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FACILITY LOCATION VIA CONTINUOUS OPTIMIZATION
WITH DISCONTINUOUS OBJECTIVE FUNCTIONS
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Abstract

Facility location problems are one of the most common applications of optimization meth-
ods. Continuous formulations are usually more accurate, but often result in complex
problems that cannot be solved using traditional optimization methods. This paper ex-
amines the use of a global optimization method—AGOP—for solving location problems
where the objective function is discontinuous. This approach is motivated by a real-world
application in wireless networks design.
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1. Introduction

Location problems play an important part in optimization, as they have a very broad
area of practical applications: [4] lists over 3400 references on facility location and
related problems.

As a rule, location problems are generally tackled using combinatorial optimization,
with the set of possible locations for facilities having to be finite. The paper [16]
reviews this approach to facility location problems. Its complexity increases when the
number of possible locations increases, leading to the development of approximation
algorithms.

Many applications, however, do not require such a restriction on the placement of
the facilities: these only have to be placed over a given area, not at special locations.
This problem configuration occurs for example in telecommunications [15,17], data
analysis [2] and public transportation [3] problems. The classical approach to solve
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these problems is to transform them into combinatorial problems by discretizing the
search space [1,20]. Due to the NP-hardness of the combinatorial location problems,
a solvable discretization may result in inaccurate results.

An alternative approach is to formulate the problem as a continuous optimization
problem. With such an approach, the complexity of the problem depends on the
properties of the cost function, and on the shape of the search space. Often, the cost
is represented by a min-type function, which prevents the problem from being convex
or smooth.

The aim of this paper is to present an algorithm for solving continuous location
problems with discontinuous functions directly. For that purpose we use a modified
version of the appropriate global optimization method AGOP developed in [9] and [10].

Our main motivation is an application in the field of optimal wireless networks
design. This problem is presented as a case study, and we carry out numerical exper-
iments based on real specifications.

The problem is formulated in Section 2. A modification of AGOP is presented in
Section 3. Section 4 is devoted to a case study of a practical application. Sections 5
and 6 present respectively numerical results and the conclusion.

2. Location problem

In general, locating facilities involves several steps:

(1) Find the number of facilities necessary, subject to a given constraint (demand
satisfaction).
(2) Find the most suitable placement for these facilities, considering one or several

criteria.

In this paper, we focus on the first step. An important part of it consists in verifying
the constraint for different numbers of facilities. The constraint verification problem
is in itself a facility placement problem.

The problem considered in the current paper can be stated as follows: given a set
of customers, find the minimal number of facilities, and their satisfactory placement
for covering the demand of the customers.

This problem can be expressed as follows:

minimize n (2.1)

subject to S[x,]1 :gj(xu--- ,xn) < 0, V/ e {1 , . . . ,7} , (2.2)

where (x ,xn) € K"xm and gj : Knxm - • R for all j e {1, . . . , / } . Here J
represents the number of customers and m represents the dimension of the geographical
area. The inequalities (2.2) represent the constraints verifying that all the demand area
is covered. The functions gj may be discontinuous.
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In what follows it is assumed that the solution exists for a relatively small value
of n, and therefore an enumeration method can be considered. On the other hand,
the problem of finding a feasible solution satisfying (2.2) is a difficult one, due to the
nature of the functions gj.

The discontinuity of the functions gj may arise in many practical situations: if
the area contains obstacles, the service as a function of the distance is likely to be
discontinuous.

In the telecommunication problem considered further in this paper, each function
gj corresponds to one user, and measures the coverage of this user. Below a certain
threshold, the user is not covered, and the constraint (2.2) is not satisfied.

Besides telecommunications, the model has applications in data analysis. It can
also be applied in other covering-type problems, where obstacles have to be taken into
account.

Due to the assumption made, problem (2. l)-(2.2) reduces to the feasibility problem:
for a fixed n find [*,]" satisfying (2.2). In turn, the system of inequalities (2.2) can be
satisfied if and only if the optimal value of the optimization problem

j

minimize T~̂  max (0, gj{x\, • • • , *„)) (2.3)

is zero.
The objective function of this problem is discontinuous, since the functions gj are.

Therefore very few optimization methods can be applied here. Besides, due to the
min-type nature of functions gj, the objective function in (2.3) usually has a large
number of local minima. As a result, most methods that are theoretically applicable to
such problems will not be successful in solving this problem. Note also that a single
evaluation of the objective function can be computationally expensive.

3. Solving the problem

The main problem (2.1)-(2.2) can be solved by solving a sequence of global
optimization problems (2.3). We will apply the following scheme:
Main Scheme:

Step 1. Setn = 1.

Step 2. Solve the problem (2.3).

Step 3. If the value of the objective function is zero, then Stop. Otherwise set
n = n + 1 and go to Step 2.

Note that the above three-step procedure is just an illustration. When a better lower
estimate of the number of APs is known (or can be easily determined) this number
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can be taken instead of n = 1 in Step 1. Similarly, when a "good" upper estimate
is known, a binary search algorithm can be used. However, one should keep in
mind that to do this one needs to know a really tight upper estimate. Otherwise,
due to the computational complexity of the problems, which increases exponentially,
the application of the binary search algorithm can be more time consuming than the
simple Main Scheme described above.

3.1. Overview of possible solvers The choice of the solver is crucial.
Although the initial problem (2.1)-(2.2) is an integer programming problem, for

each n, to verify the feasibilty, it is necessary to solve a continuous optimization
problem (2.3).

The objective function of (2.3) is discontinuous. As a result, it is not possible to
apply any of the classical methods based on local properties of the functions (such
as Newton-based or bundle methods [6,8] and their derivatives), nor even methods
based on Lipschitz continuity (such as branch and bound methods [5]).

To confront the discontinuity of the functions met in telecommunications network
designs due to obstacles, a few authors [14,18,19] have used genetic algorithms. Due
to their heuristic nature, it is quite easy to adapt these methods for solving the type
of problem under consideration. However, genetic algorithms are very dependant on
the initial population. The complex structure of the functions (these functions have
a large number of local minima) results in the necessity of having a large population
size. Since even for a simple real-world problem, the evaluation of the objective
function is computationally very demanding, it is very impractical to use evolutionary
algorithms.

Other heuristic approaches, such as simulated annealing or neural networks, present
the same drawback: although these methods can be easily implemented, they would
perform poorly or be too slow on the problem at hand.

In contrast to the mentioned approaches, AGOP (Algorithm for Global Optimiza-
tion Problems, see [9,10]), considered in the current paper, finds a good solution using
a relatively small number of function evaluations. Its operation is explained below.

3.2. Operation of AGOP Consider the problem:

minimize f(x) : R" -» K, s.t. x € B, (3.1)

where B is a given box constraint. AGOP must first be given a set of points, say
fi = xi, . . . , xq C OS". Generally, a suitable choice for an initial set of points is
generated from the vertices of the box B.

Suppose that x, e Q. provides the smallest value of the objective function, that
is, /(*•) < f(x) for all x e £2. An approach has been developed for finding
a descent direction v at the point x, (see [9] for details). An inexact line search
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along this direction provides a new point xq+i. A local search about xq+l is then
carried out. This is done using the local variation method. This is an efficient local
optimization technique that does not explicitly use derivatives and can be applied to
nonsmooth functions. A good survey of direct search methods can be found in [7].
Letting xq+i denote the optimal solution of this local search, the set Q is augmented
to include xq+1. Starting with this updated Q, the whole process can be repeated.
The process is terminated when v is approximately 0 or the prescribed bound on the
number of iterations is reached. The solution returned is the current xt, that is, the
point in Q with the smallest cost.

The main part of the algorithm is to determine a possible descent direction v
at each iteration. The method used by AGOP for this aim is based on dynamical
systems described by non-functional relationships between two scalar variables (see
[10] for details). These relationships are defined in terms of influences of the change
(increase or decrease) of one variable on the change of the other. The forces acting
from one variable on the change of the other variable are defined by the means
of influences. This allows us to define a (non-standard) dynamical system, which
provides the direction of changes of each variable at any given point. AGOP uses this
idea to determine a descent direction v. First, given a set Q, we define a dynamical
system that describes the relationships between the objective function and a particular
variable x', i = 1 , . . . , n. This provides a vector v = (v',..., v"), calculated at the
point xt, where the coordinate v' is the force acting from x' on the increase of / . Then
the vector v = — v is taken as a possible descent direction at the point x*.

3.3. Modification of AGOP Taking into account the peculiarities of problem (2.3),
we introduce the following improvements to the procedure of AGOP.

First, we note that the calculation of the value of the objective function is compu-
tationally intensive. Moreover, the value of the objective function is zero if there is a
feasible solution to (2.2). Therefore the execution can be stopped once the zero value
of the objective function is achieved. In many cases the set of optimizers is quite large,
and as a result a function value of zero may be found very early on by the algorithm.

The other improvement is related to the choice of initial sets £2. In this case
we are trying to use the solution obtained in the previous step of the sequence of
problems that are being solved during the execution of Main Scheme. It also takes
into consideration the geographical nature of the problem: a solution x is structured
as a set of geographical points x e Km. The solution reached at iteration (n — 1)
can be used at iteration n. The set £2 of initial points is constructed as follows:
fi = {*!,..., xq), where x, = (x£n~\ ..., x*'"~\ yu ..., ym), x*'"'1 is the solution
reached at iteration n — 1, and y € Km is an initial point constructed from the boundaries
of the geographical area.

This allows us to reduce the initial size of the set £2, and therefore to accelerate the
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execution of AGOP. Furthermore, it also generates initial points that are potentially
closer to the set of optimizers, which is reached faster.

4. Case study

The model described in Section 2 above is motivated by applications in wireless
telecommunications. Consider the following problem: given a building where a
wireless network needs to be installed, find the minimal number of antennas (Access
Points (APs)) which can cover the total area where users may move.

The building can be divided into three types of areas:

• Areas where APs can be placed and users need to receive (for example offices).
• Areas where APs can be placed, but users do not need to receive (for example,

stationery rooms).
• Areas where APs cannot be placed (for example, elevators).

As a result, the area to cover may be quite complex, and the coverage cannot
be computed easily. Therefore, this area is discretized: potential users are placed
everywhere where a user may need to access the network. This problem can be
formulated using (2.1)-(2.2).

The signal emitted by an AP JC, deteriorates before reaching a potential user My.
This can be measured by the so-called pathloss (loss of power between emission and
reception, measured in decibels (dB)). Over a certain threshold, the pathloss is too
large, and the user cannot receive the signal.

The pathloss can be written as follows [11-13]:

p(xi,Uj) = /?, + p2, (4.1)

where p\ and p2 represent the deterioration of the signal caused by the distance
between AP x{ and user u} and by physical obstacles (such as walls) respectively.

When the user is far enough from the AP, the following formula can be used:

p,(Xi,Uj) = p° + 20 log d(Xi,uj),

where d(Xj, Uj) is the distance between AP x, and user w; and p° is the pathloss at the
reference distance (equal to 1 m). For computational purposes, we will assume that if
d{Xi, Uj) < 1, the pathloss remains constant (p°). Since we are interested in ensuring
that the user is within reach of the AP, this assumption is reasonable.

The pathloss due to obstacles is calculated as P2(x,, uj) = Yl?=i ^»'" where Q
is the total number of obstacles, I, is the loss for crossing obstacle t; 8, = 1 if the
obstacle t is crossed by the signal, and 8, = 0 otherwise.
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In such a case, in the formulation (2.1)-(2.2), we have

gj(xu ...,xn)= min p{xit w;) - p^,
1 <i <n

where pmm represents the maximum allowed pathloss. Above this threshold, the
quality of signal is not sufficient.

This particular problem has the following characteristics:

• The number J of functions gj is equal to the number of users. This number can
be quite large, as the final coverage may depend on the density and the distribution of
the users in the building.

• The function gj is the minimum of functions g', where 1 < i < n. So for each
choice of [*,-]" the total number of function evaluations is n x J.

• The functions g'j depend on the number of walls separating the user from the
access point. When the number of walls in the building is large, evaluating g'. is
computationally very expensive.

As a result, the evaluation of an objective function is computationally very demand-
ing.

• 9 # 9 9 9 9 9 # ° S #
9 9 9

9
9 9

9 9 9 9
9

9 9
9 9 9

9 9 9 9 9
VH*;

FIGURE 1. Layout of the design area.

5. Testing and results

5.1. Testing Some experiments were carried out in order to verify the effectiveness
of the model based on the case study described in Section 4.

Firstly, a real-world situation described in [18] was examined. The building has
dimensions 75 m x 30 m and contains 129 walls (obstacles) of pathloss either 3 or 6.
In this building, 223 potential users are distributed over the area. Figure 1 shows the
building specifications and the distributions of the users.
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Another set of experiments with 183 potential users distributed over the area has
been conducted. The effect of reducing the number of users is that some rooms no
longer contain a potential user. This set of experiments was carried out in order to
observe the effect of the distribution of users on the number of APs necessary to cover
the area.

The experiments were carried on the VPAC supercomputer "Brecca" [21]. The
tfireshold for the pathloss has been varied. Results are presented in Tables 1 (a)
and (b). The following notation is used in the tables: P&—pathloss threshold value;
Num. APs—number of Access Points found; t,—total processing time; and Num. PL.
eval.—number of evaluations.

TABLE 1. Results of the experiments for various values of the threshold, for (a) 223 and (b) 183 potential
users.

p.h
115
114
105
100
95
92
90
80
75
70
65

fih
115
114
105
104
100
95
92
90
82
80
75
70
65

Num. APs
1
2
2
2
2
3
3
4
6
8
14

Num. APs
1
1
2
2
2
2
2
2
3
3
5
6
9

t, (sec)
2.74
12.48
12.78
14.51
20.48
48.57
48.55
125.87
407.27
701.24
2241.29

(a)

t, (sec)
1.01
1.45

10.00
11.15
12.78
11.41
11.27
20.64
41.97
41.43
146.45
285.82
777.29

Num. PL. eval.
5.6 x 105

2.4 x 10*
2.4 x 10*
2.7 x 10*
3.5 x 10*
7.1 x 10*
6.9 x 10*
1.3 x 107

3.3 x 107

5.1 x 107

1.2 x 108

Num. PL. eval.
2.1 x 105

3.0 x 105

1.9 x 106

2.1 x 10*
2.5 x 10*
2.2 x 10*
2.1 x 10*
3.4 x 10*
6.1 x 10*
6.1 x 10*
1.4 x 107

2.5 x 107

5.4 x 107

(b)

https://doi.org/10.1017/S1446181100003515 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003515


[9] Facility location via continuous optimization with discontinuous objective functions 323

5.2. Results In [18], the same problem was investigated using a different approach,
based on genetic algorithms. Application of the model described in the current paper
and the modified AGOP method allows us to obtain better results. For instance, in the
case of the threshold of 80 dB, as can be seen from Table 1, four APs are enough to
cover the area, in contrast to the five suggested in [18].

The solutions were obtained within a reasonable time. When the number of APs
becomes larger, the time necessary to solve the problem increases too. From that
viewpoint, a few observations can be made.

• The threshold has an influence on the processing time: although for Plh =114
and for Plh = 95 the same number of APs were found (meaning the same number of
optimization problems of the same dimensions were solved), nearly 1.5 times more
Path Loss evaluations were needed to find the solution. This is due to the fact that a
larger threshold means that more locations allow full coverage. This shows that it is
very efficient to take into account the lower bound of the problem during the AGOP
execution, which allows processing to stop as soon as the solution has been found.

• The time complexity is very dependent on the number of APs necessary to cover
the area. This is due to the enumeration part of the method: the more APs that are
necessary, the more optimization problems that need to be solved. What is more, only
the last problem solution can be quickened by the technique described in the previous
item.

• The number of users does influence both the result and the running time. How-
ever, the running time is only slightly increased when the number of APs is the same.
This means that the potential users should cover the area well, otherwise there may be
some inaccuracies. In an area with obstacles, the discontinuity of the objective func-
tion results in the need for users to be distributed suitably densely, but this distribution
also takes into account the possible effect of every obstacle. On the other hand, if the
number of users is extremely large, the method may need more time. This observation
is particularly true when the threshold is low (many APs are needed): for PA = 65,
the number of APs varies from 14 to only 9 when we remove only 40 potential users.

6. Conclusion and further research

In this paper, we have presented a novel approach for solving a particular type
of location problem. The problem consists of minimizing the number of facilities
necessary to cover a certain demand, where this coverage depends on their location
(namely their distance from the customers). No assumption was made on the coverage
of the demand, which can be discontinuous as a function of the distance.

To tackle this problem, a sequence of continuous optimization problems with
discontinuous objective functions are solved. The global optimization software AGOP
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has been modified to take into account the particularities of these problems. In
particular, the modifications have been devised in order to accelerate the search of a
solution, using information obtained in previous steps.

A particular application to this type of problem arising in the design of wireless
telecommunication networks has been presented, and numerical experiments have
been carried out on a particular instance of a real-world situation.

These experiments have shown that in most cases, the algorithm outperforms other
approaches, while solving within an acceptable amount of time. This is due to the
very good performance of AGOP for solving the sequence of problems. It is also
shown that the number of customers has little influence on the performance of the
algorithm, which depends much more on the number of APs needed (that is, on the
demand threshold).

A number of points may be improved in the current algorithms:

• The enumeration method is not very efficient when the number of APs is large.
Using approximation algorithms to estimate roughly the number of APs needed may
accelerate the current method;

• Experiments have shown that a large portion of the computing time is spent on
solving problems that are not very interesting: if the solution of the problem is a quite
high number of APs, then much time is spent on solving cases for a lower number
of APs. The use of the suggestion from the point above may reduce this effect, but
it may also be of interest to analyze the problem more deeply, to improve the search
method.

• Although the number of users does not have a strong influence on the efficiency
of the method, this may still become an issue when the number of APs is larger.
Experiments have shown, however, that if the users are not adequately distributed
over the area, the results can be highly inaccurate. In order to accelerate the algorithm
while still obtaining satisfactory results, it may be interesting to use a method similar to
the £-cleaning procedure presented in [2] for reducing the number of customers, while
still reaching accurate results. Such a method would allow one to specify a density of
potential users high enough to ensure that every obstacle is taken into account, while
having an automatic tool that generates a smaller set of users representative of the
problem. This is achieved because each potential user is within a reasonable range
(that is, distance, but also considering obstacles) of a representative user.
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