30.

Keywords: approximation on closed sets, elliptic operator, strongly elliptic operator, *L*-meromorphic and *L*-analytic functions, localization operator, Banach space of distributions, Dirichlet problem.

[©]Canadian Mathematical Society 2002.

our theorems gives important new examples in the theory of tangential approximation (see Theorem 4(iii)).

Using Carleman-type approximation results (see Lemma 4 and Proposition 5), we obtain in Section 6 some very interesting examples of the possible boundary behaviour of solutions of homogeneous elliptic partial differential equations, analogous to those described in [5, Chapter IV, Section 5B] for functions holomorphic in a disc. First, given a domain Ω satisfying some mild conditions, we construct an *L*-analytic function *f* in Ω such that the limit of *f* and of all its derivatives along *any* path ending at the boundary of Ω does not exist (Theorem 5). To our knowledge, only very special cases of this result were known for the $\overline{\partial}$ equation in \mathbb{R}^2 and the Laplacean in \mathbb{R}^n , $n \geq 2$ (see [5, Chapter IV, Section 5], [6, Section 8]).

When the boundary of Ω is sufficiently smooth, we are also able to solve (see Theorem 6) a "weakened" Dirichlet problem where the boundary values of an *L*-analytic function, together with the boundary values of a fixed number of its derivatives are prescribed (almost everywhere on $\partial\Omega$) as we approach the boundary in the *normal* direction.

2 Definitions and Notation

For the reader's convenience, we summarize the definitions and main notation of [2]. Note that in [2], these were given only for \mathbf{R}^n , but here we extend them very naturally to general domains.

Let Ω be any fixed domain in \mathbb{R}^n , $n \ge 2$. We let $V = V(\Omega)$ stand for a Banach space, whose norm is denoted by $\| \|$, which contains $C_0^{\infty}(\Omega)$, the set of test functions in Ω and is contained in $(C_0^{\infty}(\Omega))^*$, the space of distributions on Ω . We make some additional assumptions on V.

Conditions 1 and 2 We assume that V is a topological $C_0^{\infty}(\Omega)$ -submodule of $(C_0^{\infty}(\Omega))^*$, which means that for $f \in V$ and $\varphi \in C_0^{\infty}(\Omega)$, we have $\varphi f \in V$ with

(1)
$$\|\varphi f\| \le C(\varphi) \|f\|$$

and

(2)
$$|\langle f, \varphi \rangle| \le C(\varphi) ||f||_{2}$$

where $\langle f, \varphi \rangle$ denotes the action in Ω of the distribution f on the test function φ and $C(\varphi)$ is a constant independent of f. We note that this implies that the imbeddings $C_0^{\infty}(\Omega) \hookrightarrow V$ and $V \hookrightarrow (C_0^{\infty}(\Omega))^*$ are continuous (see [2, Section 2.1]).

Given a closed subset F in Ω , let I(F) be the closure in V of (the family of) those $f \in V$ whose support in Ω in the sense of distributions (which will be denoted by $\operatorname{supp}(f)$) is disjoint from F, and let V(F) = V/I(F). The Banach space V(F), endowed with the quotient norm, should be viewed as the natural (Whitney type) version of V on F (see [14, Chapter 6]). We will write $||f||_F$ for the norm of the equivalence class (jet) $f_{(F)} := f + I(F)$ in V(F) of the distribution $f \in V$.

For any open set D in Ω , let

$$V_{\text{loc}}(D) = \left\{ f \in \left(C_0^{\infty}(D) \right)^* \mid f\varphi \in V \text{ for each } \varphi \in C_0^{\infty}(D) \right\},\$$

where φ and $f\varphi$ are extended to be identically zero in $\Omega \setminus D$. We endow $V_{\text{loc}}(D)$ with the projective limit topology of the spaces V(K) partially ordered by inclusion of the compact sets $K \subset D$. For a closed set F in Ω , define $V_{\text{loc}}(F) = V_{\text{loc}}(\Omega)/J(F)$, where J(F) is the closure in $V_{\text{loc}}(\Omega)$ of the family of those distributions in $V_{\text{loc}}(\Omega)$ whose support is disjoint from F. The topology on $V_{\text{loc}}(F)$ will be the quotient topology. Note that for compact sets K, the topological spaces V(K) and $V_{\text{loc}}(K)$ are identical.

For $f \in V_{\text{loc}}(\Omega)$, we put $f_{(F),\text{loc}} := f + J(F)$. If D is a neighbourhood of F in Ω , then each $h \in V_{\text{loc}}(D)$ naturally defines an element (jet) $h_{(F),\text{loc}}$ in $V_{\text{loc}}(F)$ by taking $h_{(F),\text{loc}}$ to be the closure in $V_{\text{loc}}(\Omega)$ of the set of $f \in V_{\text{loc}}(\Omega)$ such that f = h (as distributions) in some neighbourhood (depending on f) of F. In particular, this works for each $h \in C^{\infty}(D) \subset V_{\text{loc}}(D)$. For $f_{(F),\text{loc}} \in V_{\text{loc}}(F)$, we will write $f_{(F),\text{loc}} \in$ V(F) (or more briefly $f \in V(F)$), if $V \cap f_{(F),\text{loc}} \neq \emptyset$. We will then write $||f_{(F),\text{loc}}||_F$, or equivalently $||f||_F$, to mean $||g||_F$, where $g \in V \cap f_{(F),\text{loc}}$. Practically the same proof as in [2, Section 2.1] shows that $V \cap J(F) = I(F)$ holds for each closed set F in Ω , which means that $||f_{(F),\text{loc}}||_F$ is well-defined.

For a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$, with $\alpha_j \in \mathbf{Z}_+ (:= \{0, 1, 2, \ldots\})$, we let $|\alpha| = \alpha_1 + \cdots + \alpha_n, \alpha! = \alpha_1! \cdots \alpha_n!, x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ for $x = (x_1, \ldots, x_n) \in \mathbf{R}^n$ and $\partial^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$.

We denote by $B(a, \delta)$ (respectively $\overline{B}(a, \delta)$) the open (respectively closed) ball with center $a \in \mathbf{R}^n$ and radius $\delta > 0$. If $B = B(a, \delta)$ and $\theta > 0$ then $\theta B = B(a, \theta \delta)$ and $\theta \overline{B} = \overline{B}(a, \theta \delta)$.

Throughout this paper we let $L(\xi) = \sum_{|\alpha|=r} a_{\alpha}\xi^{\alpha}$, $\xi \in \mathbb{R}^{n}$, be a fixed homogeneous polynomial of degree r ($r \ge 1$) with *complex* constant coefficients and which satisfies the ellipticity condition $L(\xi) \ne 0$, $\xi \ne 0$. We associate to L the homogeneous elliptic operator of order r

$$L = L(\partial) = \sum_{|\alpha|=r} a_{\alpha} \partial^{\alpha}.$$

Let *D* be an open set in \mathbb{R}^n and denote by L(D) the set of distributions f in *D* such that Lf = 0 in *D* in the sense of distributions. It is well known [7, Theorem 4.4.1] that $L(D) \hookrightarrow C^{\infty}(D)$. Therefore if $D \subset \Omega$, then $L(D) \subset V_{\text{loc}}(D)$, and if $\{f_m\}$ is a sequence in L(D) with $f_m \to f$ in $V_{\text{loc}}(D)$ as $m \to \infty$, then $f \in L(D)$, since convergence in $V_{\text{loc}}(D)$ is stronger than convergence in the sense of distributions, which preserves L(D) [7, Theorem 4.4.2].

Functions from L(D) will be called *L*-analytic in *D*. We shall also say that a distribution *g* in *D* is *L*-meromorphic in *D* if supp(*Lg*) is discrete in *D* and for each $a \in \text{supp}(Lg)$ ($a \in D$) there exist *h*, which is *L*-analytic in a neighbourhood of *a*, $k \in \mathbb{Z}_+$ and $\lambda_{\alpha} \in \mathbb{C}, 0 \leq |\alpha| \leq k$, such that

$$g(x) = h(x) + \sum_{|\alpha| \le k} \lambda_{\alpha} \partial^{\alpha} \Phi(x - a)$$

in some neighbourhood of *a*, where Φ is a special fundamental solution of *L* as described in [7, Theorem 7.1.20]. The points $a \in \text{supp}(Lg)$ will be called the *poles* of *g*.

We recall (see [3, p. 239] or [15, p. 163]) that there exists a k > 1 such that if *T* is a distribution with compact support contained in $B(a, \delta)$ and $f = \Phi * T$, then, for $|x - a| > k\delta$, we have the *Laurent-type expansion*:

(3)
$$f(x) = \langle T(y), \Phi(x-y) \rangle = \sum_{|\alpha| \ge 0} c_{\alpha} \partial^{\alpha} \Phi(x-a),$$

where $c_{\alpha} = (-1)^{|\alpha|} (\alpha!)^{-1} \langle T(y), (y-a)^{\alpha} \rangle$. The series converges in $C^{\infty}(\{|x-a| > k\delta\})$, which means that the series can be differentiated term by term and all such series converge uniformly on $\{|x-a| \ge k'\delta\}$, k' > k.

Let $\varphi \in C_0^{\infty}(\Omega)$. The Vitushkin localisation operator $\mathcal{V}_{\varphi}: (C_0^{\infty}(\Omega))^* \to (C_0^{\infty}(\Omega))^*$ associated to *L* and φ is defined as $\mathcal{V}_{\varphi}f = (\Phi * (\varphi L f))|_{\Omega}$, where in the last equality * denotes the convolution operator in \mathbb{R}^n .

Condition 3 We require that for each $\varphi \in C_0^{\infty}(\Omega)$, the operator \mathcal{V}_{φ} be invariant on $V_{\text{loc}}(\Omega)$, *i.e.* \mathcal{V}_{φ} must send continuously $V_{\text{loc}}(\Omega)$ into $V_{\text{loc}}(\Omega)$. This means that if K is a compact subset of Ω and $\text{supp}(\varphi) \subset K$, then for each $f \in V_{\text{loc}}(\Omega)$ one has $\mathcal{V}_{\varphi}f \in V_{\text{loc}}(\Omega)$ and

(4)
$$\|\mathcal{V}_{\varphi}f\|_{K} \leq C\|f\|_{K},$$

where C is independent of f.

We make one more assumption on V in relation with L.

Condition 4 For each open ball *B* with $3\overline{B} \subset \Omega$, there exist d > 0 and C > 0 such that for each $h \in C^{\infty}(\mathbb{R}^n)$ satisfying Lh = 0 outside of *B* and $h(x) = O(|x|^{-d})$ as $|x| \to \infty$, one can find $v \in L(\Omega)$ with

(5)
$$(h - \nu) \in V \text{ and } ||h - \nu|| \le C ||h||_{3\bar{B}}$$

In this assumption, instead of the constant 3, one can take any fixed real number greater than 1.

3 Some Remarks on Conditions 1 to 4

All Conditions 1 to 4 are satisfied by classical (non-weighted) spaces on any domain Ω in \mathbb{R}^n , for example $BC^m(\Omega)$, $BC^{m+\mu}(\Omega)$, $VMO(\Omega)$ and the Sobolev spaces $W_m^p(\Omega)$, $1 \le p < \infty$. We shall give the definitions and prove this assertion only for the spaces $V = BC^m(\Omega)$ and $BC^{m+\mu}(\Omega)$.

For $m \in \mathbb{Z}_+$, let $BC^m(\Omega)$ be the space of all *m*-times continuously differentiable functions $f: \Omega \to \mathbb{C}$ with (finite) norm

$$||f||_{m,\Omega} = \max_{|\alpha| \le m} \sup_{x \in \Omega} |\partial^{\alpha} f(x)|.$$

If $m \in \mathbf{Z}_+$ and $0 < \mu < 1$, then

$$BC^{m+\mu}(\Omega) = \{ f \in BC^m(\Omega) \mid \omega_{\mu}^m(f,\infty) < \infty \text{ and } \omega_{\mu}^m(f,\delta) \to 0 \text{ as } \delta \to 0 \},\$$

where $\omega_{\mu}^{m}(f, \delta) = \sup \frac{|\partial^{\alpha} f(x) - \partial^{\alpha} f(y)|}{|x-y|^{\mu}}$, the supremum being taken over all multi-index α such that $|\alpha| = m$ and all $x, y \in \Omega$ with $0 < |x - y| < \delta$. The norm in this space is defined as

$$||f||_{m+\mu,\Omega} = \max\{||f||_{m,\Omega}, \omega^m_\mu(f,\infty)\}$$

We shall omit the index Ω in the last norm whenever $\Omega = \mathbf{R}^n$. Finally, for any $\rho \ge 0$, we set $C^{\rho}(\Omega) = (BC^{\rho}(\Omega))_{loc}$.

Proposition 1 Let Ω be a domain in \mathbb{R}^n , $n \ge 2$, and let $\rho \ge 0$. Then the pair $(L, V(\Omega))$ with $V(\Omega) = BC^{\rho}(\Omega)$ satisfies Conditions 1, 2, 3 and satisfies Condition 4 with v = 0.

Proof Conditions 1 and 2 are easily verified. Condition 3 is proved in [10, Corollary 5.6] in the case $\Omega = \mathbf{R}^n$ for all spaces mentioned above, since $C_0^{\infty}(\mathbf{R}^n)$ is locally dense in each of them. As Condition 3 is local, it holds for each pair $(L, V(\Omega))$ under consideration.

To obtain Condition 4 with v = 0, we can easily use [2, Lemma 1] (see also [11, Lemma 2]). In fact, by this lemma, for each open ball *B* with $3\overline{B} \subset \Omega$, we even can find d > 0 and C > 0 such that if *h* satisfies the hypotheses of Condition 4 with this *d*, then

$$||h||_{\rho} \leq C ||h||_{\rho,3\bar{B}}.$$

Since $||h||_{\rho,\Omega} \leq ||h||_{\rho}$, the proof is complete.

In [2, Corollary 1] (see also the brief discussion thereafter) and [11, Theorem 4] one sees how (whenever Conditions 1 to 3 are satisfied) Condition 4 can affect *L*-meromorphic and *L*-analytic approximation in the special case of weighted uniform holomorphic approximation ($n = 2, L = \bar{\partial}$).

We also wish to present here an example of a pair (L, V) satisfying Conditions 1, 2 and 4 (with v = 0), but not 3. Hence, this example eludes our method. The example seems new even without considering Condition 4.

Take $L = \overline{\partial}$, $\Omega = \mathbf{R}^2 (= \mathbf{C})$, $B_1 = \{z \in \mathbf{C} \mid |z| < 1\}$ (the unit disk), and let

$$V = BC^{0}(\mathbf{R}^{2}) \cap BC^{1}(B_{1})$$
 with norm $||f|| = \max\{||f||_{0}, ||f||_{1,B_{1}}\}.$

Conditions 1 and 2 are easily verified. Condition 4 (with $\nu = 0$, d = 1) follows from the maximum principle and from trivial estimates of derivatives (outside $2\overline{B}$) of a function, holomorphic outside \overline{B} and vanishing at ∞ . Finally, fixing any $\varphi \in$ $C_0^{\infty}(3B_1)$ such that $\varphi(z) = \overline{z}$ on $2B_1$, one can check that there exists $f \in BC^0(\mathbb{R}^2)$, f = 0 in B_1 , with $\mathcal{V}_{\varphi}f|_{B_1}$ not in $BC^1(B_1)$. In fact, in this case

$$\mathcal{V}_{\varphi}f(w) = f(w)\varphi(w) - \frac{1}{\pi}\int \frac{f(z)\bar{\partial}\varphi(z)}{w-z}\,dx_1\,dx_2 \quad z = x_1 + ix_2,$$

so that one needs only to study the behavior $(in B_1)$ of the function

$$\int_{2B_1\setminus B_1}\frac{f(z)}{(w-z)^2}\,dx_1\,dx_2$$

Easily, there is $g \in C(\mathbf{R}^2)$, $g \ge 0$, supp $(g) \subset \{x_1 \ge 2|x_2|\} \cap B_1$, such that

$$\int \frac{g(z)}{|z|^2} \, dx_1 \, dx_2 = +\infty.$$

It is enough to take f(z) = g(z-1) and let $w \in (0, 1)$ tend to 1. Indeed, set $1-w = \delta$. Then, it is enough to show that

$$\int \frac{g(z)}{(z+\delta)^2} \, dx_1 \, dx_2$$

is unbounded as δ tends to zero. In fact,

$$\operatorname{Re}\left(rac{1}{(z+\delta)^2}
ight) \geq rac{1}{2|z+\delta|^2}$$

on supp(g), and if the integrals

$$\int \frac{g(z)}{|z+\delta|^2} \, dx_1 \, dx_2$$

were uniformly bounded for $\delta \in (0, 1)$, then by Fatou's lemma, the integral with $\delta = 0$ would be convergent, which is not the case.

The following proposition provides us with another class of examples for which Conditions 1 to 4 are satisfied. These in turn will allow us to obtain in Section 4 new results on "tangential" approximation. Given *m* and *q* in \mathbb{Z}_+ , with $q \leq m$, and a bounded domain Ω , set

$$BC_q^m(\Omega) = \{ f \in BC^m(\Omega) \mid \text{ for each } \alpha, |\alpha| \le q, \lim_{x \to \partial \Omega} \partial^\alpha f(x) = 0 \},\$$

which is a Banach space with the norm $||f||_{m,\Omega}$.

Proposition 2 Let *L* be a strongly elliptic operator of order $r = 2\ell$, $\ell \in \mathbb{Z}_+$, $\ell \ge 1$ (see [1, p. 46]). Let $m, q \in \mathbb{Z}_+$, $m \ge \ell - 1$, $q \le \ell - 1$. If Ω is bounded and $\partial\Omega$ is of class C^s , $s = \max\{2\ell, \lfloor n/2 \rfloor + 1 + m\}$ (see $\lfloor 1, p. 128 \rfloor$), then the pair $(L, V = BC_q^m(\Omega))$ satisfies Conditions 1 to 4.

Proof Since $(BC_q^m(\Omega))_{loc} = C^m(\Omega)$, Conditions 1, 2 and 3 are satisfied. Let us prove Condition 4. Fix any ball B, $3\overline{B} \subset \Omega$, and take any $h \in C^{\infty}(\mathbb{R}^n)$ with Lh = 0 outside *B*. Now, results on solvability and regularity of the classical Dirichlet problem applied to the operator *L* (see [1, Theorem 8.2 and Lemma 7.7, Theorem 9.8 and Lemma 9.1, Theorem 3.9]) show that under the hypotheses of Proposition 2, there

exists $v_0 \in C^m(\overline{\Omega}) \cap L(\Omega)$ such that $u_0 = h - v_0$ satisfies $\partial^{\alpha} u_0|_{\partial\Omega} = 0$ for each α , $|\alpha| \leq \ell - 1$ (so that $h - v_0 \in V$), and moreover

$$||u_0|| \equiv ||u_0||_{m,\Omega} \le C_1 ||h||_{s,\Omega},$$

where C_1 is independent of *h*. We observe that we have not used here the property Lh = 0 in $\mathbb{R}^n \setminus B$. We also remark that our notations for *m* and $\|\cdot\|_{m,\Omega}$ are different from those of [1], and that the last inequality follows from [1, (9.23)] since

$$||u_0||_{L^2(\Omega)} \le ||u_0||_{W^2_{\ell}(\Omega)} \le C_2 ||h||_{W^2_{\ell}(\Omega)},$$

by [1, Theorems 8.1 and 8.2].

By [11, Lemmas 1 and 3], we can choose d > 0 and $C_3 > 0$ (independently of h) such that if additionally $h(x) = O(|x|^{-d})$ as $|x| \to \infty$, then (see also [2, Lemma 1])

$$h = \Phi * Lh$$
, and $||h||_{m,\Omega} \le ||h||_{m,\mathbf{R}^n} \le C_3 ||h||_{m,3B}$.

Fix $\chi \in C_0^{\infty}(\frac{3}{2}B)$, $\chi = 1$ on *B*. Then for $x \in \mathbf{R}^n \setminus 2\overline{B}$, we get

$$h(x) = \int_B \Phi(x - y) Lh(y)\chi(y) \, dy = \int_B L\big(\chi(y)\Phi(x - y)\big) h(y) \, dy$$

and so since Ω is bounded,

$$\|h\|_{s,\Omega\setminus 2\bar{B}} \le C_4 \|h\|_{0,\frac{3}{2}B} \le C_4 \|h\|_{m,3B}.$$

We can now find a function $h_1 \in C^{\infty}(\mathbf{R}^n)$, $h_1 = h$ on $\mathbf{R}^n \setminus 2\overline{B}$ such that

$$||h_1||_{s,\Omega} \le C_5 ||h||_{s,\Omega \setminus 2\bar{B}} \le C_6 ||h||_{m,3B}$$

Let now v_1 and $u_1 = h_1 - v_1$ satisfy the same properties as the functions v_0 and u_0 above, but taken with h_1 instead of h. Then

$$||u_1||_{m,\Omega} \leq C_2 ||h_1||_{s,\Omega} \leq C_7 ||h||_{m,3B}.$$

The function $v = v_1$ is as desired. In fact, since $\partial^{\alpha} u_1 = 0$ on $\partial \Omega$ for $|\alpha| \le \ell - 1$, then

$$\partial^{\alpha}(h-\nu)|_{\partial\Omega} = \partial^{\alpha}(h_1-\nu_1)|_{\partial\Omega} = 0$$

for $|\alpha| \leq \ell - 1$, so that $h - \nu \in V(\Omega)$. Finally

$$\|h - \nu\|_{m,\Omega} = \|h - h_1 + h_1 - \nu_1\|_{m,\Omega} \le \|h\|_{m,\Omega} + \|h_1\|_{m,\Omega} + \|u_1\|_{m,\Omega} \le C\|h\|_{m,3B},$$

since clearly

$$||h_1||_{m,\Omega} \le ||h_1||_{s,\Omega} \le C_6 ||h||_{m,3B}.$$

Note that the constants C_2 to C_7 and C are independent of h. This ends the proof.

Let Ω be any domain in \mathbb{R}^n . Denote by $\Omega^* = \Omega \cup \{*\}$ the one point compactification of Ω and by X° the interior of a set *X*. For $i \ge 1$, let

$$X_i = \{ x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) \ge 1/i, |x| \le i \}.$$

Then each X_i is a compact subset of Ω such that both $\Omega^* \setminus X_i$ and $\Omega^* \setminus X_i^\circ$ are connected and such that $X_i \subset X_{i+1}^\circ$.

In the next sections, we shall need frequently the following easy consequence of a very general version of Runge's theorem.

Proposition 3 Assume $V = V(\Omega)$ satisfies Conditions 1 and 2. Then, given $i \ge 1$, $\varepsilon_i > 0$ and $f \in L(X_{i+1}^{\circ})$, one can find $h_i \in L(\Omega)$ such that

$$\|f-h_i\|_{X_i}\leq \varepsilon_i.$$

Proof By the generalization of Runge's theorem found in [7, Theorem 4.4.5], there exists a sequence $\{g_m\}_{m=1}^{\infty} \subset L(\Omega)$ such that $g_m \to f$ in $C^{\infty}(X_{i+1}^{\circ})$ and hence $g_m \to f$ in $V(X_i)$ as $m \to \infty$, which gives the result if one takes $h_i = g_m$ for some m sufficiently large.

4 Approximation Theorems

As in [2, Section 3], a closed set *F* in Ω will be called a Roth-Keldysh-Lavrent'ev set in Ω , or more simply an Ω -RKL *set*, if $\Omega^* \setminus F$ is connected and locally connected. In this section, we formulate our main approximation results. They extend the analogous ones of [2] from \mathbb{R}^n to general domains Ω . Using Proposition 2, concrete new applications to "tangential" approximation are also obtained (see Theorem 4(iii)). Note that Carleman-type approximation results will also be presented in Section 6 with interesting applications to the boundary behaviour of *L*-analytic functions.

We first obtain sufficient conditions for approximation of Runge-type on closed sets.

Theorem 1 Let Ω be a domain in \mathbb{R}^n , $n \ge 2$. Let $(L, V(\Omega))$ be a pair satisfying Conditions 1 to 4, F be a (relatively) closed subset of Ω , and f be L-analytic in some neighbourhood of F in Ω . Then, for each $\varepsilon > 0$, there exists an L-meromorphic function g on Ω with poles off F such that $(f_{(F),\text{loc}} - g_{(F),\text{loc}}) \in V(F)$ and

$$\|f-g\|_F < \varepsilon.$$

Moreover, if *F* is an Ω -RKL set, then *g* can be chosen in $L(\Omega)$.

The next theorem deals with approximation of a single function and shows that the problem is essentially local.

Theorem 2 Let Ω be a domain in \mathbb{R}^n $(n \ge 2)$, $(L, V(\Omega))$ be a pair satisfying Conditions 1 to 4, F be a (relatively) closed subset of Ω , and $f \in V_{loc}(\Omega)$. Then the following are equivalent:

- (i) for each positive number ε , there exists an L-meromorphic function g in Ω with poles off F such that $(f_{(F),loc} g_{(F),loc}) \in V(F)$ and $||f g||_F < \varepsilon$;
- (ii) for each ball $B, \overline{B} \subset \Omega$ and positive number ε , there exists g such that Lg = 0 on some neighbourhood of $F \cap \overline{B}$ and $||f g||_{F \cap \overline{B}} < \varepsilon$;
- (iii) the previous property is satisfied by each ball from some locally finite family of balls $\{B'_i\}$ covering F, where $\overline{B'_i} \subset \Omega$ for each j.

For any subset X of \mathbb{R}^n , we let L(X) stand for the collection of all functions f defined and *L*-analytic in some neighbourhood (depending on f) of X. For a closed set F in Ω we denote by $M_{LV}(F)$ (respectively $E_{LV}(F)$) the space of all $f_{(F),\text{loc}} \in V_{\text{loc}}(F)$ which satisfy the following property: for each $\varepsilon > 0$ there exists an *L*-meromorphic function g in Ω with poles outside of F (respectively a function $g \in L(\Omega)$) such that $f - g \in V(F)$ and $||f - g||_F < \varepsilon$. We also introduce the space $V_L(F) = V_{\text{loc}}(F) \cap L(F^\circ)$. Whenever Conditions 1 to 4 hold, we have that by Theorem 1, $M_{LV}(F)$ is the closure in $V_{\text{loc}}(F)$ of the space $\{h_{(F),\text{loc}} \in V_{\text{loc}}(F) \mid h \in L(F)\}$. Moreover, if F is an Ω -RKL set, then $M_{LV}(F) = E_{LV}(F)$.

We now study the necessity of being a Ω -RKL set for approximation by *L*-analytic functions.

Let *K* be a compact set in Ω . Denote by \hat{K} the union of *K* and all the (connected) components of $\Omega \setminus K$ which are pre-compact in Ω . Obviously, the property $\hat{K} = K$ means precisely that $\Omega^* \setminus K$ is connected, so that *K* is a Ω -RKL set.

Define

$$N(K) = N_{LV}(K) = \{a \in \hat{K} \setminus K \mid (\Phi_a)_{(K)} \notin E_{LV}(K)\},\$$

where $\Phi_a(x) = \Phi(x - a)$.

Condition N We shall say that a pair $(L, V(\Omega))$ satisfies Condition N ("nonremovability of holes") if $N(K) \neq \emptyset$ for each compact set K with "holes", *i.e.* such that $K \neq \hat{K}$.

Remark 1 The same proof as in [2, Proposition 2] shows that $(L, V(\Omega))$ satisfies Condition N whenever all of the following conditions hold:

- (1) $(L, V(\Omega))$ satisfies Conditions 1 and 2;
- (2) n = 2 or $n \ge 3$ and *L* has the following symbol:

$$L(\xi) = P_2(\xi)Q_{r-2}(\xi), \quad \xi \in \mathbf{R}^n,$$

where P_2 is some homogeneous (elliptic) polynomial of order two with real coefficients (so that P_2 has constant sign in $\mathbb{R}^n \setminus \{0\}$), and Q_{r-2} is some homogeneous polynomial of order r - 2;

(3) $Ord(V) \ge r - 1$.

For the definition of Ord(V) when Ω is \mathbb{R}^n , see [2, Section 4.3]. Replacing \mathbb{R}^n by Ω everywhere in that definition, we get the corresponding definition of $Ord(V(\Omega))$ for an arbitrary domain Ω .

One can also find in [2, Section 4.2] some informative examples concerning Condition N.

Theorem 3 If $(L, V(\Omega))$ satisfies Conditions 1 to 4, then the following statements are equivalent:

(i) for each (relatively) closed set $F \subset \Omega$ one has

$$M_{LV}(F) = E_{LV}(F) \iff \{F \text{ is a } \Omega\text{-RKL set}\};$$

(ii) for each compact set $K \subset \Omega$,

$$M_{IV}(K) = E_{IV}(K) \iff \{\Omega^* \setminus K \text{ is connected}\};$$

(iii) the pair $(L, V(\Omega))$ satisfies Condition N.

Remark 2 Our proof of (ii) \Rightarrow (iii) in fact shows that if for *some* compact set *K* in Ω there is a function $f \in L(K)$ which is not in $E_{LV}(K)$, then the same is true for some $\Phi_a, a \in \hat{K} \setminus K$.

From Theorems 2 and 3, it is not difficult to obtain the corresponding approximation (reduction) theorems for *classes* of functions (jets), analogous to that of [2, Proposition 1]. In this direction, we present only the following result which extends [2, Theorem 4]. Note that (iii) is a result on tangential approximation.

Theorem 4 Let L (of order r) satisfy property (2) of Remark 1, Ω be an arbitrary domain in \mathbb{R}^n and F be a closed subset of Ω .

(i) For $V = BC^{\rho}(\Omega)$, where $\rho \in (r - 1, r)$ (see Section 3), the equality $V_L(F) = M_{LV}(F)$ holds if and only if there exists a constant $A \in (0, +\infty)$ such that for each ball B in Ω

$$M^{n-r+\rho}_*(B\setminus F^\circ) \le AM^{n-r+\rho}(B\setminus F).$$

- (ii) For $V = BC^m(\Omega)$ (m = r, r + 1, ...) or $V = BC^{\rho}(\Omega)$ $(\rho > r, \rho \notin \mathbb{Z})$ the equality $V_L(F) = M_{LV}(F)$ holds if and only if F° is dense in F.
- (iii) Let L, Ω and $V = BC_q^m(\Omega)$ be as in Proposition 2, and additionally suppose that $m \ge r$. Then the equality $V_L(F) = M_{LV}(F)$ holds if and only if F° is dense in F.
- (iv) For each space $V(\Omega)$, which is mentioned in (i), (ii) or (iii), the equality $V_L(F) = E_{LV}(F)$ holds if and only if $V_L(F) = M_{LV}(F)$ and (at the same time) F is a Ω -RKL set.

Here $M^{n-r+\rho}(\cdot)$ and $M_*^{n-r+\rho}(\cdot)$ are the Hausdorff and lower Hausdorff *contents* of order $n - r + \rho$ respectively (*cf.* [15]).

5 **Proofs of Theorems 1, 2, 3 and 4**

Fix a pair $(L, V(\Omega))$ satisfying Conditions 1 to 4, and let k = k(L) > 1 be the constant which appears in (3).

Lemma 1 Let $B = B(a, \delta)$ be a ball in Ω with $6k\overline{B} \subset \Omega$ and T be a distribution with $supp(T) \subset B$. Set $h = \Phi * T$ and let

$$h_m = \sum_{0 \le |\alpha| \le m} c_\alpha \partial^\alpha \Phi(x-a)$$

be the partial sums of the Laurent series expansion of h outside $k\overline{B}$ (see (3)). Then there exists $M \in \mathbb{Z}_+$ such that for all $m \ge M$, one can find $v_m \in L(\Omega)$ such that $h - h_m - v_m \in V(\Omega \setminus 2kB)$ and

$$\|h-h_m-\nu_m\|_{\Omega\setminus 2kB} \to 0 \quad as \ m \to \infty.$$

Proof First recall that $h_m \to h$ in $C^{\infty}(\Omega \setminus k\overline{B})$. Let $\psi \in C^{\infty}(\mathbb{R}^n)$ such that

$$\psi = \begin{cases} 0 & \text{in a neighbourhood of } k\bar{B} \\ 1 & \text{in a neighbourhood of } \mathbf{R}^n \setminus 2kB. \end{cases}$$

Take *d* from Condition 4 for the ball 2kB and the pair (L, V). Since we have that $\psi h_m \to \psi h$ in $C^{\infty}(\Omega)$, there exists $M \in \mathbb{Z}_+$ such that for $m \ge M$, one has

$$h_m^* \equiv \psi(h - h_m) = O(|x|^{-d})$$
 as $|x| \to \infty$.

Using Condition 4 when $m \ge M$, we can find $v_m \in L(\Omega)$ such that $(h_m^* - v_m) \in V$ and

$$\|h_m^* - v_m\| \le C \|h_m^*\|_{6k\bar{B}} \to 0 \quad \text{as } m \to \infty.$$

By definition, $(h - h_m - v_m) \in V(\Omega \setminus 2kB)$ and

$$\|h-h_m-\nu_m\|_{\Omega\setminus 2kB}\leq \|h_m^*-\nu_m\|\to 0 \quad \text{as } m\to\infty.$$

The lemma is proved.

Proof of Theorem 1 The proof relies on a localization technique. Let f be a function L-analytic on some neighbourhood U of F in Ω and U_1 be a neighbourhood of F, with $\overline{U}_1 \subset U$. We extend f to a function (also denoted by f) in $C^{\infty}(\Omega)$ so that f is still L-analytic in a neighbourhood of \overline{U}_1 . We can find a family of couples $\{B(a_j, \delta_j), \varphi_j\}_{j=1}^{\infty}$ where the family of balls $\{B_j = B(a_j, \delta_j)\}$ is locally finite in Ω , $6k\overline{B}_j \subset \Omega \setminus F$, each $\varphi_j \in C_0^{\infty}(B_j)$, with $0 \leq \varphi_j \leq 1$ and $\sum_{j=1}^{\infty} \varphi_j = 1$ on some neighbourhood U_2 of $\Omega \setminus U_1$.

Let $f_j = \mathcal{V}_{\varphi_j} f = \Phi * (\varphi_j L f)$. Each f_j is in $C^{\infty}(\mathbf{R}^n)$. Let $\{X_i\}, i \ge 1$, be the sequence of compact sets described before Proposition 3. Put $J_i = \{j \mid B_j \cap X_{i+1} \neq \emptyset\}$. Note that $L(f - \sum_{j \in J_1} f_j) = Lf - \sum_{j \in J_1} \varphi_j Lf = Lf(1 - \sum_{j \in J_1} \varphi_j) = 0$ (*i.e.* $f - \sum_{i \in J_1} f_j$ is *L*-analytic) in X_2° . By Proposition 3, one can find $P_1 \in L(\Omega)$ such that

$$\left\|f-\left(\sum_{J_1}f_j\right)-P_1\right\|_{X_1}<\frac{1}{2}.$$

Now, since $f - (\sum_{J_1} f_j) - P_1 - (\sum_{J_2 \setminus J_1} f_j)$ is *L*-analytic in X_3° , there exists $P_2 \in L(\Omega)$ such that $\| f_0 - (\sum_{J_2 \setminus J_1} f_j) - P_1 - (\sum_{J_2 \setminus J_1} f_j) = P_1 \|_{P_1} = \int_{P_2}^{P_2} \frac{1}{P_1} \|_{P_2}$

$$\left\| f - \left(\sum_{J_1} f_j \right) - P_1 - \left(\sum_{J_2 \setminus J_1} f_j \right) - P_2 \right\|_{X_2} < \frac{1}{2^2}$$

Inductively, we can thus find $P_i \in L(\Omega)$ such that

$$\left\|f-\left(\sum_{J_1}f_j\right)-P_1-\left(\sum_{J_2\setminus J_1}f_j\right)-P_2-\cdots-\left(\sum_{J_i\setminus J_{i-1}}f_j\right)-P_i\right\|_{X_i}<\frac{1}{2^i}.$$

so that, setting $J_0 = \emptyset$, the equality

$$f = \sum_{i=1}^{\infty} \left(\sum_{J_i \setminus J_{i-1}} f_j + P_i \right)$$

holds in $V_{\text{loc}}(\Omega)$.

Now, from (3), each f_i has a Laurent series expansion

$$f_j(x) = \sum_{|\alpha| \ge 0} c^j_{\alpha} \partial^{\alpha} \Phi(x - a_j)$$

valid outside $k\bar{B}_j$, and thus on a neighbourhood of F. Using Lemma 1, given any $\eta_j > 0$, there exists $m_j \in \mathbb{Z}_+$ and $v_j \in L(\Omega)$ such that if

$$g_j(x) = \sum_{|\alpha|=0}^{m_j} c_{\alpha}^j \partial^{\alpha} \Phi(x-a_j),$$

then $(f_j - g_j - \nu_j) \in V(\Omega \setminus 2kB_j)$ and $||f_j - g_j - \nu_j||_{\Omega \setminus 2kB_j} < \eta_j$. Put $F_1 = \Omega \setminus \cup_j (2kB_j)$; then $F \subset F_1^\circ$ and, for all $j, (f_j - g_j - \nu_j) \in V(F_1)$,

Put $F_1 = \Omega \setminus \bigcup_j (2kB_j)$; then $F \subset F_1^\circ$ and, for all j, $(f_j - g_j - v_j) \in V(F_1)$, $\|f_j - g_j - v_j\|_{F_1} < \eta_j$. Fix $\varepsilon > 0$ and choose the sequence $\{\eta_j\}, \eta_j > 0$, such that $\sum_j \eta_j < \varepsilon$. Define

$$g = \sum_{i=1}^{\infty} \left(\sum_{J_i \setminus J_{i-1}} (g_j + \nu_j) + P_i \right).$$

Since for each $m \ge 1$ the series

$$\sum_{i=m+1}^{+\infty} \left(\sum_{J_i \setminus J_{i-1}} (g_j + \nu_j) + P_i \right)$$

converges in $V(X_m)$, g is L-meromorphic in Ω with "poles" only (possibly) at a_j , j = 1, 2, ... Moreover $g \in V_{loc}(F_1)$ and

$$(f-g)_{(F_1),\mathrm{loc}} = \sum_{i=1}^{\infty} \left(\sum_{J_i \setminus J_{i-1}} (f_j - g_j - \nu_j)_{(F_1),\mathrm{loc}} \right).$$

But then $f - g \in V(F)$ and

$$\|f-g\|_F<\varepsilon,$$

since $(f - g)_{(F),\text{loc}}$ can be defined by the element

$$\sum_{i=1}^{\infty} \Big(\sum_{J_i \setminus J_{i-1}} \Psi_j \Big)$$

where $\Psi_j \in V$ are such that $(\Psi_j)_{(\Omega \setminus 2kB_j)} = (f_j - g_j - \nu_j)_{(\Omega \setminus 2kB_j)}$ and $\|\Psi_j\| \leq \eta_j$. This proves the first part of Theorem 1.

Now assume that *F* is a RKL-set in Ω , *i.e.* $\Omega^* \setminus F$ is connected and locally connected. It suffices to show that there exists a function $h \in L(\Omega)$ such that

$$\|g-h\|_F < \varepsilon$$

Let $\{a_j\}_{j\geq 1}$ be the sequence of "poles" of g in Ω . Each $a_j \in \Omega \setminus F$ and the sequence has no limit points in Ω . Since $\Omega^* \setminus F$ is connected and locally connected at the "point" *, we can find paths σ_j from a_j to *, $\sigma_j \subset \Omega \setminus F$, such that the family of curves $\{\sigma_i\}$ is locally finite in Ω .

For a fixed *j*, we can find sequences $\{a_{j_m}\}_{m=0}^{\infty} \subset \sigma_j$ and $\{r_{j_m}\}_{m=0}^{\infty} \subset (0, 1)$ such that $a_{j_0} = a_j, a_{j_m} \to *$ as $m \to \infty, |a_{j_m} - a_{j_{m+1}}| < r_{j_{m+1}}, B_{j_m} = B(a_{j_m}, 7kr_{j_m}) \subset \Omega \setminus F$. Additionally we can require that the family of balls $\{B_{j_m}\}$ is locally finite in Ω . If $G_j = \bigcup_{m=0}^{\infty} B_{j_m}$ then $\bar{G}_j \cap F = \emptyset$ and $\{G_j\}$ is also locally finite in Ω .

Set $h_0 = g$. We construct a sequence of functions h_j such that h_j is *L*-meromorphic on Ω , h_j has the same poles (and singular parts) as h_{j-1} except at a_j where h_j is *L*-analytic, and such that

$$\|h_{j-1}-h_j\|_{\Omega\setminus G_j}<\frac{\varepsilon}{2^j}.$$

If such a sequence exists, then $h = \lim_{j\to\infty} h_j$ is in $L(\Omega)$. Indeed, by construction (since $\{G_j\}$ is locally finite), we have $G_j \to \{*\}$ as $j \to \infty$, and thus $\{h_j\}$ is a Cauchy sequence in $V(X_i)$ for each *i*. Moreover convergence in $V_{\text{loc}}(\Omega)$ preserves *L*-analyticity. Finally we would have

$$\|g-h\|_F < \varepsilon,$$

as desired.

To construct the functions h_j ($h_0 = g$), assume that h_ℓ has been constructed for $\ell \leq j-1$. Let s_0 be the singular part of h_{j-1} at $a_j = a_{j_0}$. By Lemma 1 (applied to $h = s_0$ and $a = a_{j_1}$), we can find an *L*-meromorphic function s_1 in Ω whose only singularity is at a_{j_1} and such that

$$\|s_0-s_1\|_{\Omega\setminus B_{j_1}}<\left(\frac{1}{2}\right)\frac{\varepsilon}{2^j}.$$

By induction, construct an *L*-meromorphic function s_m whose only singularity is at a_{j_m} and such that

$$\|s_{m-1}-s_m\|_{\Omega\setminus B_{j_m}}<\left(\frac{1}{2^m}\right)\frac{\varepsilon}{2^j}.$$

Finally set

$$h_j = h_{j-1} + \sum_{m=1}^{\infty} (s_m - s_{m-1}).$$

The function h_i has the desired properties.

The proofs of Theorems 2, 3 and 4 are also very similar to the proofs of the corresponding Theorems in [2], and will not be reproduced here. We simply note that \mathbb{R}^n is to be replaced everywhere by Ω , $\{\infty\}$ (of \mathbb{R}^n_{∞}) by $\{*\}$, P_{LV} by E_{LV} , "bounded" by "precompact in Ω " and so on. Our Theorem 1 above replaces the corresponding Theorem 1 of [2]. Balls also sometimes need to be replaced by sets having appropriate properties. For example, in the proof of Theorem 1 above, balls $\overline{B}(0, i)$ were replaced by sets X_i , where, for each i, $\Omega^* \setminus X_i$ was connected. In Theorem 3, the balls B(0, R), B(0, 2R) and B(0, 3R) need to be replaced respectively by Ω -precompact domains U, U_1 and U_2 such that ∂U is *smooth*, $\overline{U} \subset U_1 \subset \overline{U_1} \subset U_2$ and the union of all Ω -precompact components of $(\Omega \setminus F) \setminus \overline{U}$ is not precompact in Ω . The existence of such domains follows from the existence of an exhaustion of Ω by smooth domains (which are precompact in Ω) and the assumption made in the proof that $\Omega^* \setminus F$ is not locally connected (see also [5, Chapter IV, Section 2 B]). Of course, the corresponding conditions on D_m and a_m need to be changed accordingly. Moreover, the following version of [2, Lemma 5] is needed in Theorem 3.

Lemma 2 For each open sets U_1 , U_2 such that $\overline{U}_1 \subset U_2 \subset \overline{U}_2 \subset \Omega$, there exists a positive constant A (depending only on the space V and the sets U_1 and U_2) such that for any compact set K and for each $f_{(K)} \in V(K)$ one has

$$||f||_{K} \leq A(||f||_{K \cap \bar{U}_{2}} + ||f||_{K \setminus U_{1}}).$$

We leave the details to the reader.

6 Boundary Behaviour of *L*-Analytic Functions

Let \pounds_r^n stand for the class of all homogeneous elliptic operators of order r in \mathbb{R}^n ($n \ge 2, r \ge 1$) with constant complex coefficients (see Section 2 above).

In this section, given $L \in \pounds_r^n$ and a domain Ω satisfying some mild conditions, we will construct in Ω solutions of the equation Lu = 0 having some prescribed boundary behaviour.

6.1 No Limits at the Boundary

Let Ω be a domain in \mathbb{R}^n , $n \geq 2$, $\Omega \neq \mathbb{R}^n$, and let $b \in \partial \Omega$. We shall say that a (continuous) path $\gamma: [0,1] \to \mathbb{R}^n$ is *admissible for* Ω *with end point b* if $\gamma: [0,1) \to \Omega$ and $\gamma(1) = b$. Given a continuous function f in Ω , denote by $\mathbb{C}_{\gamma}(f)$ the *cluster set* of f along γ at b, that is:

$$\mathcal{C}_{\gamma}(f) = \left\{ w \in \mathbf{C}^* \mid \text{there exists a sequence } \{t_n\} \subset [0, 1) \\ \text{such that } t_n \to 1 \text{ and } f(\gamma(t_n)) \to w \text{ as } n \to \infty \right\}.$$

Theorem 5 Let $L \in \pounds_r^n$, and let $\Omega \subset \mathbb{R}^n$, $\Omega \neq \mathbb{R}^n$, be a domain such that its boundary $\partial\Omega$ has no (connected) components that consist of a single point. Then there exists $g \in L(\Omega)$ with the property that for each $b \in \partial\Omega$, for each admissible path γ for Ω ending at b and for each $\alpha \in \mathbb{Z}_+^n$, one has

$$\mathcal{C}_{\gamma}(\partial^{\alpha}g) = \mathbf{C}^*.$$

The following proposition and remark show that, at least for $L = \Delta$ in \mathbb{R}^n and $L = \partial/\partial \bar{z}$ in \mathbb{R}^2 , our theorem is close to being sharp.

Proposition 4 If Ω is a domain in \mathbb{R}^n such that $\partial\Omega$ has an isolated point $b \in \mathbb{R}^n \cup \{\infty\}$, then for each function f harmonic in Ω or (if n = 2) for each function f holomorphic in Ω , there exists an admissible path γ for Ω ending at b such that $\mathcal{C}_{\gamma}(f)$ is a single point in \mathbb{C}^* .

Remark 3 It follows from Proposition 4 that for each $\alpha \in \mathbb{Z}_+^n$ there exists an admissible path γ_{α} for Ω ending at b such that $\mathbb{C}_{\gamma_{\alpha}}(\partial^{\alpha} f)$ is just a single point in \mathbb{C}^* since the point b is also an isolated singularity of the harmonic (or holomorphic) function $\partial^{\alpha} f$.

Proof of Proposition 4 It is well known that if f is bounded at b (that is in some punctured neighbourhood of b), then f has a removable singularity at b and that consequently the proposition holds for every admissible path.

If f is unbounded at b, then the result follows from a generalization of a theorem of Iversen due to B. Fuglede (see [4, Corollary 1]).

Lemma 3 Let $L \in \pounds_r^n$. For each $\beta \in \mathbf{Z}_+^n$ there exists a homogeneous polynomial $P_\beta \in L(\mathbf{R}^n)$ of degree $|\beta|$ with $\partial^\beta P_\beta \equiv 1$.

Proof The lemma is obvious if $|\beta| < r$. So let us assume that $|\beta| \ge r$. We claim that $\partial^{\beta} \Phi \neq 0$ on $\mathbb{R}^{n} \setminus \{0\}$, where Φ is a special fundamental solution for *L* as before (see Section 2).

Assuming the claim, fix a point $a \neq 0$ where $\partial^{\beta} \Phi(a) \neq 0$. By Taylor's formula, we have

$$\Phi(x) = \sum_{k=0}^{\infty} Q_k(x)$$

where

$$Q_k(x) = \sum_{|\alpha|=k} rac{\partial^{lpha} \Phi(a)}{lpha!} (x-a)^{lpha}$$

belongs to $L(\mathbf{R}^n)$ (see [2, Section 2.4]). It suffices to take

$$P_{\beta} = \frac{Q_{|\beta|}}{\partial^{\beta} \Phi(a)}$$

https://doi.org/10.4153/CJM-2002-035-4 Published online by Cambridge University Press

To prove the claim, note that by [15, Lemma 1.1], one has in fact that

$$\partial^{\beta} \Phi(x) = \sum_{|\alpha| = |\beta| - r} c_{\alpha} \partial^{\alpha} \delta(x) + K(x),$$

where $\delta(\cdot)$ is the Dirac delta function, $c_{\alpha} \in \mathbf{C}$ and K is a Calderón-Zygmund $(n + |\beta| - r)$ -dimensional kernel. Assuming that $\partial^{\beta} \Phi(x) = 0$ for all $x \neq 0$, then $K(x) \equiv 0$. Thus

$$(-i)^r \xi^eta ilde{\Phi}(\xi) = \sum_{|lpha| = |eta| - r} c_lpha \xi^lpha,$$

where $\tilde{\Phi}$ denotes the Fourier transform of Φ . On the other hand, since $L\Phi = \delta(\cdot)$, one has

$$(-i)^r L(\xi) \tilde{\Phi}(\xi) \equiv 1.$$

It follows that $\xi^{\beta} = A(\xi)L(\xi)$, where *A* is a polynomial. Choose $\eta = (\eta_1, \ldots, \eta_n)$ with $\eta_j > 0$, $j = 1, \ldots, n$, and fix $(\xi_2, \ldots, \xi_n) = (\eta_2, \ldots, \eta_n)$. We have, for all ξ_1 (after division by $\eta_2^{\beta_2} \cdots \eta_n^{\beta_n}$):

$$\xi_1^{\beta_1} = A_1(\xi_1) L_1(\xi_1),$$

where $L_1(\xi_1) = L(\xi_1, \eta_2, ..., \eta_n)$ and $A_1(\xi_1)$ are also polynomials. The polynomial $L_1(\xi_1)$ has no zeros (on **R**) and divides $\xi_1^{\beta_1}$, so that it is constant. Similarly, we can show that *L* is constant on each line through η which is parallel to a coordinate axis. Since this is true for each point η in the open cone $\{\eta \mid \eta_j > 0, j = 1, ..., n\}$, we conclude that the polynomial $L(\xi)$ is constant in this cone and hence identically constant. Thus L = L(0) = 0, since *L* is homogeneous of order $r \ge 1$. This contradicts the ellipticity hypothesis, proves the claim and ends the proof of the lemma.

Proof of Theorem 5 Following the idea of the proof of [5, Chapter IV, Section 5, Theorem 4], we will construct a set of Carleman approximation which must be intersected infinitely often by every admissible path.

By Whitney's approximation theorem [9, Theorem 1.6.5], we can find a real analytic function Ψ on Ω such that for each $x \in \Omega$ one has

(6)
$$\frac{1}{2}\min\left(\operatorname{dist}(x,\partial\Omega),\frac{1}{|x|}\right) \leq \Psi(x) \leq 2\min\left(\operatorname{dist}(x,\partial\Omega),\frac{1}{|x|}\right)$$

From Sard's theorem [9, Theorem 1.4.6], we can find a sequence $\{\rho_j\}_{j=0}^{\infty}, \rho_j \searrow 0$ as $j \to \infty$ such that the level sets $R_j = \{x \in \Omega \mid \Psi(x) = \rho_j\}$ do not contain any critical point of Ψ , *i.e.* $\nabla \Psi \neq 0$ on R_j and R_j consists of only finitely many C^{∞} smooth (in fact real analytic) hypersurfaces. Let $\Omega_j = \{x \in \Omega \mid \Psi(x) > \rho_j\}$. We additionally require (as we can) that $(\overline{\Omega_j})^{\wedge} \subset \Omega_{j+1}$. We define $E_j = \partial((\overline{\Omega_j})^{\wedge})$ and note that E_j also consists of finitely many C^{∞} -smooth closed hypersurfaces which we denote $E_{j\nu}$, $1 \leq \nu \leq k_j$.

For positive but small enough δ_j , the δ_j -neighbourhood Ω'_j of $(\overline{\Omega_j})^{\wedge}$ is C^{∞} smooth, $(\overline{\Omega'_j})^{\wedge} = \overline{\Omega'_j}$ and $E'_j = \partial \Omega'_j$ has the same number k_j of components $E'_{j\nu}$

as E_j . The sequence $\{\delta_j\}$ is also chosen to satisfy $\delta_j \searrow 0$ as $j \to \infty$, $\overline{\Omega'_j} \subset \Omega_{j+1}$, dist $(E'_j, E_{j+1}) \ge 2\delta_j$ and $\delta_j < \min_{\nu} (\operatorname{diam} E_{j\nu})/10$. Choose $a_{j\nu} \in E_{j\nu}$ and $a'_{j\nu} \in E'_{j\nu}$ such that

(7)
$$|a_{j\nu} - a'_{j\nu}| \ge \frac{\operatorname{diam}(E_{j\nu})}{2}$$

Now let

$$K_{j} = \overline{\Omega'_{j}},$$

$$F_{j} = \bigcup_{\nu=1}^{k_{j}} \left\{ \left(E_{j\nu} \setminus B(a_{j\nu}, \delta_{j}) \right) \cup \left(E'_{j\nu} \setminus B(a'_{j\nu}, \delta_{j}) \right) \right\},$$

and define

$$F = \bigcup_{j=0}^{\infty} F_j.$$

For each *j*, we can find disjoint closed η_j -neighbourhoods G_j of F_j (with $0 < \eta_j < \delta_j/4$) such that $G_{j+1} \cap K_j = \emptyset$ and $\Omega^* \setminus (G_{j+1} \cup K_j)$ is connected.

Finally we define the function f, L-analytic in some neighbourhood of the set $G = \bigcup_{j=0}^{\infty} G_j$ as follows. For each $\beta \in \mathbb{Z}_+^n$, we can find $I_\beta \subset \mathbb{Z}_+$ such that $\bigcup_{\beta \in \mathbb{Z}_+^n} I_\beta = \mathbb{Z}_+$, each I_β contains infinitely many elements and $I_\beta \cap I_{\beta'} = \emptyset$ for $\beta \neq \beta'$. Let $\{\lambda_i^\beta\}_{i \in I_\beta}$ be a fixed sequence in \mathbb{C} such that \mathbb{C}^* is the set of its limit points. Now fix $j \in \mathbb{Z}_+$. Then j is in position i_j in I_β for some (unique) $\beta \in \mathbb{Z}_+^n$. Let $P_\beta \in L(\mathbb{R}^n)$ be a polynomial of degree $|\beta|$ with $\partial^\beta P_\beta \equiv 1$ (see Lemma 3), and let U_j be pairwise disjoint (open) neighbourhoods of G_j such that $\overline{U_{j+1}} \cap K_j = \emptyset$ for all j. Then define f on U_j as

$$f(x) = \lambda_{i_i}^{\beta} P_{\beta}(x).$$

We will need the following "Carleman-type" approximation lemma.

Lemma 4 Let f and G be as above. Then for any sequence $\{\varepsilon_j\}_{j=0}^{\infty}, \varepsilon_j \searrow 0$ as $j \to \infty$, there exists $g \in L(\Omega)$ such that

$$\|f - g\|_{0,G_i} \le \varepsilon_i$$

where $\|\cdot\|_{0,E}$, as before, denotes the uniform norm on *E*.

Assuming the lemma, fix a sequence $\{\tau_j\}_{j=0}^{\infty}, \tau_j \searrow 0$ as $j \to \infty$. Now choose a sequence $\{\varepsilon_j\}, \varepsilon_j \searrow 0$ as $j \to \infty$ such that if (8) is satisfied for a function $g \in L(\Omega)$, then

(9)
$$\|\partial^{\beta}g - \lambda_{i_{j}}^{\beta}\|_{0,F_{j}} < \tau_{j}, \quad j \in I_{\beta}.$$

This can be done by choosing ε_j small enough, since $\partial^{\beta} f = \lambda_{i_j}^{\beta}$ on F_j .

The function g has the desired properties. Indeed, let γ be an admissible path for Ω with end point $b \in \partial \Omega$. Then we claim that $[\gamma] = \gamma([0, 1])$ must intersect all F_j , except possibly finitely many of them. Combining the claim with (9) and the choice of $\{\lambda_i^\beta\}$ proves the theorem.

To prove the claim, assume that $[\gamma]$ does not intersect infinitely many F_j , say $\{F_{j_m}\}_{m=1}^{\infty}$ with $j_m \nearrow \infty$ as $m \to \infty$. It then follows that there exists an m_0 such that for each $m > m_0$, one can find $\nu = \nu(j_m)$ such that $[\gamma]$ intersects $B(a_{j_m\nu}, \delta_j)$ and $B(a'_{j_m\nu}, \delta_j)$ and where each $E_{j_m\nu}$ is either the outer boundary (in \mathbb{R}^n) of $(\overline{\Omega_{j_m}})^{\wedge}$ or $E_{j_m\nu}$ surrounds the point *b*. Notice that by (7),

$$|a_{j_m\nu}-a'_{j_m\nu}|\geq \frac{\operatorname{diam}(E_{j_m\nu})}{2}\geq 5\delta_j,$$

and thus, from the continuity of γ at b, we must have that diam $(E_{j_m\nu}) \to 0$ as $j_m \to \infty$. But this is impossible. In fact, if $E_{j_m\nu}$ is the boundary of the unbounded component of $(\overline{\Omega_{j_m}})^{\wedge}$, then diam $(E_{j_m\nu}) = \text{diam}(\Omega_{j_m})$ which grows with m, so that all but a finite number of $E_{j_m\nu}$ must be "inner" components of the boundary of $(\overline{\Omega_{j_m}})^{\wedge}$ which surround the component of the boundary of Ω containing b. But our assumption on the boundary of Ω also makes this impossible. This proves the claim and completes the proof of Theorem 5.

Proof of Lemma 4 Lemma 4 is a consequence of a rather general theorem of A. Sinclair [13, Theorem 1], but we include the following relatively simple proof for the reader's convenience.

Let $\{\varepsilon'_k\}_{k=0}^{\infty}$ be the sequence of positive numbers satisfying $\varepsilon_j = \sum_{k\geq j} \varepsilon'_k$. Since G_0 is an Ω -RKL set and $f \in L(U_0)$, then by Theorem 1, one can find $g_0 \in L(\Omega)$ with

$$\|f - g_0\|_{0,G_0} \le \varepsilon_0'$$

Let U'_i be a neighbourhood of K_i such that $U'_i \cap U_{i+1} = \emptyset$. Define

$$f_1(x) = egin{cases} g_0(x), & x \in U_0' \ f(x), & x \in U_1. \end{cases}$$

Since $K_0 \cup G_1$ is a RKL-set in Ω and $f_1 \in L(U'_0 \cup U_1)$, we can find $g_1 \in L(\Omega)$ such that

$$||f_1 - g_1||_{0,K_0 \cup G_1} \le \varepsilon_1'.$$

Inductively, for $j \ge 1$, we define

$$f_{j+1}(x) = \begin{cases} g_j(x), & x \in U'_j \\ f(x), & x \in U_{j+1}, \end{cases}$$

and choose $g_{j+1} \in L(\Omega)$ such that

$$\|f_{j+1} - g_{j+1}\|_{0,K_j \cup G_{j+1}} \le \varepsilon'_{j+1}.$$

Since $K_i \nearrow \Omega$, we have that

$$g = \lim_{j \to \infty} g_j \quad (\in L(\Omega))$$

satisfies the lemma.

6.2 A Dirichlet Problem

Our next example is in some sense in the opposite direction of the first one. Given a (smooth) domain Ω , we would like to prescribe (almost everywhere on $\partial \Omega$) the boundary values of an L-analytic function in Ω , together with the boundary values of a fixed number of its derivatives, as we approach the boundary of Ω in the normal direction (a "weakened" Dirichlet problem).

We first prove an abstract Carleman-type approximation theorem when F is without interior.

Let $L \in \pounds^n_r$, Ω be a domain in \mathbf{R}^n and let $V = V(\Omega)$ be a Banach **Proposition 5** space such that the pair (L, V) satisfies Conditions 1 and 2. Let F be a closed subset of Ω with $F^{\circ} = \emptyset$ and assume that there exists an exhaustion of Ω by compact sets K_i (that is, $K_0 = \emptyset$, $K_j \subset K_{j+1}^{\circ}$ and $\bigcup_{i=0}^{\infty} K_j = \Omega$) which is "compatible" with F in the sense that for each $j \ge 0$, one has

(10)
$$V_L(K_j \cup (K_{j+2} \cap F)) = E_{LV}(K_j \cup (K_{j+2} \cap F)).$$

Then for each sequence $\{\varepsilon_j\}_{j=0}^{\infty}$, $\varepsilon_j \searrow 0$ as $j \to \infty$ and for each $f \in V_{\text{loc}}(F)$, one can find $g \in L(\Omega)$ such that, for all $j \ge 0$,

$$\|f-g\|_{F\setminus K_i^\circ}<\varepsilon_j.$$

Proof Fix $\{\delta_j\}_{j=0}^{\infty} \subset (0,\infty)$, with $\sum_{j=0}^{\infty} \delta_j < \infty$. Let $g_0 = f$. For each $j \ge 1$, we shall find $g_i \in V_{loc}(\Omega) \cap L(K_i)$ such that

(11)
$$\|g_{j-1} - g_j\|_{K_{j-1}} < \delta_{j-1}$$

and

(12)
$$\|g_{j-1} - g_j\|_{F \setminus K_k^\circ} < \frac{\varepsilon_k}{2^j} \quad \text{for each } k \ge 0.$$

Letting $g = \lim_{j \to \infty} g_j = g_0 + \sum_{j=1}^{\infty} (g_j - g_{j-1})$ will give the result. First, for each $j \ge 1$, fix $\varphi_j \in C_0^{\infty}(K_{j+1}^{\circ})$, $0 \le \varphi_j \le 1$ and $\varphi_j \equiv 1$ on some neighbourhood of K_j . We now proceed by induction on j. By (10) with j = 0, we can find $h_1 \in L(\Omega)$ such that

$$||g_0 - h_1||_{K_2 \cap F} < \mu_1,$$

where $\mu_1 \in (0, \infty)$ will be specified below. Let

$$g_1 = h_1 \varphi_1 + g_0 (1 - \varphi_1).$$

Then $g_1 \in V_{loc}(\Omega) \cap L(K_1)$, and it follow from Condition 1 that

$$\|g_0 - g_1\|_F = \|(g_0 - h_1)\varphi_1\|_F \le C(\varphi_1)\|g_0 - h_1\|_{K_2 \cap F} < C(\varphi_1)\mu_1$$

https://doi.org/10.4153/CJM-2002-035-4 Published online by Cambridge University Press

and

964

$$||g_0 - g_1||_{F \setminus K_1^\circ} = 0$$

Consequently, (11) and (12) hold for j = 1 if $C(\varphi_1)\mu_1 \leq \varepsilon_1/2$. Note that (11) is an empty condition at this stage since K_0 is the empty set.

Suppose now that we have found g_0, \ldots, g_J such that (11) and (12) hold for $1 \le j \le J$. By (10) with j = J, one can finds $h_{J+1} \in L(\Omega)$ such that

(13)
$$\|g_J - h_{J+1}\|_{K_J \cup (K_{J+2} \cap F)} < \mu_{J+1},$$

where μ_{I+1} is a small positive constant to be chosen later. Let

$$g_{J+1} = h_{J+1}\varphi_{J+1} + g_J(1 - \varphi_{J+1}).$$

Then

$$\|g_J - g_{J+1}\|_{K_J} = \|(g_J - h_{J+1})\varphi_{J+1}\|_{K_J} = \|g_J - h_{J+1}\|_{K_J} < \mu_{J+1},$$

which gives (11) (with j = J + 1) whenever $\mu_{J+1} \leq \delta_J$. Since $||g_J - g_{J+1}||_{F \setminus K_{J+2}} = 0$, it is enough, in order to get (12), to require that

$$\|g_J - g_{J+1}\|_F < \frac{\varepsilon_{J+1}}{2^{J+1}}.$$

But this follows from (13) and Condition 1 if μ_{J+1} is small enough. Indeed,

$$\begin{split} \|g_J - g_{J+1}\|_F &= \|(g_J - h_{J+1})\varphi_{J+1}\|_F \leq C(\varphi_{J+1}) \|g_J - h_{J+1}\|_{F \cap K_{J+2}} \\ &< C(\varphi_{J+1})\mu_{J+1}, \end{split}$$

and thus it suffices to take $\mu_{J+1} = \min(\delta_J, \varepsilon_{J+1}/(2^{J+1}C(\varphi_{J+1})))$. This completes the proof.

We shall also need the following lemma.

Lemma 5 For 0 < d < 1, denote by $Q'_d = [-d, d]_{y_1} \times [-d, d]_{y_2} \times \cdots \times [-d, d]_{y_{n-1}}$ the n-1 dimensional closed cube centered at zero in \mathbb{R}^{n-1} and let $Q_d = Q'_d \times [0, 2d]_{y_n}$. Let $s \in \mathbb{Z}_+$ be fixed. Given $h_0, \ldots, h_s \in C(Q'_d)$, there exists a function $H \in C^{\infty}(Q_d \setminus (Q'_d \times \{0\})) \cap C(Q_d)$ such that, if $y' = (y_1, y_2, \ldots, y_{n-1})$, then

(14)
$$\frac{\partial^k H}{\partial y_n^k}(y', y_n) \to h_k(y')$$

uniformly on Q'_d as $y_n \to 0$, $0 \le k \le s$.

Remark 4 We first note that (14) and the mean-value theorem implies that the one-sided derivatives at zero exist and

$$\frac{\partial^k H}{\partial y_n^k}\Big|_{(y',0+)} = h_k(y').$$

Remark 5 The lemma is easily proved if we assume that $h_0, h_1, \ldots, h_s \in C^{\infty}(Q'_d)$ since in this case it suffices to take

$$H(y', y_n) = \sum_{k=0}^{s} \frac{y_n^k}{k!} h_k(y').$$

The proof of the general case is an adaptation of this idea using approximation and a partition of unity.

Proof of Lemma 5 Let $\{\varphi_j\}$, $j = 2, 3, ..., \varphi_j \in C^{\infty}(\mathbb{R})$ such that $\operatorname{supp}(\varphi_j) \subset (\frac{1}{j+1}, \frac{1}{j-1}), 0 \leq \varphi_j \leq 1$, and $\sum_{j=2}^{\infty} \varphi_j \equiv 1$ on (0, 1/2). Let $\|\varphi_j^{(k)}\|_0 =: \lambda_{kj}$ and $M := \max_{0 \leq k \leq s} \|h_k\|_{0,Q'_d}$. Let $\{\varepsilon_j\}_{j=2}^{\infty} \subset (0, 1)$ be a sequence of decreasing numbers tending to zero. By the Weierstrass approximation theorem in several variables, for each k and j, $0 \leq k < s$ and $j = 2, 3, \ldots$, we can find $h_{kj} \in C^{\infty}(Q')$ (in fact polynomials) such that

$$\|h_{kj}-h_k\|_{0,Q'_d}<\varepsilon_j.$$

We claim that the function

$$H(y', y_n) = \sum_{k=0}^{s} \sum_{j=2}^{\infty} \frac{y_n^k}{k!} h_{kj}(y') \varphi_j(y_n), \quad \text{when } y_n > 0,$$
$$H(y', 0) = h_0(y')$$

has the desired properties whenever the sequence $\{\varepsilon_j\}$ is chosen to satisfy $\sum_{j\geq 2} \varepsilon_j \lambda_{kj} < \infty$, for each $k, 0 \leq k < s$. Indeed let us assume that $0 < y_n < \frac{1}{j_0+1} < 1/2$. Then

$$\begin{aligned} |H(y', y_n) - h_0(y')| &= \Big| \sum_{j=2}^{\infty} (h_{0j}(y') - h_0(y')\varphi_j(y_n) + \sum_{k=1}^{s} \sum_{j=2}^{\infty} \frac{y_n^k}{k!} h_{kj}(y')\varphi_j(y_n) \Big| \\ &\leq 2\varepsilon_{j_0} + (M+1) \sum_{k=1}^{s} \frac{y_n^k}{k!}, \end{aligned}$$

and thus $|H(y', y_n) - h_0(y')| \rightarrow 0$ uniformly as $y_n \rightarrow 0$. Similarly, since

https://doi.org/10.4153/CJM-2002-035-4 Published online by Cambridge University Press

$$\begin{split} \sum_{j\geq 2} \varphi_j'(y_n) &= 0, 0 < y_n < 1/2, \text{ we have} \\ \left| \frac{\partial H}{\partial y_n}(y', y_n) - h_1(y') \right| &= \left| \sum_{k=1}^s \sum_{j=2}^\infty \frac{y_n^{k-1}}{(k-1)!} h_{kj}(y') \varphi_j(y_n) \right| \\ &+ \sum_{k=0}^s \sum_{j=2}^\infty \frac{y_n^k}{k!} h_{kj}(y') \varphi_j'(y_n) - \sum_{j=2}^\infty h_1(y') \varphi_j(y_n) \right| \\ &\leq \left| \sum_{j=2}^\infty \left(h_{1j}(y') - h_1(y') \right) \varphi_j(y_n) \right| \\ &+ \left| \sum_{k=2}^s \sum_{j=2}^\infty \frac{y_n^{k-1}}{(k-1)!} h_{kj}(y') \varphi_j(y_n) \right| \\ &+ \left| \sum_{k=2}^s \sum_{j=2}^\infty \frac{y_n^k}{k!} \left(h_{kj}(y') - h_k(y') \right) \varphi_j'(y_n) \right| \end{split}$$

$$\leq 2\varepsilon_{j_0} + (M+1)\sum_{k=2}^s \frac{y_n^{k-1}}{(k-1)!} + \sum_{k=0}^s \sum_{j\geq j_0} \frac{y_n^k}{(k)!}\varepsilon_j\lambda_{1j},$$

assuming that $0 < y_n < \frac{1}{j_0+1}$. Thus $\left|\frac{\partial H}{\partial y_n}(y', y_n) - h_1(y')\right| \to 0$ uniformly as $y_n \to 0$. The proof of the other cases is very similar.

Theorem 6 Let $L \in \mathcal{L}_r^n$ and let Ω be a domain of class C^{r+1} in \mathbb{R}^n . Let h_k , $k = 0, 1, \ldots, r-1$, be σ -measurable functions which are finite σ -almost everywhere, where σ is the n-1 dimensional Lebesgue measure on $\partial\Omega$. Then there exists $h \in L(\Omega)$ such that, for $k = 0, \ldots, r-1$, and for σ -almost all $x \in \partial\Omega$, the limit of $\frac{\partial^k h}{\partial n_x^k}(y)$ is equal to $h_k(x)$, where the derivatives are taken in the direction of the outer normal at x, and $y \in \Omega$ tends to $x \in \partial\Omega$ along that normal direction.

Proof We will begin the proof by constructing a special family of C^r -diffeomorphisms from *n*-dimensional closed cubes into $\overline{\Omega}$. We will use the notations introduced in Lemma 5. Fix a point *b* on the boundary of Ω and choose an (orthonormal) coordinate system $y = (y_1, \ldots, y_n)$ such that y(b) = 0 and for some $\delta > 0$ there is $\psi \in C^{r+1}(Q'_{\delta})$ with $\psi(0') = 0$, $\frac{\partial \psi}{\partial y_k}\Big|_{0^r} = 0$ ($k = 1, 2, \ldots, n-1$) such that

$$\{y \mid y = (y', y_n) \in \partial\Omega, y' \in Q'_{\delta}, |y_n| < 2\delta\} = \{y \mid y_n = \psi(y'), y' \in Q'_{\delta}\}.$$

Moreover we suppose that

$$\{y \mid \psi(y') < y_n < 2\delta, y' \in Q'_{\delta}\} \subset \Omega.$$

Let us define $\Psi \colon Q'_{\delta} \times \mathbf{R} \to \mathbf{R}^n$ by:

$$\Psi(y', y_n) = (y', \psi(y')) - y_n \vec{n}_{\tilde{y}}.$$

Here $\vec{n}_{\tilde{y}}$ denotes the outer normal (unit) vector to $\partial\Omega$ at the point $\tilde{y} = (y', \psi(y'))$. The Jacobian of Ψ at the origin is the identity. By the inverse mapping theorem, there exists d, $0 < d < \delta$, such that Ψ is a C^r -diffeomorphism of Q_d on $\Psi(Q_d)$ and such that $\Psi(Q_d) \subset \overline{\Omega}$.

Using the fact that $\partial\Omega$ is compact, we now choose a finite family of maps Ψ_{ν} and closed cubes $Q_{(\nu)} := Q_{d_{\nu}} = Q'_{d_{\nu}} \times [0, 2d_{\nu}] =: Q'_{(\nu)} \times [0, 2d_{\nu}]$ such that $\Psi_{\nu}|_{Q_{(\nu)}}$ is a *C*^{*r*}-diffeormophism, $\Psi_{\nu}(Q'_{(\nu)} \times \{0\}) \subset \partial\Omega$, $\Psi_{\nu}(Q_{(\nu)} \setminus (Q'_{(\nu)} \times \{0\})) \subset \Omega$ and $\partial\Omega \subset \bigcup_{\nu} \Psi_{\nu}(U_{(\nu)} \times \{0\})$, where $U_{(\nu)} := (-d_{\nu}, d_{\nu})_{y_1} \times \cdots \times (-d_{\nu}, d_{\nu})_{y_{n-1}}$.

Let h_0, \ldots, h_{r-1} be any $r \sigma$ -measurable functions defined and σ -finite almost everywhere on $\partial \Omega$. We can construct a family $\{E_m\}_{m=1}^{\infty}$, $E_m \subset \partial \Omega$ with the following properties:

- a) The sets E_m , m = 1, 2, ..., are compact, pairwise disjoint, nowhere dense subsets of $\partial \Omega$ with $\sigma(E_m) \neq 0$.
- b) For each $k \in \{0, 1, ..., r-1\}$ and $m \in \{1, 2, ...\}$, we have $h_k \in C(E_m)$.
- c) $\sigma(\partial\Omega \setminus (\cup_m E_m)) = 0.$
- d) For each $m \in \{1, 2, ...\}$, there exists ν_m such that $\Psi_{\nu_m}^{-1}(E_m) \subset (U_{(\nu_m)} \times 0)$ where Ψ_{ν_m} belongs to the finite family of diffeomorphisms chosen above.
- e) For some fixed $\mu \in (0, 1)$ and for each $m \in \{1, 2, ...\}$ there is a c > 0 such that for any $x \in E_m$ and $\varepsilon < d_{\nu_m}$ one has

(15)
$$M^{n-2+\mu}\left(\left\{B(x,\varepsilon)\cap\Psi_{\nu_m}(Q'_{(\nu_m)}\times\{0\})\right\}\setminus E_m\right)\geq c\varepsilon^{n-2+\mu},$$

where M^{λ} denotes the λ -dimensional Hausdorff *content*.

For example, the first three properties are obtained using Lusin's theorem [12, Theorem 2.24], and the fourth follows easily. In order to have additionally property (e), we use the following lemma, taking products of the set *E* from this lemma with n-2-dimensional closed cubes which gives an n-1-dimensional analog of the lemma, that is (15).

Lemma 6 For each $\mu \in (0, 1)$ and $\eta > 0$, there exist a compact set $E \subset [0, 1]$ and a constant c > 0 (independent of η) such that $M^1(E) > 1 - \eta$ and for each $t \in \mathbf{R}$ and each $\varepsilon > 0$, one has

$$M^{\mu}(\{\tau \mid |\tau - t| < \varepsilon\} \setminus E) \geq c\varepsilon^{\mu}.$$

Proof Fix μ and η . It is well known (see [8, Section 4.10] and use the fact that a Hausdorff *measure* and the *corresponding* Hausdorff *content* have the same zero sets) that there exists a Cantor-type set $K \subset [0, 1]$ with $M^1(K) = 0$ and $M^{\mu}(K) > 0$. For $m \in \mathbb{Z}_+$ and $j \in \{0, \ldots, 2^m - 1\}$, define $K_m^j = \{(\tau + j)2^{-m} \mid \tau \in K\}$. Since $M^1(K_m^j) = 0$, there are open sets U_m^j containing K_m^j with $M^1(U_m^j) < \eta 2^{-2m-1}$. It suffices to take (as can be easily checked)

$$E = [0,1] \setminus \bigcup_{m=0}^{\infty} \bigcup_{j=0}^{2^m-1} U_m^j.$$

We now return to the proof of Theorem 6. Given $\{E_m\}$ as above, define

$$F_1 = \Psi_{\nu_1} \left(\Psi_{\nu_1}^{-1}(E_1) \times (0, \delta_1] \right),$$

where $0 < \delta_1 \leq d_{\nu_1}$, and for $m \geq 2$,

$$F_m = \Psi_{\nu_m}(\Psi_{\nu_m}^{-1}(E_m) \times (0, \delta_m]),$$

where $0 < \delta_m \le \min\{d_{\nu_m}, \delta_{m-1}/2\}$ is so small that F_m is disjoint from $F_1 \cup \cdots \cup F_{m-1}$ and $\{F_m\}$ is a locally finite family in Ω .

Let $F = \bigcup_{m=1}^{\infty} F_m$. We note that F is a (relatively) closed Ω -RKL set with no interior. Let $G_m = \Psi_{\nu_m}^{-1}(E_m)$ and $h_{k,m}^*(y') = h_k(\Psi_{\nu_m}(y',0))$ and note that $h_{k,m}^*$ is (defined and) continuous on G_m . We extend $h_{k,m}^*$ continuously to all of $Q'_{(\nu_m)}$ and still denote this extension by $h_{k,m}^*$. Using Lemma 5 with s = r - 1, for each $m \ge 1$, there exist functions $H_m^* \in C^{\infty}(Q_{(\nu_m)} \setminus (Q'_{(\nu_m)} \times \{0\})) \cap C(Q_{(\nu_m)})$ such that for each k, $0 \le k \le r - 1$,

$$\frac{\partial^{k}H_{m}^{\star}}{\partial y_{n}^{k}}(y',y_{n}) \to h_{k,m}^{\star}(y')$$

uniformly on $Q'_{(\nu_m)}$ as $y_n \to 0^+$. Define H_m in $C^r(\Psi_{\nu_m}(Q^\circ_{(\nu_m)}))$ by $H_m(x) = H^*_m(\Psi^{-1}_{\nu_m}(x))$.

From our construction, it follows that one can choose (open) neighbourhoods Ω_m of F_m such that the sets Ω_m are still pairwise disjoint and $\Omega_m \subset \Psi_{\nu_m}(Q^{\circ}_{(\nu_m)})$. Define

$$f|_{\Omega_m}=H_m|_{\Omega_m}.$$

If *V* is the space $BC^{r-1+\mu}(\Omega)$ then $f \in V_{loc}(F)$ (note that *f* can be extended from (possibly smaller) neighbourhoods Ω'_m of F_m to a function in $V_{loc}(\Omega)$).

It follows also from our construction of *F* (recalling (15)) that there exists an exhaustion of Ω by compact sets K_i such that

- 1) each $Y_i = K_i \cup (K_{i+2} \cap F)$ is an Ω -RKL set;
- 2) for each Y_j , there exists a constant $c_j = c(Y_j) > 1$ such that for all balls $B(x, \varepsilon) \subset \Omega$ we have

$$c_{i}M^{n-1+\mu}(B(x,\varepsilon)\setminus Y_{i})\geq \varepsilon^{n-1+\mu}\geq M_{*}^{n-1+\mu}(B(x,\varepsilon)\setminus Y_{i}^{\circ}).$$

It then follows from Theorem 4((i) and (iv)) that $V_L(Y_j) = M_{LV}(Y_j) = E_{LV}(Y_j)$. Thus by Proposition 5, one can find $h \in L(\Omega)$ such that

$$\|f-h\|_{F\setminus K_j^\circ}<\frac{1}{j}.$$

The function *h* has the desired properties.

It can be proved that Theorem 6 remains true if we require only C^r -smoothness of $\partial\Omega$.

References

- S. Agmon, *Lectures on Elliptic Boundary Value Problems*. D. Van Nostrand, Princeton, Toronto, New York, London, 1965.
- [2] A. Boivin and P. V. Paramonov, *Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions*. Mat. Sb. (4) **189**(1998), 481–502.
- [3] A. Dufresnoy, P. M. Gauthier and W. H. Ow, Uniform approximation on closed sets by solutions of elliptic partial differential equations. Complex Variables. 6(1986), 235–247.
- [4] B. Fuglede, Asymptotic paths for subharmonic functions. Math. Ann. 213(1975), 261–274.
- [5] D. Gaier, Lectures on Complex Approximation. Birkhäuser, Boston, Basel, Stuttgart, 1987.
- [6] S. J. Gardiner, *Harmonic Approximation*. London Math. Society Lecture Notes 221, Cambridge University Press, 1995.
- [7] L. Hörmander, *The Analysis of Linear Partial Differential Operators I.* Springer-Verlag, Berlin, New York, 1983.
- [8] P. Mattila, *Geometry of Sets and Measures in Euclidean Spaces*, Cambridge University Press, 1995.
 [9] R. Narasimhan, *Analysis on Real and Complex Manifolds*. North-Holland, Amsterdam, New York,
- [7] R. (Varashinian, Amaysis on Real and Complex Manifolds, Forth-Hohand, Anisterdam, Rev For Oxford, 1968.
 [10] A. G. O'Farrell, *T-invariance*. Proc. Roy. Irish Acad. (2) **92A**(1992), 185–203.
- [11] P. V. Paramonov and J. Verdera, Approximation by solutions of elliptic equations on closed subsets of Euclidean space. Math. Scand. 74(1994), 249–259.
- [12] W. Rudin, *Real and Complex Analysis*. Third Edition, McGraw Hill, New York & als, 1987.
- [13] A. Sinclair, A general solution for a class of approximation problems. Pacific J. Math. 8(1958),
- 857–866.[14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press,
- Princeton, New Jersey, 1970.
 [15] J. Verdera, C^m approximation by solutions of elliptic equations, and Calderón-Zygmund operators.
- [15] J. Verdera, C^m approximation by solutions of elliptic equations, and Calderón-Zygmund operators. Duke Math. J. **55**(1987), 157–187.

Department of Mathematics University of Western Ontario London, Ontario N6A 5B7 e-mail: boivin@uwo.ca Département de mathématiques et de statistique Université de Montréal CP 6128, Succ. Centre-ville Montréal, Québec H3C 3J7 e-mail: gauthier@dms.umontreal.ca

Mechanics and Mathematics Faculty Moscow State (Lomonosov) University 119899 Moscow Russia e-mail: petr@paramonov.msk.ru