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THE COHOMOLOGY RINGS OP FINITE GROUPS WITH
SEMI-DIHEDRAL SYLOW 2-SUBGROUPS

ANGELINA CHIN

In this paper we determine the mod-2 cohomology rings and the 2-primary part
of the integral cohomology rings of finite groups with semi-dihedral Sylow 2-
subgroups. The method used here is algebraic and can be considered as elementary.

INTRODUCTION

In this paper we determine the mod-2 cohomology rings and the 2-primary part of
the integral cohomology rings of finite groups with semi-dihedral Sylow 2-subgroups.
The mod-2 cohomology rings of such groups have in fact been obtained by Martino [4]
via topological methods. The method used here is algebraic and can be considered as
elementary.

Let G be a finite group with a semi-dihedral Sylow 2-subgroup. The starting point
here is a result of Webb [5] on the Poincare series of H*(G, F2). For any subgroup H of
G, let AQ(H) = NG(H)ICG{H) where as usual, NQ(H) denotes the normaliser of H
in G and CG(H) denotes the centraliser of 5 in G. Using some structural properties
of Mackey functors, Webb proved the following:

THEOREM. (Webb, [5]) The Poincare series of H*(G, F2) is

jz TTTT; TIT + ~ ++ ,: ' +
{L — I" ){l — I*) (1 — <*)

where
(0 if 3 | \AG(QB)\ J JO

A = < and /x = <
[̂  1 otherwise [ 1

if3\\AG{C2xC2)\

otherwise.

THE METHOD

It is well-known that if A is a Gr-ring, the p-part of the cohomology H*(G, A)
is isomorphic (via the restriction map) to the stable elements of the cohomology ring
of its Sylow p-subgroup for each prime p dividing the order of G. Using this fact,
the Poincare series of H*(G, F2), the ring structure of H*(SD, F2) and the action of
the Steenrod algebra on H*(SD, F2), we are able to determine the ring structure of
#•(<?, F2).
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422 A. Chin [2]

1. THE RING H*(G, F2)

The algebra H*(SD, F2) has been obtained by Priddy and Evens [3] and is as

follows:

H*(SD, F2) is generated by the elements

where degit;j. = Aegwx — 1, degtus = 3, degc4 = 4 subject to the relations

vi\ = wxwi, vi\v3\ — 0,

wl = Wx(wx + Wi)Ci, UJiWs = 0.

The action of the Steenrod algebra on E*(SD, F2) is given as follows:

Wx

Wi

W3

c4

Sq1

w l
w\
0 {w,
0

Sq2

0
0

e -\- U>i)(C4 -

wx(wx + u
h W1IB3)
'l)c4

Sq3

0
0

w\
0

Sq4

0
0
0
c\

By Webb's theorem, we have four cases to consider.

CASE 1. 3 | |AO(Q,)|, 3 | \AG{C2 x C2)|.

In this case, the Poincare series of H*{G, F2) is

We have

Let a, /3, // denote the generators of degrees 3, 4, 5 in H*(G, F2), respectively. The
possibilities for the restrictions of these generators to H*(SD, F2) are as follows:

n
dimr, Hn(G, F2)

1
0

2
0

3
1

4
1

5
1

6
1

7
1

8
2

9
2

10
1

11
2

12
3

Res a,SD<*

Res a,SDp

v>l,w3

w4, u v
w* +

U>3, C4

IV3, W.

1C4, w

w3

) a:

c4

wxc

The possibilities

2
T" ti?»C4 • iy Tt?s 1" it?i C4 •

3̂ + C4,

- tOiC4,

vx +1/71)04,

For all the above possibilities, we have that a2f3 and /x2 are both non-zero. Then since
dimr, H10{G, F2) = 1, we must have that ^2 = a2/?. From this relation it is dear that

iJ M ^ tfic4. Therefore a, /?, ft are non-nilpotent elements.
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[3] Cohomology rings of finite groups 423

P R O P O S I T I O N 1 . 1 . In easel, ResG.si?" = f»s»
= tO«73 + (wx

PROOF: Suppose that Reso le a = w\. Then

ResG,sD Sq1 (a) = Sq1 (wS
x) = w\ ^ 0.

Hence, Sq1 (a) ^ 0 and it follows that /3 — Sq1 (a) . Since

ResG,SD Sq2 (a) = Sq2 ResG,SD (a) = Sq2 (wx) = w\ ^ 0,

so Sq2 (a) 7̂  0 and we must have that fi = Sq2 (a) . Therefore

D /?2 = wl = ResG,sD "M

and hence, /?2 = a/i. Then since dimr, H8(G, F2) = 2, there must be an element
C G F 8 (G, F2) such that Ha(G, F2) = (^2,C>- Clearly, ResG,SD C 7̂  "S - Since
dimr, H10(G, F2) = 1, so ResG,SD< must be c\. Then ffn(G, F2) = (a^2, aQ and
by inspection, 5^9(G, F2) = (a3); contradicting the fact that dirnr, H9(G, F2) = 2 .
Hence, R e s o , s o a ^ a i ' .

Next suppose that ResG,s£> a = wx + W3. Then

ResG,sz> Sq1 (a) = Sq1 ResG,5D (a) - 5?1 (w3 + ws) = w\± 0.

Hence Sq1 (a) ^ 0 and so Sq1 (a) = 0. Then ResG,SD (A*2) = ResG,SD a2/3 =

(w% + w\)w% = (w| + wswx)
2 . Since tt2 ^ 0 for any non-zero u e H5(SD, F2), it fol-

lows that ResG.su M — "'I + W3W2 • Therefore ResG.su Sq1 (/J) = Sq1 (Reso.SD (AO) =

Sq1 (iw® + tostu2) = w®. But wx is not in the image of Reso.sz? generated by

w\ + W3,wx and wx + wiw'x. Hence ResG.SD a ^= wx +w3.

We must therefore have Reso.SD a = «>3 • Then Reso.SD Sq2 (a) = Sq2 Reso.SD (a)
= Sq2 W3 = (wx + iwi)(c4 + wxw3) ^ 0. Therefore Sq2 (a) ^ 0 and hence, /x = Sq2 (a).
Since fi2 = a2f3, so

= wl Reso.sD /?•

Hence, we must have that Reso.SD 0 = c* + wt • "

By Proposition 1.1 and the Poincaxe series of H*(G, F2) we see that the elements
a,/3,/x are sufficient to generate the ring H*(G, F2). We thus have
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424 A. Chin [4]

PROPOSITION 1.2. In case 2,

H*{G, F2) 3 W2[a, 0, a2/?),

where deg a = 3, deg (3 — 4 and deg jt = 5.

Using the properties of the Steenrod operations, the action of the Steenrod algebra
on H*(SD, F2) and the fact that Sql commutes with Reso.SD > w e obtain the following:

PROPOSITION 1 . 3 . In case 1, the action of the Steenrod algebra on H*(G, W2)
is given as follows:

a

P

Sq1

0
0
a2

Sq2
fj,

a2

0

Sq3

a2

0
0

Sq*
0

P2
a 3 +/9/J

Sq5

0
0

t v
2

CASE 2. 3 {\AG(Qs)\, 3 | \AG{C2 x C2)\.
The Poincare series of H*(G, W2) in this case is

Pa(t) -

1 + t + t2 -t*

We have

n
dimr3ff

n(G,F2)
1
1
2
1
3
1
4
1
5
2
6
2
7
1
8
2
9
3
10
2

11
2

12
3

13
3

14
3

15
3

16
3

Let £ denote the generator of degree 1 in H*(G, ¥2). Then Res a, SD £ is wi,
1B1 + wx or wx. Suppose that Reso.SD f == <":. Then £ is a non-nilpotent generator
of H*(G, F2). Since dimr, #"(<?, F2) = 1 for n = 3,4, it follows that w3 and
C4 are non-stable elements of H*(SD, W2). Since dimF, HS(G, F2) = 2, there must
exist an element v 6 flr5(G, F2) such that H5(G, F2) = (£s, v). By inspection the
possibilities for Reso.SD " are the same as the possibilities for ResG.su M in Case 1
except for ws

x. Then H*(G, F2) = (^6, t » . Since dimr, -ff7(G, Fa) = 1 and ^7 ^ 0,
so we must have Resole v = t«iC4. Since dimp, H8(G, F2) = 2 there is some element
C e E8(G, F2) such that H8(G, F2) = {£*, Q- For all the possibilities of ResG, SD(
we have that ^10, v2 and ^2^ are F2-Unearly independent; contradicting the fact that
dimFj H10(G, F2) = 2. By the same argument, Reso.SDc! ^ Wi +wx. Therefore
ResG.su c: = u>i • Since u>J = 0, so £s = 0.
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[5] Cohomology rings of finite groups 425

Let a and 0 denote the generators of degrees 3 and 4 in B*(G, F 2 ) , respectively.
The possibilities for Reso.SD <* are w\, w3 and w\ + w3. Therefore ResG.SD £« = 0
and hence (a = 0. It follows that 0 = Sq1 (£a) = fa + ^Sq1 (a) = ^Sq1 ( a ) . If
Sq1 (a) = 0, then (0 = 0 and the possibilities for Reso,SD0 are wx, to,.iU3 and
wx + wxw3. But Sq1 (0) = 0 implies that Reso.SD 0 = v>\ and hence, ResG,5D « = wx

or w\+wz.

Since dimr, HS(G, F2) = 2, there are elements fi, v such that H*(G, F2) = (fi, v).
Then since dimr, H10(G, F2) = 2, we must have that

= 'u;

Then
JJ6(G, Fa) = (fi/, a2) and H7(G, F2) = (a^>.

Since 02 = ay. G J?8(G, F2) and dimr, J 8 (G, F2) = 2, there must exist an element
C G -ff*(G, F2) such that JI8(G, F2) = (a/x, <)• In order that dimr, H10(G, F2) = 2,
we must have Reso^u ( = c\. Then H9(G, F2) = (££, a3,77) for some r\.

Sincedinifj H10(G, F2) = 2, so Reso.SD^/ must be an F2-linear combination
of lu t̂os and w\wzC4. Then Reso,SD Sq2t] G ('"'^4, w*waC4 +v)xc

2
t). Note that

ResG,Si3"/32 = wl1 and Reso.suaC = w%c\- Then a/32, a^ and Sq2i] are F2-linearly
independent in Hn(G, F2); contradicting the fact that dimr, H11{G, F2) = 2.

Therefore Sq1 (a) = 0 and we must have Reso.szJ a = w$. By an argument sim-
ilar to that above we have £0 ^ 0, so the possibilities for Reso,sr) 0 are C4, w\ + C4,
•u>j;i03 + C4 and to* + wxv)3 + C4. If Reso.SD /? is VJXWS + c$ or w* + u>i.iO3 + C4, then
ResG,sr> Sq1 (0) = Sq1 Reso.sD (/?) = v)2

xw3. Therefore HS(G, F2) = (£/3, //) where
Reso.sD/i = wlw3. Then ^10(C?, F2) = </x2, ^2/32, a2/3); contradicting the fact that
dimr, JJ10(G, F2) = 2. Suppose ResGiSD0 = c4. Then Hs(G, F2) = (£/?, //) for
some // such that Reso.SDA* ¥" ^1^4. Since Reso.sD Sq2 (a) = Sq2Reso,sz?a =
Sq2 (w3) = wlw3 + (tu,,+roi)c4) so ResG.SD M i s either wlw3 + (wx + wi)c4 or
w\w3 + wxc4. In either case H10(G, F2) - (i202, a20, fi2); contradicting the fact
that dirnp, H10(G, F2) = 2. Hence, we must have ResG,SD0 = c4 + w\. By
the same reason, there is some element fi such that H5(G, F2) = ((0, fj.) and
ResG.SD A* = w2^"3 + («»« + v>i)c4. Then (fi = 0 and t̂2 = a2/?. It is straightfor-
ward to check that £, a, 0 and /z are sufficient to generate the ring JT*(G, F2).

We have thus proved the following:

PROPOSITION 1.4. In case 2,

H*{G, Fa) = FaK, a, 0,

wiere deg^ = 1, dega = 3, deg/3 = 4, deg/i = 5,

ResG,sD /? = c4 +
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Using the Steenrod algebra axioms, we obtain

PROPOSITION 1 . 5 . In case 2, the action of the Steenrod algebra on H*(G, W2 )
is given as follows:

a
/?

Sq1

e
0
0

a2

Sq2

0
A*
a2

0

Sq5

0
a2

0
0

Sq4

0
0

fi2

a3+/3/i

Sq5

0
0
0

fi2

CASE 3. 3 | \Aa{Q»)\, 3 \ \AG(C2 x C2)\.
The Poincare series of H*(G, W2) in this case is

pG(t) =
1+t5

We have

n I
I

2
1

3
2

4
3

5
3

6
3

7
4

8
5

9
5

10
5

11
6

12
7

Let £ denote the generator of degree 1 in H*(G, F2). Then Res a, SD £ is one of
ii>i, wx and u>i + wx. Suppose that Reso, SD { = «BI- Then

where Resoi SD 03 = W3, Reso, SD &3 —wx>

H*(G, F,) = <a4, 64, «f4)

where ResG_ SD O4 = C4, Reso, SD &4 = *"*, Reso, SD 4̂ = is.'«3,

fi-5(G, F2) = { â4, as,b5,c5)

where ResG,SDas = '"'i) ResG.SD&s = u'2i«3, ResG.SDCs = t"zC4; contradicting the
fact that dimr, BS(G, F2) = 3.
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[7] Cohomology rings of finite groups 427

Now suppose that ResGisr> £ — wz. Then

H\G, F2 ) = ((3, a3) where ResG,SD a3 = u>3,

H4{G, F2) = (£4, £a3, a4)where ResG,su «4 = c4,

contradicting the fact that dim?, Ha(G, F2) = 3. Hence, we must have ResG)s.o£ =
wx +wi. Then

•ff3(G, F2) = (£3> fi) where ResG,SD M = ™3,

/ f f 4 (G,F 2 ) = ^ 4 , f / i » ^ ) w h e r e

Since ResGisi3 /i2 — TU| = (w2 + w\)ci = ResG>5D $2/8, so (j,2 = ^2/3. By inspection, we
have that f, /x, /3 are sufficient to generate the ring. We have thus proved the following:

P R O P O S I T I O N 1 . 6 . In case 3,

wiere deg £ = 1, deg p. — 3 , deg /3 = 4,

ResG)su £ = W* + wi, ResG]sD M = W3, ResG,sjD /? = c4.

By the Steenrod algebra axioms, we have

PROPOSITION 1 . 7 . In case 3, the action o/the Steenrod algebra on H*(G, F2)
is given as follows:

A*
/3

Sq1

(*
0
0

Sq2

0

fj.2

Sq3

0
fi2

0

Sq'
0
0

(32

C A S E 4. 3 | \AG(Qs)\, 3 | |AG(C2 x C 2 ) | .

The Poincare series of H*(G, F2) in this case is

This is the same as the Poincare series of H*(SD, F 2 ) . We thus have
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P R O P O S I T I O N 1 .8 . La case 4, H*{G, F2) = H*(SD, F2).

The action of the Steenrod algebra on H*(G, F2) follows from the action on
H*(SD, F2).

REMARK.

This method can clearly be used to obtain the cohomology ring of a finite group
once its additive structure and the cohomology of its Sylow p-subgroups are known.

In [1], Asai and Sasaki obtained the mod-2 cohomology rings of finite groups with
dihedral or quaternion Sylow 2-subgroups algebraically. The method used here is dif-
ferent from theirs. We note that one of the criteria for the method of Asai and Sasaki
to work is that dimr, Hn+1(G, F2) ^ dim^ Hn(G, F2) for all n ^ 1. (see [1, Theorem
2.5]). We thus see that their method would not work in general for finite groups with
semi-dihedral Sylow 2-subgroups.

2. THE 2-PART H*(G, Z)2

Let A : JT(G, F2) -> Hi+1(G, F2) and 6 : H\G, F2) -> Hi+1{G, Z) denote the
Bockstein homomorphisms. Then A = TT* • 6 where TT, : H{(G, Z) -> H^G, F2) is
induced from TT : Z —> F2 .

PROPOSITION 2 . 1 . (Cardenas and Lluis, [2]) The Poincare series of
H*(G, Z)2 ® F2 is

Pa(H*(G, Z), <8) F2, t) = ^ ^ ( ^ ( G , F2), *) + ^

The integral cohomology ring of a semi-dihedral group has been obtained by Priddy
and Evens [3]:

If SD is of order 2 n + 1 , then

H*(SD, Z) = Z[o, 0,77, 7]

where deg rj — deg /3 = 2, deg a = 4, deg 7 = 5 subject to the relations

2"a = 2/3 = 2T7 = 27 = 0,

7 7 2 = ^ = , 7 = 0, 72 = ^3« (n>3) .

CASE (1). 3 | |AO(Q8)|, 3 | \Aa(C2 x C2)\.
By Proposition 2.1,

G, Z)2 «?„<)= . , ^ + f ^ X

1 - 1 3 +1 6
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[9] Cohomology rings of finite groups 429

We have

n

dimF, jy"(G,Z)2®F2

1
0

2
0

3
0

4
1

5
0

6
1

7
0

8
1

9
1

10
1

11
0

12
2

Let £ and ( denote the generators of degrees 4 and 6 in H*(G, Z)2, respectively.
We have shown that H*(G, F2) = F2[a3, 64, cs]/(c| + O364) where the subscript gives
the degree of the generator. Since A(a3) = Sq1 (a3) = 0, so S(a3) G KerTr* = Im 2.
Then since R e s e d a s = i»3, so S(a3) = 2n~1(. Since A(c5) = a\ ^ 0, so S(c5) ^ 0.
We may then take £ = S(cs). Let u denote the generator of degree 9 in H*(G, Z)2.
Since A(a3C5) = a* ^ 0, so S(a3cs) ^ 0. Hence, we may take v = £(0305). Note that

v2 = = S((asc5)A(a3c5)) -

and

C5 = S(c5)6(cs)
2 = 6(c5A(c5))6(c5) =

Therefore, v2 = £3. By inspection, the elements ^, ^ and v are sufficient to generate
H*(G,Z)2. We have thus shown

PROPOSITION 2 . 2 . In case 1, H*(G, Z)2 is generated by the elements

where deg£ = 4, deg£ = 6, degi/ = 9 subject to the relations

2n£ = 2C = 2v = 0

and

i^rtier, = a,

CASE (2). 3 11\AG(QS)\, 3

By Proposition 2.1,

We have

(<72 x C2) | .

= 7a .

1 + t + t2 -t* t 1
(1 - <3)(1 - <«) ' YVt + T+~t
1 + t2 - t3 - t5 +1"

(1-<»)(!-**) •

n

dimrj2Tl(G,Z)2®F2

1
0

2
1

3
0

4
1

5
0

6
2

7
0

8
1

9
1

10
2

11
0

12
2
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For convenience, let £ = ai, a = 63, /? = d^, fi = es in Proposition 1.4. Let £ denote
the generator of degree 2 in H*(G, Z)2. Since A(ai) - a\ ^ 0, so 6(a.i) ̂  0. We may
then take £ = S(ai). Since

i2 = S{ax)S{ax) = «(Ol A(Ol)) = S(a\) = 0,

so ResG,5D £ = »/• Let ^ denote the generator of degree 4 in H*(G, Z)2. Since
A(63) = Sq1(63) = 0, so 6(b3) e Kerwt = Im2 . Therefore 6(b3) = 2n~1C>. Then
H6(G, Z)2 = ( ^ , u) for some 1/. Since A(es) = Sq1 (e5) = b\ ? 0, so fi(e5) # 0.
Hence we may take 1/ = 5(es). Note that

iu - f(oO*(es) - «(aiA(eB)) = « ( O l ^ ) - 0.

Let /i denote the generator of degree 9 in H*(G, Z)2. Since A(63e5) = 63 (63) ^ 0, so

S(b3es) 7̂  0. Hence we may take fj, = 5(6365). Then

and
i/8 - *(e5)*(e5)%5) = 6{e5bl)S(e5) = S(bie5).

Therefore fi2 = v3. It follows that Resc.SD " must a/3 and Reso.sD A4 must be 07 .
Note that

By inspection, the elements £, ^, v, fi are sufficient to generate H*(G, Z)2. We thus

have

PROPOSITION 2 . 3 . In case 2, H*(G, Z)2 is generaled by the elements

L C, v, ii

where deg^ = 2, deg£ = 4, degi/ = 6, deg/x = 9 subject to the relations

PYirtiier, Reso.so t = V> ResG,5£> C = a i RCSG.SD v = a.fi, Reso.sD A4 — a 7 •

CASE (3). 3 | |AG(Q8)|, 3 J |AG(C2 x C2)\.

By Proposition 2.1,
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We have

n
dimr2 Hn(G,Z)2®F2

1
0

2
1

3
0

4
2

5
1

6
2

7
1

8
3

9
2

10
3

11
2

12
4

For convenience, let a\ — £, 63 = /i and <f4 = /3 in Proposition 1.6. Since
A( O l ) = a\ ^ 0, so 5(ai) ^ 0. Then #*(<?, Z)2 = (£) where £ = 6(ai). Since
£2 ^ 0, so fir4(Gr, Z)2 = (£2, £) for some £. Let v denote the generator of degree 5 in
H*(G, Z) 2 . Since A(ai&3) = a\b3 ^ 0, so 5(^63) ^ 0 . We may then take v = £(ai&3).
Clearly, Reso.sD tf = J?+^, Reso.si? C = « and Reso^D " = 7- Since 7 2 = /?3a, so we
must have vz = £3£. By inspection, the elements £, ^ and v are sufficient to generate
H*{G,Z)2. We thus have

PROPOSITION 2 . 4 . In case 3, H*(G, Z)2 is generated by the elements

where deg£ = 2, deg£ = 4, degi/ = 5 subject to the relations

2£ = 2n< = 2i/ = 0,

Further, ResG,SD t = V + P, Reso.sn C = «, Reso.SD 1/ = 7.

CASE (4). 3 j l^CQa)! , 3 | | 4 G ( C 2 x C2)\.

The Poincare series of S*(G, Z)2 ® F2 is

PG(H*{G, Z)2®W2,t) =

2 - t* + 1 s1 + 1 2 - t* + 1

We have

n
dimF, F n ( G , Z ) 2 ® F 2

1
0

2
2

3
0

4
2

5
1

6
3

7
1

8
3

9
2

10
4

11
2

12
4

Since dimFj Hn{G, Z)2 <g> F2 = dimp, Hn(SD, Z)<g> F2 for n ^ 5 and H*(SD,

is generated by elements of degrees ^ 5, we have

PROPOSITION 2 . 5 . In case 4, H*(G,Z)2 = H*(SD,Z).
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