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Wilms tumor (WT) is the most common genitourinary renal tumor that typically occurs in children under 15 and is thought to be
linked to somatic and germline mutations. However, the specific functional role of competing endogenous RNAs (ceRNAs) and
their potential implications in WT remain unclear. In this study, we developed an lncRNA-mediated (long noncoding RNA-
mediated) ceRNA network via the R packages for WT with expression data obtained from the tumor alterations relevant for
genomics-driven therapy (TARGET) database. Unsupervised hierarchical clustering analysis revealed that the WT specimens
could be clearly distinguished from healthy specimens with respect to the expression of disordered RNAs. A total of 1,607
differentially expressed (DE) lncRNAs, 116 DE microRNAs (DEmiRNAs), and 3,262 DE messenger RNAs (DEmRNAs) were
identified as WT-specific RNAs, and a lncRNA-miRNA-mRNA ceRNA network with 159 DElncRNAs, 18 DEmiRNAs, 131
DEmRNAs, and 792 interactions was constructed. According to the clinical survival data, 12 DElncRNAs, 5 DEmRNAs, and 2
DEmiRNAs were selected from the ceRNA network that could significantly impact the overall survival of WTpatients (P< 0.05).
Functional enrichment analysis showed that the biological processes and pathways of DEmRNAs, such as cell cycle and virus
infection, may be associated with WT. +e present study constructed a dysregulated lncRNA-mediated ceRNA network in WT
and discovered that lncRNA-mediated ceRNAs may serve as important regulators in WTdevelopment and progression. Survival-
associated RNAs may serve as new potential biomarkers, suggesting that the constructed ceRNA network in WT might be
important for determining optimal therapeutic strategies.

1. Introduction

Wilms tumor (WT) is the most common genitourinary renal
tumor that typically occurs in early childhood [1], which is
usually found in one or both kidneys and may metastasize to
other important organs [2]. With new medicines and in-
novative immune therapies performed in WT [3], the
survival rate of WT has remarkably increased [4]. However,
as a malignant tumor mainly occurs in young children, a
deep understanding of the occurrence and development of
WT still requires more attention.

With the development of sequencing technology, in-
creased dysregulation and mutations of DNA or RNA in
human carcinoma including epigenetic alterations [5] were

revealed, and the bioinformatics analysis showed the im-
portant roles they played in many tumors. However, the
knowledge of the genetic underpinnings of WT was largely
limited to somatic and germline mutations [6], such as
aberrations of tumor protein 53 (TP53), the WTgene on the
X chromosome (WTX), WT gene 1 (WT1), catenin beta 1
(CTNNB1), and the imprinted 11p15 region [7–9].

+e competing endogenous RNA (ceRNA) hypothesis
was first presented in 2011, which postulated that RNAs
communicate with each other through shared microRNA
(miRNA) response elements (MREs) [10]. Since a miRNA
modulates the expression of several target messenger RNAs
(mRNAs), each mRNA may be regulated by multiple
miRNAs [11]. mRNAs, long noncoding RNAs (lncRNAs),
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and other RNA transcripts, which can act as endogenous
miRNA sponges, in the ceRNA network can form a large-
scale regulatory network. +e dysregulation of RNAs in-
volved in the ceRNA network has been previously studied in
many cancers [12, 13]. +e key RNAs are regarded as cancer
biomarkers and contribute to tumor progression [14–16].

Wilms tumor is relatively rare in absolute numbers (1 in
10,000 children). +e scarcity of WT specimen makes it
difficult to perform experimental research on WT. More-
over, the commercially available, previously widely used
purported WT cell lines, including WT-CLS1 [17], G401
[18, 19], and SK-NEP-1 [19, 20], turned out to be mis-
classified. +us, the studies about WT are limited by the
paucity of available cell/tissue specimens, and bioinformatics
analysis becomes an effective and economical strategy for
WT study.

To the best of our knowledge, this study is the first time
to construct a lncRNA-mediated WT-specific ceRNA net-
work with both GEO and TARGETdatabases. In the present
study, we identified WT-specific miRNAs and mRNAs
convergence in both GEO and TARGET databases and
provide novel insight into a better understanding of
lncRNA-mediated ceRNA regulation in the tumorigenesis
and progression of WT. We hope this work helps elucidate
the lncRNA-miRNA-mRNA crosstalk in WT and provides
further insight into its molecular mechanisms.

2. Materials and Methods

2.1. Data Acquisition and Processing. All datasets used in the
present study were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) and the TARGET da-
tabase (https://ocg.cancer.gov/programs/target). In the
GSE66405 dataset, mRNA expression of 28 WTand 4 normal
kidney samples were determined using the Agilent-039494
SurePrint G3 Human GE v2 8× 60K (GPL17077) platform.
In the GSE57370 dataset, miRNA expression of 62 WTand 4
normal kidney samples were determined with the Agilent-
031181 Unrestricted_Human_miRNA_V16.0_Microarray
(GPL16770) platform. +e expression quantification of
mRNAs, lncRNAs, and miRNAs was obtained from the
TARGET database. 125 WT patients with corresponding
clinical data and 6 healthy controls were enrolled. +e main
characteristics of patients enrolled in the study are shown in
Table 1, and the study flow diagram is shown in Figure 1.

2.2. Identification of DERNAs between WT Tissues and
Healthy Tissues. +e R 3.6.0 software (https://www.r-
project.org/) was used to identify the differentially
expressed RNAs between WT and normal samples. In the
GSE66405 dataset, differentially expressed mRNAs were
identified using the “limma” package with |log2 fold change
(FC)| >1 and P< 0.05 as cutoff criteria. Similarly, differ-
entially expressed miRNAs were screened with |log2 FC| >
0.5 and P< 0.05 in GSE57370. Additionally, the differentially
expressed RNAs in the TARGET dataset were determined
using the “edgeR” package with |log2 FC| > 2 and a false
discovery rate (FDR)< 0.01 as the cutoff criteria.

2.3. Functional EnrichmentAnalysis. Functional enrichment
analysis was performed for the WT-specific mRNAs in-
volved in the ceRNA network to understand the underlying
functional implications of these mRNAs in Wilms tumor.
Gene ontology (GO) functional enrichment analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were conducted using the R
package “clusterProfiler” [21]. Disease ontology (DO)
analysis was conducted using the R package “DOSE” [22].
P< 0.05 was set as the statistical significance threshold
criterion for enrichment analysis.

2.4. Construction of the Protein-Protein Interaction Network.
mRNAs convergence in TARGET and GSE66405 were de-
termined as WT-specific mRNAs. +e direct and indirect
correlations between WT-specific mRNAs were assessed
from the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING; Version 11.0; http://string-db.org/) da-
tabase (with the minimum required interaction score of 0.9)
[23]. +e PPI network was reconstructed via Cytoscape
software [24] (Version 3.8.0). Functionally related clusters
were further identified with themolecular complex detection
algorithm (MCODE; Version: 1.5.1), based on topology to
locate densely connected regions. +e mRNAs in the top
cluster selected were taken as hub genes.

2.5. Expression Validation of Hub Genes in Oncomine
Database. +e Cutcliffe renal dataset and Yusenko renal
dataset in Oncomine (https://www.Oncomine.org) were
used to verify the differential expression of hub genes. In the
Cutcliffe renal dataset, mRNA expression of 18 WT and 3
fetal kidneys were determined using human genome U133A

Table 1: +e main characteristics of 125 Wilms tumor patients.

Clinicopathological characteristics
Patients (N� 125)
n %

Age (years)
≤5 77 61.60
5–10 41 32.80
≥10 7 5.60

Gender
Male 56 44.80
Female 69 55.20

Histology classification of primary tumor
FHWT 85 68.00
DAWT 40 32.00

First event
Relapse 93 74.40
Progression 7 5.60
None 25 20.00

Stage
I 16 12.80
II 52 41.60
III 40 32.00
IIIB 4 3.20
IIIB/V 1 0.80
IV 12 9.60

FHWT, favorable histology; DAWT, diffuse anaplasia.
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array in which ASPM and NUF2 were not tested. In the
Yusenko renal dataset, mRNA expression of 4WTand 2 fetal
kidneys was determined using human genomeU133 Plus 2.0
array. +e log2 median-centered intensity value was visu-
alized with GraphPad Prism (Version 5.0).

2.6. Construction of the ceRNA Network. +e interactions
between WT-specific lncRNAs and WT-specific miRNAs
were predicted using the miRcode database (http://www.
mircode.org/) [25]. +en, WT-specific miRNAs were
modified with the StarBase v2.0 database (http://starbase.
sysu.edu.cn/), and their target mRNAs were retrieved
according to three different databases (TargetScan [26],
miRTarBase [27], and miRDB [28]). Only mRNAs predicted
by all three databases were considered as candidate
DEmRNAs for further study. +en, the lncRNA-miRNA-
mRNA ceRNA network was constructed and visualized
using the Cytoscape software (Version 3.8.0) [29].

2.7. Survival Analysis. WT patients were divided into a
specific RNA high-expressing group and a specific RNA low-
expressing group, with the median expression value as the
cutoff value. Survival analysis between the specific RNA
high-expressing and specific RNA low-expressing groups
was evaluated using the Kaplan–Meier survival curve and
log-rank test analysis. +e survival-associated DERNAs
(P< 0.05) were identified as prognosis-associated RNAs.

3. Results

3.1. Identification of WT-Specific mRNAs. A total of differ-
entially expressed 3,262 differentially expressed mRNAs
(1,756 upregulated and 1,506 downregulated) were altered
significantly in the TARGET-WT dataset. In addition, 724
(170 upregulated and 554 downregulated) differentially

expressed mRNAs in GSE66405 were determined with the
aforementioned cutoff thresholds. +e distribution of all
differentially expressed mRNAs is depicted in the volcano
maps shown in Figures 2(a) and 2(b). +e 116 upregulated
and 334 downregulated mRNAs convergence in both da-
tabases were identified as WT-specific mRNAs and pre-
sented in Venn diagrams (Figures 2(c) and 2(d)).

3.2. FunctionalEnrichmentAnalysis. To outline the potential
function of the WT-specific mRNAs, functional enrichment
analysis was performed with “ClusterProfiler” and “DOSE.”
Functional enrichment analysis revealed that a total of 394
GO terms, including 277 biological process terms (GO.BP),
31 cellular component terms (GO.CC), and 86 molecular
function terms (GO.MF), were enriched. +e top 10 pre-
dominant BP terms, CC terms, and MF terms in GO
functional enrichment analysis are shown in Figure 3(a)
which were concerned with organic acid carboxylic and
transport.+ese results suggested that tumorigenesis and the
development of WT may be related to the dysfunction of
renal ion transport.

14 significantly enriched KEGG pathways were identi-
fied and are shown in Figure 3(b). KEGG results showed that
the “PPAR signaling pathway” was the most concerned
pathway in WT. PPARs belong to the family of ligand-ac-
tivated nuclear receptors. Specific PPAR ligands have been
proposed as potential therapies for a variety of diseases such
as metabolic syndrome and cancer [30]. Moreover, DO
analysis (Figure 3(c)) showed thatWTwas not only a urinary
system disease but also concerned with “nephrocalcinosis”
and calcium/mineral metabolism disease, which were ver-
ified in GO and KEGG analyses. Moreover, obesity and
overnutrition were also involved, which may originate partly
in lifestyle, in particular via markedly reduced levels of
physical activity after diagnosis.

Microarray repository data
(GEO,GSE66405)

Differentially expressed mRNAs
(|log2 (FC)| >1 P<0.05,limma)

Differentially expressed miRNAs
(|log2 (FC)| > 0.5 P<0.05,limma)

Microarray repository data
(GEO,GSE57370)

Differentially expressed miRNAs
(|log2 (FC)| > 2 FDR<0.05,edgR)

Transcriptomic profiles
(TARGET–WT)

450 WT–specific mRNAs
convergence in both databases

1607
WT–specific lncRNAs

mRNAs
3,236 

miRNAs
116 

miRNAs
80 

mRNAs
724 

19 WT–specific miRNAs
convergence in both databases

ceRNAnetwork90 DElncRNAs,
5 DEmiRNAs, 27 DEmRNAs, and
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Figure 1: Flow diagram of the study.
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3.3. Protein-Protein Interaction Network and Hub Genes.
To better understand the interplay among the WT-specific
mRNAs, a PPI network with 83 nodes and 276 edges was
reconstructed by Cytoscape (Figure 4(a)). +e degree dis-
tribution of the nodes in this PPI network was analyzed, and
the mRNAs with top 30° are shown in Figure 4(b). BUB1
mitotic checkpoint serine (BUB1) was identified to have the
highest degree in the overall network (degree� 25).

Based on the topology to locate densely connected re-
gions, some genes are notably concentrated.With the help of
MCODE, a hub gene cluster with 22 nodes and 203 edges
was selected. +ese 22 hub genes were all upregulated and
with a high degree in the overall network (Figure 4(b)).
NUF2 (NUF2) was identified to be the seed gene of the
cluster (degree� 14). Most of the hub genes were pre-
dominantly involved in the cell cycle (BUB1, mitotic
checkpoint serine/threonine kinase B (BUB1B), cyclin B2
(CCNB2), and pituitary tumor-transforming 1 (PTTG1))

and oocyte meiosis pathways (BUB1, CCNB2, and PTTG1).
Expression validation of the hub genes was performed with
the Yusenko renal dataset (Figure 4(c)) and Cutcliffe renal
dataset (Figure 4(d)) in Oncomine. Except for CENPF
(centromere protein F) was unexpectedly downregulated, all
the other hub genes were upregulated in WT tissues in both
Oncomine datasets as expected.

3.4. Identification of WT-Specific miRNAs and lncRNAs.
A total of 116 differentially expressed miRNAs (including 77
upregulated and 39 downregulated) were identified as al-
tered significantly in the TARGET-WT dataset and 80 (29
upregulated and 51 downregulated) differentially expressed
miRNAs in GSE57370 were determined with aforemen-
tioned cutoff thresholds. +e distribution of all differentially
expressed miRNAs is depicted in the volcano maps shown in
Figures 5(a) and 5(b). +e 19 miRNAs convergence in both
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Figure 2: Identification of WT-specific mRNAs. Differentially expressed mRNA in TARGET (a) and GSE66405 (b) with the afore-
mentioned cutoff thresholds is depicted in the volcano map. +e red/green points represent the upregulation/downregulation of mRNAs,
and the black points represent RNAs with no significant difference.+e 116 upregulated (c) and 334 downregulated (d)WT-specificmRNAs
convergence in both databases is presented in Venn diagrams

4 Genetics Research

https://doi.org/10.1155/2022/2365991 Published online by Cambridge University Press

https://doi.org/10.1155/2022/2365991


databases were identified as WT-specific miRNAs and are
presented in Venn diagrams (Figures 5(c) and 5(d)).

3.5. ceRNA Network Construction in WT. 1607 differentially
expressed lncRNAs (including 851 upregulated and 756
downregulated) identified in TARGET database with the
aforementioned cutoff thresholds were taken as WT-specific
lncRNAs. +en, we screened the miRcode database with the
WT-specific lncRNAs and obtained 689 interactions between
90 WT-specific lncRNAs and five WT-specific miRNAs for
further analysis. +e five miRNAs recognized above were
mapped into the TargetScan, miRTarBase, and miRDB da-
tabases to identify their target mRNAs. +e 150 mRNAs
predicted by all three databases were considered target
mRNAs candidates, and only 27 of them which were

differentially expressed in WT tissues were identified as
DEmRNAs for further analysis. Finally, 90 DElncRNAs, 5
DEmiRNAs, and 27 DEmRNAs enrolled the ceRNA network
with 177 interactions (145 DElncRNA–DEmiRNA interac-
tions and 32 DEmiRNA–DEmRNA interactions), con-
structed, and visualized with Cytoscape (Figure 6 and Table 2).

+e rhombuses represent DElncRNAs, the squares
represent DEmiRNAs, and the rounds represent DEmRNAs.
Red represents upregulation and green represents
downregulation.

3.6. Prognosis-Associated RNAs in the WT ceRNA Network.
To identify the prognosis-associated RNAs, the
Kaplan–Meier survival curve and log-rank test analysis of all
the RNAs involved in the ceRNA network were performed.
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According to the results, 7 DElncRNAs and 2 DEmiRNAs
were identified as prognosis-associated RNAs (P< 0.05,
Figure 7).

Among these RNAs, the high expression of three risky
lncRNAs including AL445228.2, LMO7-AS1 LMO7 anti-
sense RNA (1), and DLEU2 (deleted in lymphocytic leu-
kemia 2) was associated with shorter overall survival of WT
patients (Figures 7(a) and 7(c)). +e remaining four
DElncRNAs (MEG3, maternally expressed gene 3; RMST,
rhabdomyosarcoma 2-associated transcript; HNF1A-AS1,
HNF1A antisense RNA 1; and PVT1, and plasmacytoma
variant translocation 1) and two DEmiRNAs (hsa-mir-429
and hsa-mir-200a) appeared to be protective (Figures 7(d)
and 7(i)).

In the figure, Kaplan–Meier survival curves for lncRNA
(a) AL445228.2, (b) LMO7-AS1, (c) DLEU2, (d) MEG3, (e)
RMST, (f ) HNF1A-AS1, (g) PVT1 and miRNAs, (h) hsa-
mir-429, and (i) hsa-mir-200a are shown.

4. Discussion

Several genes, including CTNNB1, WTX, WT1, and TP53,
have been reported to be involved in the tumorigenesis and
progression of WT [7–9]. However, the regulatory function
of dysregulated RNAs (including lncRNAs, miRNAs, and
mRNA) in WT remains elusive. Increasing evidence has

revealed that dysregulated RNAs play important roles in
many cancers [31–33]. miRNA profile changes in WT have
been used as predictors of chemo responsiveness in WT
blastema [34]. LINC00473 mediates the pathogenesis of
WT by antagonizing the tumor suppressor hsa-mir-195
[35]. +e elevated expression of FOXM1 (forkhead box
protein M1) has been reported as a new prognostic bio-
marker that is associated with histology and prognosis of
WT [36]. +erefore, identification of key RNAs is vital for
understanding the pathogenesis and abnormal biological
behavior of WT which may help to identify novel thera-
peutic targets.

First, we analyzed the microarray data and RNA-se-
quencing data from the GEO and TARGETdatabases. +en,
450 WT-specific mRNAs convergence in both databases was
identified for bioinformatics analysis. Identify their potential
associated cellular signaling pathways and functions. GO
analysis revealed that the mRNAs were involved in the
“organic anion transport” and “carboxylic acid biosynthetic
process” biological processes terms. Furthermore, the
mRNAs were demonstrated to serve a role in transmem-
brane transporter activity at the molecular function level.
KEGG pathway analysis revealed that 12 mRNA were
enriched in the “PPAR signaling pathway,” 10 were enriched
in the “mineral absorption,” and 9 were enriched in “protein
digestion and absorption.”
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Figure 4: Identification and expression validation of hub genes. (a) +e PPI network of WT-specific mRNAs shown by Cytoscape. (b) +e
degree distribution of the PPI network of the top 30 WT-specific mRNAs. (c) Expression validation of the hub genes performed with the
Yusenko renal dataset. Mean± SEM. (d) Expression validation of the hub genes performed with the Cutcliffe renal dataset. Mean± SEM.
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According to the MCODE analysis, a hub gene cluster
with all the genes upregulated was identified. In line with the
results of functional enrichment analysis of all WT-specific
mRNAs, the hub genes were mostly enriched in the GO
terms concerned with the “cell cycle” too, such as “nuclear
division,” “organelle fission,” “mitotic nuclear division,” and
“chromosome segregation.” +ese results suggested that
drugs targeting the cell cycle may be effective in the treat-
ment of WT. Expression validation of the hub genes was
performed with Oncomine. +e validation study showed
that CENPFwas unexpectedly downregulated, whichmay be
due to the paucity of specimens in the Cutcliffe renal dataset
and Yusenko renal dataset. Moreover, other hub genes were
still upregulated in both datasets. +erefore, it can be hy-
pothesized that abnormal regulation of the hub genes may be

generally existed in WTand contribute to the tumorigenesis
and progression of WT.

Subsequently, to comprehensively understand how
dysregulated RNAs work in WT, we constructed a ceRNA
with 90 DElncRNAs, 5 DEmiRNAs, 27 DEmRNAs, and 177
interactions. Nine of these RNAs, including AL445228.2,
LMO7-AS1, DLEU2, MEG3, RMST, HNF1A-AS1, PVT1,
hsa-mir-429, and hsa-mir-200a, were considered to be
prognostic biomarkers as they were significantly associated
with overall survival in WT patients. In line with the GO
enrichment results, most of these RNAs were associated with
tumor progression via the cell cycle.

Risky marker DLEU2 was reported to promote cancer
cell proliferation and invasion in pancreatic cancer [37].
Protective lncRNA MEG3 was regarded as a novel tumor
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Table 2: +e DERNAs enrolled in the ceRNA network.

DElncRNAs DEmiRNAs DEmRNAs
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suppressor by inhibiting tumor cell proliferation in many
cancers [38–40]. Protective lncRNA RMST (rhabdo-
myosarcoma 2-associated transcript) could enhance cell
apoptosis in triple-negative breast cancer (TNBC) [41].

HNF1A-AS1 was considered to function as a regulator of
cell proliferation and migration in esophageal adeno-
carcinoma [42] and lung cancer [43]. Still, there is WT-
protective lncRNA which was a risky factor in other
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Figure 7: Kaplan–Meier survival curves for the prognosis-associated DERNAs. Kaplan–Meier survival curves for lncRNA (a) AL445228.2,
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cancers. For example, PVT1 was reported to promote
tumorigenesis in nonsmall cell lung cancer [44] and
multidrug resistance in gastric cancer [45].

It is well-known that miRNA-regulated pathways are
indispensable in studies of tumorigenesis [46, 47]. miRNAs
are involved in the occurrence, development, incursions,
and metastasis of tumors [48, 49]. In this study, among the
five DEmiRNAs involved in the ceRNA network, two
miRNAs (hsa-miR-200a and hsa-miR-429) were associated
with the poor prognosis ofWTpatients. Both of them belong
to the miR-200 family, which has been shown to be closely
associated with carcinogenesis and progression, and po-
tentially be important for the diagnosis and treatment of
cancer [50]. hsa-mir-200a was reported to inhibit cell
growth, migration, and invasion in meningioma [51] and
nasopharyngeal carcinoma [52] and determines prognosis in
colorectal cancer patients [53] and ovarian tumorigenesis
[54]. As the has-mir-200 family is important for maintaining
the epithelial phenotype [55], the dysregulation of hsa-mir-
200a and hsa-mir-429 inWTpatients may be associated with
migration and invasion via the epithelial-mesenchymal
transition.

5. Conclusions

In the present study, we successfully constructed a lncRNA-
mediated ceRNA network with WT-specific lncRNAs and
miRNAs/mRNAs convergence in both GEO and TARGET
databases. +e ceRNA network may provide novel insight
into a better understanding of ceRNA regulation in WT.
Furthermore, the ceRNA network and the key RNAs
identified in this study may provide potential biomarkers for
diagnosis and prognosis and improve clinical outcomes for
children with WT.
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