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FINITELY PRESENTED CENTRE-BY-METABELIAN LIE ALGEBRAS

R.M. BRYANT AND J.R.J. GROVES

To Bernhard Neumann on his ninetieth birthday

It is shown that finitely presented centre-by-metabelian Lie algebras are Abelian-
by-finite-dimensional .

1. INTRODUCTION

In [7], the second author proved that a finitely presented centre-by-metabelian
group is Abelian-by-polycyclic. The proof of this result used the fact, proved by Bieri
and Strebel in [2], that a finitely presented soluble group with an infinite cyclic quotient
is an HNN extension with finitely generated base group. In [3], Bieri and Strebel
deduced another proof of the result of [7] as a corollary of their work on finitely presented
soluble groups, particularly the fact that a metabelian quotient of a finitely presented
soluble group is again finitely presented.

The aim of this note is to prove a similar result for Lie algebras.

THEOREM. A finitely presented centre-by-metabelian Lie algebra is Abelian-by-
finite-dimensional.

The key tools quoted above do not seem to be available for Lie algebras. The closest
result of which we are aware is one of Wasserman [8, Theorem 9.1] which is similar to
the result quoted from [2]. But the consequences of this result do not appear to be
sufficiently powerful to obtain results for Lie algebras analogous to those for groups.
We have therefore needed to take a substantially different approach.

The authors have shown in [6] that a finitely presented soluble Lie algebra of char-
acteristic 2 which satisfies the maximal condition for ideals must be of finite dimension.
Because a finitely generated Abelian-by-finite-dimensional Lie algebra must satisfy the
maximal condition for ideals [1, Corollary 11.1.8], the Theorem implies that all finitely
presented centre-by-metabelian Lie algebras of characteristic 2 are of finite dimension.

The main step in the proof of the Theorem is to show that a metabelian quotient
of a finitely presented centre-by-metabelian Lie algebra is again finitely presented. It
would be interesting to know to what extent this can be generalised.
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QUESTION. IS it true that a metabelian quotient of a finitely presented soluble Lie

algebra is again finitely presented?

An affirmative answer to the corresponding question for groups is given by [3,

Theorem B].

2. QUOTIENTS OF FINITELY PRESENTED LIE ALGEBRAS

Throughout this paper K denotes an arbitrary field, and all tensor and exterior
products are taken over K. If L is any Lie algebra over K we write K[L] for the
enveloping algebra of L. Also, we write L' for the subalgebra [L,L] and L" for
[L',L'].

Let L be a finitely presented Lie algebra over K, and suppose that A and B are
ideals of L such that B C A and A/B is Abelian. Set R = K[L/A) and M = A/B.
Then M has a natural structure as a (right) R -module via

for all a € A and I £ L.
The R-module structure on M carries over to an R (g> .R-module structure on the

tensor square M <g> M. There is an algebra homomorphism 5 : R -t R <g> R given by
x8 = x <g> 1 + 1 ® x for all x € L/A. In fact, as is well known, S is an embedding (it
has right inverse t ® e where t : R —> R is the identity map and e : R —> K is the
augmentation map). We call 8 the diagonal embedding. Let R — R5. Thus M®M is
an ^-module, and therefore an .R-module. The action of R on M ® M is called the
diagonal action. It induces an action of R on the exterior square M A M given by

(m A n)x = (mi) An + mA (nx)

for all m,n 6 M and x S L/A. The action of L on itself carries over to an action of
R on B/[B,A] via

for all b 6 5 and I € L. There is a linear map 7 : M A M -t B/[B, A] satisfying

(ai + B) A (a2 + B) 1-+ [a,, a2] + [B, A]

for all 01,02 S J4, and it is easily verified (via the Jacobi identity) that 7 is a homo-
morphism of .R-modules.

LEMMA . With the notation above, suppose that L is finitely presented and that
L/A is of finite dimension. Then the kernel of 7 is a finitely generated R-module.

PROOF: It is possible to prove this by means of the spectral sequence associated to
the extension A -> L —* L/A, but we provide an elementary proof. Let F be a finitely
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generated free Lie algebra such that there is an epimorphism TT : F -> L. Let U, V

and W denote the complete inverse images under TT of A, B and {0}, respectively.
Note that we can then identify L/A with F/U and hence R with K[F/U].

The correspondence given by

(UITT + B) A (u27r + B) >-> [uuu2] + [V,U],

for all ui,U2 € U, leads to an explicit R -module isomorphism between M AM and
U'/[V, U]. For details, see [6, Section 2.2]. The epimorphism n also induces an isomor-
phism of B/[B, A] with ^/([K U] + W), and this is again an .R-module isomorphism.
We can thus identify 7 with the map

U'/[V,U]->V/([V,U\ + W)

induced from the inclusion of U' into V. Therefore

ker 7 ss ([/ ' n ([V, U] + W^j ) /[V, tf] = ([V, U] + ([/' n W)) /[V, I/]

= (c/'n

We must show that this section of F is finitely generated as an .R-module.
Since L is finitely presented, W is finitely generated as an ideal of F. Hence

W/[W, U] is finitely generated as an .R-module. But (U1 n W)/([V, U) n W) is isomor-
phic to an i?-section of W/fVK, U] • Since L/A is of finite dimension, R is Noetherian
(see, for example [5, Proposition 6 of 1.2.6]) and so this section is also finitely generated,
as required. D

Observe that this lemma, although technical in nature, has some important conse-
quences in special cases. For example, if B/[B, A] is finite dimensional, then we may
deduce that M A M is finitely generated as an .R-module and so, using [6, Theorem
A], that L/B is also finitely presented. The following is another special case where we
can deduce that L/B is finitely presented.

PROPOSITION . Let L be a finitely presented centre-i>y-metabelian Lie algebra
over the field K. Let A and B be ideals of L with B C A such that L/A and A/B
are Abelian and B is central; and write M — A/B. Then M AM is finitely generated
as a K[L/A]-module. As a consequence, L/B is finitely presented (so, taking B = L",
we have that L/L" is finitely presented).

PROOF: Observe that the last sentence of the Proposition follows from [6, Theorem
A]. Write R = K[L/A] and let / denote the augmentation ideal of R (that is, the ideal
of R generated by the elements of L/A). By the Lemma, the kernel of 7 : M AM -> B
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is finitely generated as an .R-module. Since B is central in L it is trivial as an R-

module (by which we mean that each element of L/A has zero action on B). Thus the
.R-module (M A M)I is contained in the kernel of 7 . Therefore, by the Lemma, it is
finitely generated. We shall use this to show that M A M is finitely generated as an
R -module.

By [6, Lemmas 2.1 and 2.2], we may assume that K is algebraically closed. We
shall use arguments similar to those of [6, Proposition 2.4]. By [4, Theorem 1 of IV.1.4],
M has a finite series of submodules

{0} = Mo < Mi < M2 < . . . ^ Mfc = M,

where each quotient Mi/Mi^i is isomorphic to an .R-module of the form R/Pi where
Pi is a prime ideal of R. Further, by [4, Theorem 2 of IV. 1.4], each Pi contains a
prime ideal Qi of R which is associated to M.

It will clearly suffice to show that M ® M is finitely generated as an .R-module
under the diagonal action. But the series above for M yields a finite series of R-
submodules of M ® M in which each quotient is of the form R/Pi <8> R/Pj (here, of
course, R acts via the diagonal embedding of R into R® R). Since R/Pi ® R/Pj
is a quotient of R/Qi <S> R/Qj, it suffices to prove that each R/Qi ® R/Qj is finitely
generated as an R-module.

Suppose firstly that R/Qi ® R/Qj is trivial as an .R-module. Then, for each
x e L/A,

0 = ((1 + Qi) ® (1 + Qi))x = (x + Qi) ® (1 + Qi) + (1 + Qi) <8> (x + Qj).

But this implies that x + Qi e K + Qi and x + Qj € K + Qj for each x € L/A, so
that R/Qi and R/Qj have dimension 1. It is then clear that R/Qi <8» R/Qj is finitely
generated as an R -module.

Thus we can assume that R/Qi ® R/Qj is not trivial as an .R-module. Choose an
element x of L/A which has non-zero action on R/Qi ® R/Qj • We observe for future
reference that , because K is assumed algebraically closed and because R/Qi and R/Qj
are integral domains, R/Qi ® R/Qj is also an integral domain (see [9, Corollary 1 to
Theorem 40 of Chapter III]). Thus multiplication in R/Qi ® R/Qj by the image of x
is a monomorphism of iZ-modules.

Suppose that Qi 9̂  Qj. Because Qi and Qj are associated prime ideals of M, there
are elements rrn and rrij of M such that the submodules rriiR and m.jR are isomorphic
to R/Qi and R/Qj, respectively. Further, because Qi and Qj are distinct, these
submodules intersect trivially, and so miR+rrijR = R/Qi®R/Qj. Since R/Qi®R/Qj
is isomorphic to a submodule of A2 (R/Qi © R/Qj), it follows that R/Qi ® R/Qj is
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isomorphic to a submodule of M A M. Therefore (R/Qi ® R/Qj)x is isomorphic to a
submodule of (M A M)I and is finitely generated. But

R/Qi ® R/Qj = {R/Qi ® R/Qj)x.

Thus R/Qi ® R/Qj is finitely generated.

Suppose now that Qi — Qj. Because Qi is an associated prime ideal of M, there is
an isomorphic copy of R/Qi in M. Thus (R/Qi A R/Qi)x is isomorphic to a submodule
of (M A M)I and is finitely generated. It is standard, and easily verified, that the linear
map induced by aAb>-¥a®b — b<8>a (for all 0,6 € R/Qi) yields an -R-monomorphism
from R/Qi A R/Qi to R/Qi ® R/Qi. Thus multiplication in R/Qi A R/Qi by the
image of x is a monomorphism of .R-modules. Therefore R/Qi A R/Qi is isomorphic
to (R/QiAR/Qi)x and is finitely generated. It follows, by [6, Theorem A], that
R/Qi ® R/Qi is finitely generated as an ^-module, which completes the proof of the
Proposition. U

3. PROOF OF THE THEOREM

We use the notation preceding the statement of the Lemma with A — L' and
B = L". Here L" is central in L. It will sometimes be convenient to consider M AM

and M ® M as .R-modules rather than .R-modules (recall that R = R5 C R® R). By
the Proposition, M A M is finitely generated as an .R-module. Hence, by [6, Theorem
A], M ® M is also finitely generated as an R-module.

Let {u>i,..., Wk} be a finite generating set for M®M as an .R<g>.R-module and, for
i = 1 , . . . , k, let Ji be the annihilator of Wi in R<8)R- Further, let J be the annihilator
of M ® M. Thus J = .A n • • • n Jfc and

Since M ® M is finitely generated as an .R-module, so is (i2 ® R)/Ji- Thus (R® R)/J

is also finitely generated as an .R-module.

Let / be the augmentation ideal of R and let / be the ideal of R ® R generated

by 7. Then (R®R)/(I + J) is both finitely generated and trivial as an .R-module

and so is of finite dimension. Let T={t€R:t®l€l + J}. Then T is an ideal of

R such that R/T is of finite dimension.

Let a : M ® M —¥ L" be the homomorphism of R -modules satisfying

(ax + L") ® (a2 + L") ^ [au a2]

for all ai,a.2 £ V. Since L" is a trivial .R-module, (Af ® M)I is contained in the
kernel of a. But

MT®M C (M®M)(T+J) = (M®M)T.

https://doi.org/10.1017/S0004972700036352 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036352


226 R.M. Bryant and J.R.J. Groves [6]

Thus (MT <B> M)a = {0}.

Let H be the subspace of L such that L" ^ H ^ V and H/L" = MT. Since T
is an ideal of R, H is an ideal of L. From the definition of a we find (MT ® M)a —
[H, L'}. Thus [H, L'} = {0} and, since H ^ V, it follows that # is Abelian. Since 2"
is of finite co-dimension in R and M is a finitely generated i2-module, MT is of finite
co-dimension in M. Thus H is of finite co-dimension in L' and so also in L. Therefore
L is Abelian-by-finite-dimensional, which completes the proof of the Theorem. D
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