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GRÖBNER BASES OF SIMPLICIAL TORIC IDEALS

MICHAEL HELLUS, LÊ TUÂN HOA and JÜRGEN STÜCKRAD

Abstract. Bounds for the maximum degree of a minimal Gröbner basis of

simplicial toric ideals with respect to the reverse lexicographic order are given.

These bounds are close to the bound stated in Eisenbud-Goto’s Conjecture on

the Castelnuovo-Mumford regularity.

Introduction

Let I be a homogeneous ideal of a polynomial ring R. The coarsest

measure of the complexity of a Gröbner basis (w.r.t. to a term order ≤)

of an ideal I is its maximum degree, which is the highest degree of a gen-

erator of the initial ideal in≤(I). However, this quantity is not easy to be

handled with. One way to study it is to use a better-behaved invariant, the

Castelnuovo-Mumford regularity reg(I) of I. This invariant can be defined

as the maximum over all i of the degree minus i of any minimal i-th syzygy

of I, treating generators as 0-th syzygies. In the generic coordinates and

with respect to the reverse lexicographic order, the maximum degree in a

minimal Gröbner basis of I is bounded by reg(I) (see [BS, Corollary 2.5]).

Unfortunately, this is not true for arbitrary coordinates (see, e.g., the ex-

ample after [HHy, Lemma 14]). On the other hand, a famous conjecture

by Eisenbud and Goto states that reg(I) ≤ deg(R/I) − codim(R/I) + 1,

provided I is a prime ideal containing no linear form (see [EG]). Here

deg(R/I) and codim(R/I) denote the multiplicity and the codimension of

R/I, respectively. Thus, in the generic coordinates the Eisenbud-Goto bound

deg(R/I)− codim(R/I) + 1 is an expected bound for the maximum degree

in a minimal Gröbner basis of I w.r.t. the reverse lexicographic order of a

prime ideal containing no linear form. We may hope that this expectation

still holds for some other coordinates.
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In this paper we are interested in estimating the degree-complexity of

Gröbner bases of simplicial toric ideals. Toric ideals are nice, particularly

because they are prime ideals and in the natural coordinates they are gen-

erated by binomials. In order to find a minimal Gröbner basis of such an

ideal, it is therefore natural to try to keep the original coordinates, so that

elements of such a Gröbner basis can be taken as binomials - which are

cheap to compute and to restore. On the other hand in [HS] the last two

authors have shown that for a large class of simplicial toric ideals I, the

Castelnuovo-Mumford regularity reg(I) is bounded by the Eisenbud-Goto

bound deg(R/I)− codim(R/I) + 1. From these phenomena we believe that

following conjecture holds:

Conjecture. Assume that I is the toric ideal associated with a ho-

mogeneous simplicial affine semigroup S over an arbitrary field K. The

maximum degree in a minimal Gröbner basis of I in the natural coordinates

and w.r.t. the reverse lexicographic order is bounded above by deg K[S] −

codim K[S] + 1.

Note that this is not true for an arbitrary term order (see Example

1.2). For the rest of the paper, if not otherwise stated, we consider only the

natural coordinates and the reverse lexicographic order. Although we are

still not able to solve the above problem, we can establish the upper bound

2(deg K[S] − codim K[S]). In order to do that we first establish an upper

bound in terms of the reduction number r(S) of K[S]. Then, combining

with a bound of [HS] on r(S), we get the main result, see Theorem 1.1. We

also provide another bound in terms of the codimension c = codim K[S]

and the total degree α of monomials defining S (Theorem 1.4). In a lot of

examples bounds in Theorems 1.1 and 1.4 are even much smaller then the

Eisenbud-Goto bound.

In Section 2 we solve the above conjecture for certain classes of simpli-

cial toric ideals. Ideals of first type come from a simple observation that

the maximum degrees in their minimal Gröbner bases are bounded by the

Castelnuovo-Mumford regularity if the corresponding rings K[S] are gen-

eralized Cohen-Macaulay rings. Ideals of second type are raised by certain

properties of the parameter set A (see Propositions 2.4 and 2.6). In this

situation, by using Theorem 1.4 we can restrict ourselves to few exceptional

cases when the codimension is very big. Then the main technique is to refine

bounds on the reduction number or to calculate its exact value, so that one
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can apply Theorem 1.1. In particular, we show that the conjecture holds for

all simplicial toric ideals in [HS], for which the Eisenbud-Goto conjecture is

known to be true.

Notation. In this paper we use bold letters to denote a vector, while

their coordinates are written in the normal style. Thus ai, e1i are the i-th

coordinates of vectors a, e1, respectively; xm = xm1

1
· · · xmc

c , yn = yn1

1
· · · ynd

d

and tn = tn1

1
· · · tnd

d . The ordering of variables is always assumed to be

x1 > · · · > xc > y1 > · · · > yd. We always write a binomial in such a way

that its first term is bigger than the second one.

§1. Bounds

Let S ⊆ Nd be a homogeneous, simplicial affine semigroup generated

by a set of elements of the following type:

A = {e1, . . . , ed,a1, . . . ,ac}

⊆ Mα,d = {(x1, . . . , xd) ∈ Nd | x1 + · · · + xd = α},

where c ≥ 2, α ≥ 2 are natural numbers and e1 = (α, 0, . . . , 0), . . . , ed =

(0, . . . , 0, α). Moreover, if ai = (ai1, . . . , aid), we can assume that the inte-

gers aij, where i = 1, . . . , c, j = 1, . . . , d, are relatively prime. Note that

dim K[S] = d and codim K[S] = c. Let IA be the kernel of the homomor-

phism

K[x,y] := K[x1, . . . , xc, y1, . . . , yd] −→ K[S]

≡ K[tα1 , . . . , tαd , ta1, . . . , tac] ⊆ K[t];

xi 7−→ tai ; yj 7−→ tαj , i = 1, . . . , c; j = 1, . . . , d.

We call IA a simplicial toric ideal defined by A (or S). We will consider

the standard grading on K[x,y] and K[S], i.e. deg(xi) = deg(yj) = 1 and

if b ∈ S, then deg(b) = (b1 + · · · + bd)/α.

Note that IA always has a minimal Gröbner basis consisting of binomials

(see, e.g., [St1, Chapter 1]). We are interested in bounding its maximum

degree.

Let A = A0 ⊕ A1 ⊕ · · · , where A0 = K, be a standard graded K-

algebra of dimension d. A minimal reduction of A is a graded ideal I

generated by d linear forms such that [IA]n = An for n ≫ 0. The least

integer n such that [IA]n+1 = An+1 is called the reduction number of A
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w.r.t. I and will be denoted by rI(A). Note that (tα1 , . . . , tαd ) is a minimal

reduction of K[S]. We denote by r(S) the reduction number of K[S] w.r.t.

this minimal reduction. Then r(S) is the least positive integer r such that

(r + 1)A = {e1, . . . , ed} + rA, where for two subsets B and C of Zd we

denote by B ±C the set of all elements of the form b± c, b ∈ B, c ∈ C, and

nB = B + · · · + B (n times). This reduction number was used in [HS] to

bound the Castelnuovo-Mumford regularity of K[S].

Theorem 1.1. The maximum degree in a minimal Gröbner basis of

IA is bounded by

max{r(S) + 1, 2r(S) − 1} ≤ max{2, 2(deg K[S] − codim K[S]) − 1}.

Proof. Let s = max{r(S) + 1, 2r(S) − 1} and set

G = {xmyn − xpyq ∈ IA | deg(xmyn) = deg(xpyq) ≤ s}.

By [HS, Theorem 1.1], r(S) ≤ deg K[S] − codim K[S]. Hence, it suffices to

show that G is a Gröbner basis of IA. In particular this also implies that

G 6= ∅. Assume that this is not the case. Then one can find a binomial b =

xmyn − xpyq ∈ IA of the smallest degree deg b > s such that in(g) ∤ xmyn

for all g ∈ G.

If deg(xm) ≥ r(S) + 1, then we can write xm = xm
′

xm
′′

, where

deg(xm
′

) = r(S)+1. By the definition of r(S) we can find m∗, n∗ such that

deg(xm
∗

) = r(S) and g := xm
′

− xm
∗

yn
∗

∈ IA (note that xm
′

> xm
∗

yn
∗

).

Then g ∈ G and in(g) = xm
′

| xmyn, a contradiction. Thus deg(xm) ≤

r(S).

If deg(xp) ≥ r(S) + 1, then as above, we can find p′, p′′ such that

xpyq − xp
′

yp
′′+q ∈ IA and deg(xp

′

) = r(S) < deg(xp). Then

xmyn − xp
′

yp
′′+q = (xmyn − xpyq) + (xpyq − xp

′

yp
′′+q) ∈ IA,

and xmyn > xpyq > xp
′

yp
′′+q. Hence, replacing xpyq by xp

′

yp
′′+q, we

may assume from the beginning that deg(xp) ≤ r(S).

Now, since xmyn − xpyq ∈ IA, we have

c
∑

i=1

miai +

d
∑

j=1

njej =

c
∑

i=1

piai +

d
∑

j=1

qjej.
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From the minimality of deg(xmyn) we may assume that xmyn and xpyq

have no common variable. That means if we set C = {i | mi 6= 0} and

D = {j | nj 6= 0}, then the above equality can be rewritten as
∑

i∈C

miai +
∑

j∈D

njej =
∑

i6∈C

piai +
∑

j 6∈D

qjej .

Hence
∑

j∈D

∑

i∈C

miaij +
∑

j∈D

njα =
∑

j∈D

∑

i6∈C

piaij =
∑

i6∈C

pi

∑

j∈D

aij ≤
∑

i6∈C

piα.

This implies

(1)

d
∑

j=1

nj =
∑

j∈D

nj ≤
∑

i6∈C

pi = deg(xp).

The equality holds if and only if miaij = 0 for all (i, j) ∈ C×D and piaij = 0

for all (i, j) such that i 6∈ C and j 6∈ D. This yields
∑

i∈C miai =
∑

j 6∈D qjej,

which means xm − yq ∈ IA. Since xm > yq and deg(xm) ≤ r(S), g :=

xm − yq ∈ G. But this is impossible because in(g) | xmyn. Hence, by (1),

we must have
∑d

j=1
nj < deg(xp) ≤ r(S), and so

deg(b) = deg(xm) +

d
∑

j=1

nj ≤ 2r(S) − 1 ≤ s,

a contradiction. The theorem is proved.

It should be noted that if S is not necessarily a simplicial semigroup,

then Sturmfels [St2] showed that w.r.t. any term order, the maximum degree

in a minimal Gröbner basis of IA is bounded by c · deg K[S].

The following example shows that estimations in Theorem 1.1 do not

hold for an arbitrary term order.

Example 1.2. Let A = {(4, 0), (3, 1), (1, 3), (0, 4)}. Then

IA = (x1x2 − y1y2, x
3
1 − x2y

2
1 , x

3
2 − x1y

2
2, x

2
2y1 − x2

1y2).

This is also a minimal Gröbner basis of IA w.r.t. the reverse lexicographic

order. W.r.t. the lexicographic order we get the following minimal Gröbner

basis:
{

x1x2 − y1y2, x
3
1 − x2y

2
1 , x1y

2
2 − x3

2, x
2
1y2 − x2

2y1, x
4
2 − y1y

3
2

}

.
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In this example r(S) = deg K[S] − codim K[S] = 2 and both bounds in

Theorem 1.1 are equal to 3.

The above example also provides a case when upper bounds in Theo-

rems 1.1 are tight. However if deg K[S] − codim K[S] ≥ 3 we believe that

the second bound is never attained (see the conjecture mentioned in the

introduction). Similarly, we don’t think that the first bound is attained if

r(S) is big. However, the following example shows that in general it is at

most twice of the best possible bound.

Example 1.3. Given d ≥ 2 and α ≥ max{4, d + 1}. Let

(2) A = Mα,d \ {(β, α − β, 0, . . . , 0) | 2 ≤ β ≤ α − 2}.

We may assume a1 = (α − 1, 1, 0, . . . , 0) and a2 = (1, α − 1, 0, . . . , 0). If

S ∋ (α − 2)a1 =
∑

miai +
∑

njej with
∑

nj > 0, comparing d − 1 last

coordinates, one should have α − 2 = m1 + m2(α − 1) + n2α. This implies

n2 = m2 = 0 and m1 = α − 2, which is impossible, since m1 = (α − 2) −
∑

nj < α− 2. Hence (α− 2)a1 6∈ {e1, . . . , ed}+(α− 3)A and r(S) ≥ α− 2.

Let b = (b1, . . . , bd) ∈ Nd such that α | b1 + · · ·+bd and b3 + · · ·+bd > 0.

By induction on deg(b) := (b1 + · · ·+ bd)/α, we show that b ∈ S. The case

deg(b) = 1 follows from (2). Let deg(b) ≥ 2. If b1 ≥ α, then b = e1 + b′

with b′3+ · · ·+b′d > 0. By the induction hypothesis, b′ ∈ S and hence b ∈ S.

The same holds if b2 ≥ α. Hence we may assume that b1, b2 < α. In this

case b2 + b3 + · · ·+ bd ≥ α + 1, and we can find b′2 = b2, b
′
3 ≤ b3, . . . , b

′
d ≤ bd

such that b′2 + · · · + b′d = α. Let b′1 = 0. Then both elements b′ and b− b′

satisfy the induction hypothesis, which implies b = b′ + (b− b′) ∈ S.

Further, let b = (b1, b2, 0, . . . , 0) with b1 + b2 = α(α− 2). We show that

also b ∈ S. Indeed, we can write b2 = pα + q, where p ≤ α − 2, q ≤ α − 1.

Note that p = α − 2 implies q = 0 and b = (α − 2)e2 ∈ S.

Let p ≤ α − 3. If p + q ≥ α − 1, then

b = 0a1 + (α − q)a2 + (α − 3 − p)e1 + (p + q − α + 1)e2 ∈ S.

Otherwise (p + q ≤ α − 2),

b = qa1 + 0a2 + (α − 2 − p − q)e1 + pe2 ∈ S.

Summarizing the above arguments we get that b ∈ S if deg(b) = α − 2.
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Now let a ∈ (α − 1)A. Since α ≥ d + 1, a1 + · · · + ad = α(α − 1) ≥ dα

and there is an index i such that ai ≥ α. Note that deg(a − ei) = α − 2.

By the above result a− ei ∈ S. Hence a = ei + (a− ei) ∈ {e1, . . . , ed}+ S,

which implies r(S) ≤ α − 2.

Summing up we get r(S) = α − 2.

On the other hand, xα−1

1
−x2y

α−2

1
∈ IA, xα−1

1
> x2y

α−2

1
and there is no

other binomial of IA whose first term divides xα−1

1
. Therefore the binomial

xα−1
1

− x2y
α−2
1

must be contained in the reduced Gröbner basis of IA. The

degree of this binomial is α − 1, while the first bound of Theorem 1.1 is

2α − 5. Note that the Eisenbud-Goto bound in this example is αd−1 + α +

d −
(

α+d−1

d−1

)

− 2.

It was also shown that the Castelnuovo-Mumford regularity of reg(IA)

is bounded by c(α − 1) + 1 (see [HS, Theorem 3.2(i)]). In the following

theorem we obtain a similar result for Gröbner bases.

Theorem 1.4. The maximum degree in a minimal Gröbner basis of

IA is bounded by max{c, α, c(α − 1) − 1} ≤ c(α − 1).

Proof. The proof is similar to that of Theorem 1.1. Let s = max{c, α,

c(α − 1) − 1} and set

G =
{

xmyn − xpyq ∈ IA | deg(xmyn) = deg(xpyq) ≤ s
}

.

Assume that G is not a Gröbner basis. Then one can find a binomial b =

xmyn − xpyq ∈ IA of the smallest degree deg b > s such that in(g) ∤ xmyn

for all g ∈ G. Since αai = ai1e1+· · ·+aided, xα
i −yai ∈ G for all i = 1, . . . , c.

Note that xα
i > yai . Since in(xα

i − yai) ∤ xmyn, we must have mi ≤ α − 1

for all i ≤ c.

If pi ≥ α, then

xmyn −
xp

xα
i

yq+ai = (xmyn − xpyq) + (xα
i − yai)

xp

xα
i

yq ∈ IA.

Note that xmyn > xpyq > x
p

xα

i

yq+ai . Replacing b by xmyn − x
p

xα

i

yq+ai and

repeating this procedure, we may also assume that pi ≤ α − 1 for all i ≤ c.

As in the proof of Theorem 1.1, let C = {i | mi 6= 0} and D = {j | nj 6=
0}. Then we can also conclude that

(3)
∑

j∈D

nj ≤
∑

i6∈C

pi ≤ (c − ♯C)(α − 1),

https://doi.org/10.1017/S002776300000979X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000979X


74 M. HELLUS, L. T. HOA AND J. STÜCKRAD

and that
∑

j∈D nj = (c − ♯C)(α − 1) implies xm − yq ∈ IA. Hence

deg(xmyn) =
∑

i∈C

mi +
∑

j∈D

nj ≤ ♯C(α − 1) + (c − ♯C)(α − 1) = c(α − 1).

Since deg(xmyn) = deg(b) ≥ c(α−1), we must have deg(xmyn) = c(α−1).

Therefore
∑

j∈D nj = (c−♯C)(α−1) and mi = α−1 for all i ∈ C. By (3) we

have xm −yq ∈ IA. If C 6= {1, . . . , c}, then deg(xm) ≤ s and xm −yq ∈ G,

which is impossible because xm | in(b). Thus C = {1, . . . , c}. This yields

D = ∅ and

b = (x1 · · · xc)
α−1 − yq.

Let a = a1 + · · ·+ac and a := (a1, . . . , ad). The above equality assures that

α | (α− 1)ai for all i = 1, . . . , c. This implies ai = q′iα for some q′i ∈ N. But

then g := x1 · · · xc − y
q′1
1
· · · y

q′
d

d ∈ IA. Since deg(x1 · · · xc) = c ≤ s, g ∈ G

and we get a contradiction that in(g) = x1 · · · xc | in(b) = (x1 · · · xc)
α−1.

The proof of the theorem is completed.

Remark 1.5. Theorem 1.4 shows that our conjecture holds if the codi-

mension is not too big. This includes the case c = 2 and deg K[S] > α,

because we always have α | deg K[S] (see [HS, Lemma 3.4]). Note that

the case c = 2 (even if deg K[S] = α) was completely solved by Peeva and

Sturmfels (see [PS, Theorem 7.3 and Proposition 8.3]). Another proof was

recently given in [BGM] (see Theorems 2.1, 2.8 and 3.5 there).

Note that an ideal is usually given by its generating set and this set

serves as the input data for computing a Gröbner basis. In the case of a

toric ideal IA the input data is A, and before computing a Gröbner basis

of IA we have to compute a generating set of this ideal. However, in many

algorithms we get a Gröbner basis of IA as a by-product of computing a

generating set. The last result of this section shows that, by using a suitable

term order, the computation of simplicial toric ideals runs rather quickly.

In order to compute IA, a standard procedure is the following (see, e.g.,

[St1], Algorithm 4.5):

1. Form the ideal JA = (x1 − ta1, . . . , xc − tac, y1 − tα1 , . . . , yd − tαd ) ⊂
K[t,x,y].

2. Compute a Gröbner basis G′ of JA by Buchberger’s algorithm, using

an elimination order � with respect to the variables t1, . . . , td. Here

we assume t1 � · · · � td � x1 � · · · � yd.
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3. From G′ get a Gröbner basis G = G′ ∩ K[x,y] of IA = JA ∩ K[x,y].

Though this algorithm is not the best one, the following result says that

it requires not too many steps. Moreover, by Theorems 1.1 and 1.4, in order

to compute G it is sufficient to compute those elements of G′ which have

degrees up to min{2r(S), c(α−1)}, that means we can do truncation in the

above algorithm.

Proposition 1.6. Assume that the restriction of the elimination order

� on K[x,y] is the reverse lexicographic order. Then the maximum degree in

a minimal Gröbner basis of JA is bounded by d(α−1)+min{2r(S), c(α−1)}.

Proof. The proof is similar to that of Theorem 1.1. We give here a

sketch. Let s = d(α − 1) + min{2r(S), c(α − 1)} and set

G =
{

tpxmyn − tp
′

xm
′

yn
′

∈ JA | deg(tpxmyn − tp
′

xm
′

yn
′

) ≤ s
}

.

Assume that G is not a Gröbner basis. Then one can find a binomial

b = tpxmyn − tp
′

xm
′

yn
′

∈ JA of the smallest degree deg b > s such that

in(g) ∤ tpxmyn for all g ∈ G. Since tαi − yi ∈ G and tαi ≻ yi, as in the proof

of Theorem 1.4, we can assume that pi, p
′
i ≤ α − 1 for all i ≤ d.

Using arguments in the proof of Theorem 1.1 we may assume that

deg(xm), deg(xm
′

) ≤ r(S). Note that JA is the kernel of the epimorphism

K[t,x,y] → K[t] mapping tj, xi, yj to tj , tai, tαj , respectively. Therefore

b ∈ JA if and only if

(4) pj +
∑

i∈C

miaij + njα = p′j +
∑

i6∈C

m′
iaij + n′

jα

for all j ≤ d, where C and D are the same as in the proof of Theorem 1.1.

Then, instead of (1) we get

∑

j∈D

pj +

d
∑

j=1

nj ≤
∑

j∈D

p′j + deg(xm
′

) ≤ (♯D)(α − 1) + r(S),

which implies
d

∑

j=1

pj +
d

∑

j=1

nj ≤ d(α − 1) + r(S).

Hence deg(tpxmyn) ≤ d(α− 1)+ 2r(S). Similarly, deg(tp
′

xm
′

yn
′

) ≤ d(α−
1) + 2r(S), and so deg(b) ≤ d(α − 1) + 2r(S).
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Now, applying arguments in the proof of Theorem 1.4 to (4) we can

also conclude that deg(b) ≤ d(α − 1) + c(α − 1).

Summing up, we get deg(b) ≤ s, a contradiction.

§2. Eisenbud-Goto bound

In this section we will provide some partial positive answers to our

conjecture.

Recall that a quotient ring R/I modulo a homogeneous ideal I is said

to be a generalized Cohen-Macaulay ring if all local cohomology modules

H i
m

(R/I), i < dim R/I, with the support in the maximal homogeneous ideal

m of R/I are of finite length (see the Appendix in [SV1]). The Castelnuovo-

Mumford regularity of a finitely generated graded R-module M is the num-

ber

reg(M) = max{n | [H i
m

(M)]n−i 6= 0 for i ≥ 0}.

Note that reg(I) = reg(R/I) + 1. The following result is a simple observa-

tion, but has some interesting consequences.

Lemma 2.1. Assume that K[S] is a generalized Cohen-Macaulay ring.

Then the maximum degree in a minimal Gröbner basis of IA is bounded by

reg IA.

Proof. Note that y1, . . . , yd is a system of parameters of K[S]. Since

K[S] ∼= K[x,y]/IA is a generalized Cohen-Macaulay ring, the ideal IA and

all ideals (IA, yd, . . . , yi), i = d, d − 1, . . . , 1, are unmixed up to m-primary

components (see [SV1, Proposition 3 in the Appendix]). In particular, yi−1

is a non-zero divisor on the ring K[x,y]/(IA, yd, . . . , yi)
sat, where J sat =

⋃

n≥1
J : m

n denotes the saturation of J . This means yd, . . . , y1 is a generic

sequence of K[S] in the sense of [BS, Definition 1.5]. By [BS, Corollary

2.5], the maximum degree in a minimal Gröbner basis of IA is bounded by

reg(IA).

Remark 2.2. Note that yd, . . . , y1 is always a system of parameters of

in(IA). This follows from the fact that xα
i ∈ in(IA) for all i ≤ c (since

xα
i −yai ∈ IA). However, if K[S] is not a generalized Cohen-Macaulay ring,

it maybe no more a generic sequence of K[S]. For example, let d = α = 3

and

A = {e1, e2, e3, a1 = (2, 0, 1), a2 = (1, 2, 0), a3 = (1, 1, 1),

a4 = (1, 0, 2), a5 = (0, 2, 1), a6 = (0, 1, 2)}.
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Then

in(IA) = (x1x2, x2x3, x2x5, x
2
1, x1x3, x

2
3, x2x4, x2x6, x3x5, x

2
5, x1x4, x3x4,

x4x5, x
2
4, x3x6, x5x6, x4x6, x

2
6, x

3
2, x1x6y2).

Clearly (in(IA), y3)
sat = (in(IA), y3) and y2 is a zero divisor of

K[x]/(in(IA), y3). Hence, by [BS, Theorem 2.4(a)], y3, y2, y1 is not a generic

sequence of K[x]/IA.

Corollary 2.3. The maximum degree in a minimal Gröbner basis of

IA is bounded by deg K[S] − codim K[S] + 1 in the following cases:

(i) d = 2,

(ii) K[S] is a so-called Buchsbaum ring,

(iii) K[S] is a simplicial semigroup ring with isolated singularity, or equiva-

lently, A contains all points of Mα,d of type (0, . . . , α−1, . . . , 1, . . . , 0),

where α−1, 1 stay in the i-th and j-th positions, respectively, and the

other coordinates are zero.

Proof. In all these cases, K[S] is a generalized Cohen-Macaulay ring

and it is known that reg(IA) ≤ deg K[S] − codim K[S] + 1 (the case (i) is

proved in [GLP], (ii) in [SV2, Theorem 1] and (iii) is [HH, Corollary 2.2]).

Hence the statement follows from Lemma 2.1.

Recall that a semigroup S is said to be normal if S = Z(S)∩Nd. Under

this condition, it is well-known that reg(IA) ≤ d (this holds even without

the assumption S being simplicial, see [St1, Proposition 13.14]). Hence,

by Lemma 2.1, the maximum degree in a minimal Gröbner basis of IA is

bounded by d. This gives a partial answer to the following question posed

by Sturmfels in [St1, p. 136]: If the semigroup S is normal, does the toric

ideal IA posses a Gröbner basis of degree at most d ?

Under the assumption of the following result it was shown in [HS, Propo-

sition 3.7] that reg(IA) ≤ deg K[S]−codimK[S]+1. Unfortunately we can-

not use it to derive the corresponding result for a Gröbner basis, because

K[S] is in general not a generalized Cohen-Macaulay ring.

Proposition 2.4. Assume that deg K[S] = αd−1 and α ≤ d − 1.

Then the maximum degree in a minimal Gröbner basis of IA is bounded

by deg K[S] − codim K[S] + 1.

https://doi.org/10.1017/S002776300000979X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000979X


78 M. HELLUS, L. T. HOA AND J. STÜCKRAD

In order to prove this proposition we need to recall a result from [HS].

Let P denote the convex polytope spanned by A ⊂ Rd. Note that P is a

(d − 1)-dimensional polytope whose faces are spanned by

AI = {a ∈ A | ai = 0 for all i ∈ I},

where I ⊆ {1, . . . , d}. Let PI denote the corresponding face of P. (For short,

we will also write Ai, Pi instead of A{i}, P{i}.) We say that a face PI is full

if AI contains all points of Mα,d lying on this face, i.e. if AI = PI ∩ Mα,d.

Lemma 2.5. ([HS, Lemma 1.2]) If P has a full face of dimension i,

then r(S) ≤ αd−1−i + i − 1.

Proof of Proposition 2.4. If A = Mα,d, then by Corollary 2.3(iii) we are

done. Hence we may assume that

c ≤ ♯Mα,d − 1 − d =

(

α + d − 1

d − 1

)

− d − 1.

If α ≥ 3, d ≥ 6 or α = 4, d = 5, then by [HS, Claim 1, p. 141], c ≤ αd−2.

Hence

deg K[S] − c + 1 > αd−1 − αd−2 = αd−2(α − 1) ≥ c(α − 1),

and by Theorem 1.4 we are done. Thus the left cases are: α = 2, d ≥ 3;

α = 3, d = 4 and α = 3, d = 5. We consider these cases separately.

Case 1: α = 2, d ≥ 3. Then c ≤ d(d+1)/2− (d+1) = (d−2)(d+1)/2.

It is easy to verify that (d−2)(d+1)/2−1 ≤ 2d−2. Hence, if c ≤ (d−2)(d+

1)/2−1 we have c ≤ 2d−1 − c = deg K[S]− c. By Theorem 1.4 we are done.

The left case is c = (d−2)(d+1)/2, i.e. A is obtained from M2,d by deleting

exactly one point. We may assume A = M2,d \ {b := (1, 1, 0, . . . , 0)}. Note

that 2ai ∈ {e1, . . . , ed} + {e1, . . . , ed} for all i ≤ c. Moreover, if ai, aj are

two different points and ai, aj, b do not lie in the same 2-dimensional face

of P, then ai + aj ∈ A + {e1, . . . , ed} (see Fig. 1). From this it follows

that r(S) = 2. By Theorem 1.1, IA has a Gröbner basis of degree at most

3 ≤ 2d−1 − (d − 2)(d + 1)/2 + 1 = deg K[S] − c + 1.
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Case 2: α = 3, d = 4. Then deg K[S] = 27 and c ≤ 15. By Theorem

1.4, the statement of the proposition holds true for c ≤ 9. Let c ≥ 10, i.e.

A is obtained from M3,4 by deleting at most 6 points. We distinguish two

subcases.

Subcase 2a: Each edge of P contains exactly one deleting point. In this

case c = 10. By Theorem 1.1 it suffices to show that r(S) ≤ 8.

Consider, for example, the facet P4 = {a ∈ P | a4 = 0}. Then A4 =

A∩P4 has exactly 7 points, say A4 = {e1, e2, e3,a1,a2,a3,b4 := (1, 1, 1, 0)}

as shown in Fig. 2, where a1 can be taken as (2, 1, 0, 0), while there are two

choices for each of a2 and a3. One can check by computer that in this

case the reduction number r(〈A4〉) ≤ 3. In particular,
∑

3

i=1
miai + n4b4 6∈

S + {e1, e2, e3} implies that mi, n4 ≤ 2 and

(5)
3

∑

i=1

mi + n4 ≤ 3.

Moreover, since 2b4+a1 = (4, 3, 2, 0) = e2+2(2, 0, 1, 0) = e1+e2+(1, 0, 2, 0)

and one of two points (2, 0, 1, 0) and (1, 0, 2, 0) on the edge e1e3 must belong

to A4, we get that 2b4 +a1 ∈ S +{e1, e2, e3}. The same is true for 2b4 +a2

and 2b4+a3. This means, in addition to (5) we also have m1 = m2 = m3 = 0

if n4 = 2.

Finally, we can write A = {e1, e2, e3,a1, . . . ,a6,b1, . . . ,b4}, where bi

is the inner point of the facet Pi. Assume that

6
∑

i=1

miai +
4

∑

j=1

njbj 6∈ S + {e1, e2, e3, e4}.

Then inequalities of Type (5) should hold for all facets of P. If ♯{j | 1 ≤
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j ≤ 4, nj ≤ 1} ≥ 3, adding all of them we get

2
6

∑

i=1

mi +
4

∑

j=1

nj +
4

∑

j=1

nj ≤ 12 + 1 + 1 + 1 + 2 = 17.

Hence
∑

6

i=1
mi +

∑

4

j=1
nj ≤ 8.

Otherwise, we may assume either (a) n1, n2 ≤ 1 and n3 = n4 = 2 or

(b) n2 = n3 = n4 = 2 holds. In the case (a), we may further assume that

m1 = · · · = m5 = 0 and m6 ≤ 2. Then

6
∑

i=1

mi +

4
∑

j=1

nj ≤ m6 + 1 + 1 + 2 + 2 ≤ 8.

In the case (b), we have m1 = · · · = m6 = 0. Hence

6
∑

i=1

mi +

4
∑

j=1

nj ≤ 2 + 2 + 2 + 2 = 8.

Thus, in all cases we get that
∑

6

i=1
mi +

∑

4

j=1
nj ≤ 8, which implies r(S) ≤

8.

Subcase 2b: At least one edge of P is full. By Lemma 2.5, r(S) ≤ 9.

Hence, by Theorem 1.1, the statement holds true if c ≤ 11. Moreover, if

P has a full facet, then again by Lemma 2.5, r(S) ≤ 5, and by Theorem

1.1 we are done. Hence, we may assume that c = 12, 13, 14, and P has no

full facet. This corresponds to the situation when P has 2, 3 or 4 deleting

points.

Assume that P has a facet, say P4, which contains exactly one deleting

point b, i.e. one can write A4 = {e1, e2, e3,a1, . . . ,a6} and b 6∈ A4. By

Theorem 1.1, it suffices to show that r(S) ≤ 5. If this is not the case, then

one can find m1, . . . ,mc ∈ N such that
∑c

i=1
mi = 6 and

(6)

c
∑

i=1

miai 6∈ S + {e1, e2, e3, e4}.

We follow the idea in the proof of [HS, Lemma 1.2]. Considering 6 partial

sums a1, . . . ,m1a1, m1a1 +a2, . . . ,
∑c

i=1
miai we can find either two partial

sums whose last coordinates are divisible by 3, or three partial sums whose

last coordinates are congruent modulo 3. Taking also the differences of these
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partial sums, we can find in both cases two partial sums b1 =
∑

piai and

b2 =
∑

qiai such that mi ≥ pi ≥ qi ≥ 0, (i ≤ 3), deg(b1) > deg(b2) ≥ 2

and the last coordinates of b1, b2 are divisible by 3. Note that b3 :=

b1 − b2 6= 0 also is a partial sum of
∑c

i=1
miai. Fix i ∈ {2, 3}. We can

write bi = b′
i + nie4, where b′

i ∈ 〈A4,b〉. By (6) we must have bi 6∈
S + {e1, e2, e3, e4}, which yields 0 6= b′

i 6∈ {e1, e2, e3} + 〈A4〉. Together

with the fact 2b ∈ 〈A4〉, this implies b′
i ∈ {b,a1, . . . ,a6} + 〈A4〉. Since

also all elements 2b,b+a1, . . . ,b+a6 ∈ 〈A4〉, the previous relation assures

that b′
2 + b′

3 ∈ 〈A4〉 ⊂ S. By (6) we must have n2 = n3 = 0, and so

b1 = b2 + b3 = b′
2 + b′

3 ∈ 〈A4〉. However it is easy (or using computer)

to see that r(〈A4〉) = 2. Since deg(b1) ≥ 3, b1 ∈ 〈A4〉 + {e1, e2, e3} ⊆
S + {e1, e2, e3, e4}, which contradicts (6).

Thus, each facet of P must have at least two deleting points. In par-

ticular, c = 12 and P has exactly 4 deleting points. There are only two

situations shown in Fig. 3 and Fig. 4. In the situation of Fig. 3 there is

eventually one configuration, and by computer we see that r(S) = 2. In the

situation of Fig. 4 one can show as in Subcase 2a (or using computer for

eight different configurations), that r(S) ≤ 8. But then by Theorem 1.1, IA
has a Gröbner basis of degree at most 15 < deg K[S] − c + 1 = 16. The

Subcase 2b is completely solved.
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Case 3: α = 3, d = 5. We have c ≤ 29 and deg K[S] = 81. If c ≤ 27,

then deg K[S] − c + 1 ≥ 54 ≥ 2c, and by Theorem 1.4 we are done. If

c = 28, 29, then A is obtained from M3,5 by deleting 1 or 2 points. But

then P has a full 2-dimensional face. By Lemma 2.5, r(S) ≤ 10. Hence, by

Theorem 1.1, we are also done in this subcase.

Finally we show that if on an edge of P there are enough points be-

longing to A, then the Eisenbud-Goto bound also holds for the maximum

degree in a minimal Gröbner basis of IA. Note that in this setting, the

Eisenbud-Goto conjecture on reg(IA) is still not verified (cf. [HS, Corollary

3.8]).
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Proposition 2.6. Assume that deg K[S] = αd−1 and there exists an

edge of P such that it is either full or at least
(

3

4
+ 1

4d

)

α + 2 integer points

on it belong to A. Then the maximum degree in a minimal Gröbner basis

of IA is bounded by deg K[S] − codim K[S] + 1.

Proof. By Corollary 2.3 and Proposition 2.4 we may assume that α ≥
d ≥ 3 and

c ≤

(

α + d − 1

d − 1

)

− d − 1.

First we consider the case when at least
(

3

4
+ 1

4d

)

α + 2 integer points on

an edge belong to A. By [HS, Lemma 1.3], r(S) ≤ d−1

4d
αd−1. Hence, by

Theorem 1.1, it suffices to show that

αd−1 −

(

α + d − 1

d − 1

)

+ d + 1 ≥
d − 1

2d
αd−1 − 1,

or equivalently

(7)
d + 1

2d
αd−1 + d + 2 ≥

(

α + d − 1

d − 1

)

.

We show this by induction on d ≥ 3. For d = 3 this is equivalent to

α2 − 9α + 24 ≥ 0. So, assume that the inequality holds for d ≥ 3. In the

dimension d + 1, by induction we have
(

α + d

d

)

=
α + d

d

(

α + d − 1

d − 1

)

≤
α + d

d

(

d + 1

2d
αd−1 + d + 2

)

=
(α + d)(d + 1)

2d2
αd−1 +

d + 2

d
α + d + 2.

Hence

d + 2

2(d + 1)
αd + d + 3 −

(

α + d

d

)

≥ αd−1

[

d + 2

2(d + 1)
α −

(α + d)(d + 1)

2d2

]

−
d + 2

d
α + 1

=
α(d3 + d2 − 2d − 1) − d(d + 1)2

2d2(d + 1)
αd−1 −

d + 2

d
α + 1

≥
d(d3 + d2 − 2d − 1) − d(d + 1)2

2d2(d + 1)
αd−1 −

d + 2

d
α + 1 (since α ≥ d ≥ 3)

=
d3 − 4d − 2

2d(d + 1)
αd−1 −

d + 2

d
α + 1 =: B
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If α = 3, then d = 3 and B = 7/8. For α ≥ 4, since αd−1 ≥ 4α, we further

get

B ≥
2(d3 − 4d − 2)

d(d + 1)
α −

d + 2

d
α + 1 =

d[d(2d − 1) − 11] − 6

d(d + 1)
α + 1 > 1.

Thus we always have B > 0, which proves (7).

Now we consider the case when an edge of P is full, i.e. there are exactly

α + 1 points on it belonging to A. If α ≥ 6, then α ≥ 4d
d−1

and the second

condition is satisfied, so we are done. Since α ≥ d, the left cases are d = 4,

α ≤ 5 and d = 3, α = 4, 5. In these cases, by Lemma 2.5, r(S) ≤ αd−2.

If d = 4, α ≤ 5, then deg K[S]− c + 1 ≥ α3 −
(

α+3

3

)

+ 6 > 2α2 ≥ 2r(S),

and by Theorem 1.1 we are done.

If d = 3, α ≤ 5, let c̃ = ♯(Mα,3 \A). Then r(S) ≤ α, and the inequality

deg K[S] − c + 1 = α2 −

(

α + 2

2

)

+ c̃ + 4 ≥ 2α − 1

does not hold only in the following situations: α = 3, 4, c̃ = 1, 2 and α = 5,

c̃ = 1. By Theorem 1.1, we can restrict ourselves to these situations. By

Corollary 2.3, we may assume that one deleting point is (α− 1, 1, 0). Thus,

in each case there are only few configurations to consider. Using computer,

we can check that r(S) = 2 if α = 3, 5, and r(S) ≤ 3 if α = 4. But then

deg K[S] − c + 1 = α2 −
(

α+2

2

)

+ c̃ + 4 ≥ 2r(S) − 1. Again by Theorem 1.1

we are done.
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