THE COHOMOLOGY RINGS OF FINITE GROUPS WITH SEMI-DIHEDRAL SYLOW 2-SUBGROUPS

ANGELINA CHIN

In this paper we determine the mod-2 cohomology rings and the 2-primary part of the integral cohomology rings of finite groups with semi-dihedral Sylow 2subgroups. The method used here is algebraic and can be considered as elementary.

INTRODUCTION

In this paper we determine the mod-2 cohomology rings and the 2-primary part of the integral cohomology rings of finite groups with semi-dihedral Sylow 2-subgroups. The mod-2 cohomology rings of such groups have in fact been obtained by Martino [4] via topological methods. The method used here is algebraic and can be considered as elementary.

Let G be a finite group with a semi-dihedral Sylow 2-subgroup. The starting point here is a result of Webb [5] on the Poincaré series of $H^*(G, \mathbb{F}_2)$. For any subgroup H of G, let $A_G(H) = N_G(H)/C_G(H)$ where as usual, $N_G(H)$ denotes the normaliser of H in G and $C_G(H)$ denotes the centraliser of H in G. Using some structural properties of Mackey functors, Webb proved the following:

THEOREM. (Webb, [5]) The Poincaré series of $H^*(G, \mathbb{F}_2)$ is

$$P_G(t) = \frac{1+t^5}{(1-t^3)(1-t^4)} + \frac{\lambda t(1+t)}{(1-t^4)} + \frac{\mu t}{(1-t)(1-t^3)}$$

where

$$\lambda = \begin{cases} 0 & \text{if } 3 \mid |A_G(Q_{\delta})| \\ 1 & \text{otherwise} \end{cases} \quad \text{and} \quad \mu = \begin{cases} 0 & \text{if } 3 \mid |A_G(C_2 \times C_2)| \\ 1 & \text{otherwise.} \end{cases}$$

The Method

It is well-known that if A is a G-ring, the p-part of the cohomology $H^*(G, A)_p$ is isomorphic (via the restriction map) to the stable elements of the cohomology ring of its Sylow p-subgroup for each prime p dividing the order of G. Using this fact, the Poincaré series of $H^*(G, \mathbb{F}_2)$, the ring structure of $H^*(SD, \mathbb{F}_2)$ and the action of the Steenrod algebra on $H^*(SD, \mathbb{F}_2)$, we are able to determine the ring structure of $H^*(G, \mathbb{F}_2)$.

Received 28th June, 1994.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

1. THE RING $H^*(G, \mathbb{F}_2)$

The algebra $H^*(SD, \mathbb{F}_2)$ has been obtained by Priddy and Evens [3] and is as follows:

 $H^*(SD, \mathbb{F}_2)$ is generated by the elements

$$w_x, w_1, w_3, c_4$$

where deg $w_x = \deg w_1 = 1$, deg $w_3 = 3$, deg $c_4 = 4$ subject to the relations

$$w_1^2 = w_x w_1,$$
 $w_x^2 w_1 = 0,$
 $w_3^2 = w_x (w_x + w_1) c_4,$ $w_1 w_3 = 0.$

The action of the Steenrod algebra on $H^*(SD, \mathbb{F}_2)$ is given as follows:

	Sq ¹	Sq ²	Sq ³	Sq⁴	
$\overline{w_x}$	w_x^2	0	0	0	
w_1	w_1^2	0	0	0	
w_3	Ō	$(w_x+w_1)(c_4+w_xw_3)$	w_3^2	0	
C4	0	$w_x(w_x+w_1)c_4$	0	c_4^2	,

By Webb's theorem, we have four cases to consider.

CASE 1. 3 $||A_G(Q_8)|, 3||A_G(C_2 \times C_2)|.$

In this case, the Poincaré series of $H^*(G, \mathbb{F}_2)$ is

$$P_G(t) = rac{1+t^5}{(1-t^3)(1-t^4)}.$$

We have

n	1	2	3	4	5	6	7	8	9	10	11	12
$\dim_{\mathbf{F_2}} H^n(G, \mathbb{F}_2)$	0	0	1	1	1	1	1	2	2	1	2	3

Let α , β , μ denote the generators of degrees 3, 4, 5 in $H^*(G, \mathbb{F}_2)$, respectively. The possibilities for the restrictions of these generators to $H^*(SD, \mathbb{F}_2)$ are as follows:

	The possibilities
$\operatorname{Res}_{G,SD} \alpha$	$w_x^3, w_3, w_x^3 + w_3$
$\operatorname{Res}_{G,SD}eta$	$w_x^4, w_x w_3, c_4, w_x^4 + w_x w_3, w_x^4 + c_4, w_x w_3 + c_4, \\ w_x^4 + w_x w_3 + c_4$
Res _{G,SD} µ	$ \begin{array}{c} w_x^5, w_x^2 w_3, w_x c_4, w_1 c_4, w_x^5 + w_x^2 w_3, w_x^5 + w_x c_4, \\ w_x^5 + w_1 c_4, w_x^2 w_3 + w_x c_4, w_x^2 w_3 + w_1 c_4, w_x c_4 + w_1 c_4, \\ w_x^5 + w_x^2 w_3 + w_x c_4, w_x^5 + w_x^2 w_3 + w_1 c_4, w_x^5 + (w_x + w_1) c_4, \\ w_x^2 w_3 + (w_x + w_1) c_4, w_x^5 + w_x^2 w_3 + (w_x + w_1) c_4 \end{array} $

For all the above possibilities, we have that $\alpha^2 \beta$ and μ^2 are both non-zero. Then since $\dim_{\mathbf{F_2}} H^{10}(G, \mathbf{F_2}) = 1$, we must have that $\mu^2 = \alpha^2 \beta$. From this relation it is clear that $\operatorname{Res}_{G,SD} \mu \neq w_1c_4$. Therefore α, β, μ are non-nilpotent elements.

PROPOSITION 1.1. In case 1, $\text{Res}_{G,SD} \alpha = w_3$, $\text{Res}_{G,SD} \beta = c_4 + w_x^4$, $\text{Res}_{G,SD} \mu = w_x^2 w_3 + (w_x + w_1)c_4$.

PROOF: Suppose that $\operatorname{Res}_{G,SD} \alpha = w_x^3$. Then

$$\operatorname{Res}_{G,SD}\operatorname{Sq}^1\left(lpha
ight)=\operatorname{Sq}^1\left(w_x^3
ight)=w_x^4
eq 0.$$

Hence, $\operatorname{Sq}^{1}(\alpha) \neq 0$ and it follows that $\beta = \operatorname{Sq}^{1}(\alpha)$. Since

$$\operatorname{Res}_{G,SD}\operatorname{Sq}^{2}\left(lpha
ight)=\operatorname{Sq}^{2}\operatorname{Res}_{G,SD}\left(lpha
ight)=\operatorname{Sq}^{2}\left(w_{x}^{3}
ight)=w_{x}^{5}
eq0,$$

so $\operatorname{Sq}^{2}(\alpha) \neq 0$ and we must have that $\mu = \operatorname{Sq}^{2}(\alpha)$. Therefore

$$\operatorname{Res}_{G,SD} \beta^2 = w_x^8 = \operatorname{Res}_{G,SD} \alpha \mu$$

and hence, $\beta^2 = \alpha \mu$. Then since $\dim_{\mathbf{F}_2} H^8(G, \mathbb{F}_2) = 2$, there must be an element $\zeta \in H^8(G, \mathbb{F}_2)$ such that $H^8(G, \mathbb{F}_2) = \langle \beta^2, \zeta \rangle$. Clearly, $\operatorname{Res}_{G,SD} \zeta \neq w_x^8$. Since $\dim_{\mathbf{F}_2} H^{10}(G, \mathbb{F}_2) = 1$, so $\operatorname{Res}_{G,SD} \zeta$ must be c_4^2 . Then $H^{11}(G, \mathbb{F}_2) = \langle \alpha \beta^2, \alpha \zeta \rangle$ and by inspection, $H^9(G, \mathbb{F}_2) = \langle \alpha^3 \rangle$; contradicting the fact that $\dim_{\mathbf{F}_2} H^9(G, \mathbb{F}_2) = 2$. Hence, $\operatorname{Res}_{G,SD} \alpha \neq w_x^3$.

Next suppose that $\operatorname{Res}_{G,SD} \alpha = w_x^3 + w_3$. Then

$$\operatorname{Res}_{G,SD}\operatorname{Sq}^{1}\left(\alpha\right)=\operatorname{Sq}^{1}\operatorname{Res}_{G,SD}\left(\alpha\right)=Sq^{1}\left(w_{x}^{3}+w_{3}\right)=w_{x}^{4}\neq0.$$

Hence $\operatorname{Sq}^{1}(\alpha) \neq 0$ and so $\operatorname{Sq}^{1}(\alpha) = \beta$. Then $\operatorname{Res}_{G,SD}(\mu^{2}) = \operatorname{Res}_{G,SD}\alpha^{2}\beta = (w_{x}^{6} + w_{3}^{2})w_{x}^{4} = (w_{x}^{5} + w_{3}w_{x}^{2})^{2}$. Since $u^{2} \neq 0$ for any non-zero $u \in H^{5}(SD, \mathbb{F}_{2})$, it follows that $\operatorname{Res}_{G,SD}\mu = w_{x}^{5} + w_{3}w_{x}^{2}$. Therefore $\operatorname{Res}_{G,SD}\operatorname{Sq}^{1}(\mu) = \operatorname{Sq}^{1}(\operatorname{Res}_{G,SD}(\mu)) = \operatorname{Sq}^{1}(w_{x}^{5} + w_{3}w_{x}^{2}) = w_{x}^{6}$. But w_{x}^{6} is not in the image of $\operatorname{Res}_{G,SD}$ generated by $w_{x}^{3} + w_{3}, w_{x}^{4}$ and $w_{x}^{5} + w_{3}w_{x}^{2}$. Hence $\operatorname{Res}_{G,SD}\alpha \neq w_{x}^{3} + w_{3}$.

We must therefore have $\operatorname{Res}_{G,SD} \alpha = w_3$. Then $\operatorname{Res}_{G,SD} \operatorname{Sq}^2(\alpha) = \operatorname{Sq}^2 \operatorname{Res}_{G,SD}(\alpha)$ = $\operatorname{Sq}^2 w_3 = (w_x + w_1)(c_4 + w_x w_3) \neq 0$. Therefore $\operatorname{Sq}^2(\alpha) \neq 0$ and hence, $\mu = \operatorname{Sq}^2(\alpha)$. Since $\mu^2 = \alpha^2 \beta$, so

$$\left(w_x^2w_3+(w_x+w_1)c_4
ight)^2=\operatorname{Res}_{G,SD}\mu^2=\operatorname{Res}_{G,SD}\left(lpha^2eta
ight)$$

= $w_3^2\operatorname{Res}_{G,SD}eta.$

Hence, we must have that $\operatorname{Res}_{G,SD}\beta = c_4 + w_x^4$.

By Proposition 1.1 and the Poincaré series of $H^*(G, \mathbb{F}_2)$ we see that the elements α, β, μ are sufficient to generate the ring $H^*(G, \mathbb{F}_2)$. We thus have

[4]

PROPOSITION 1.2. In case 1,

$$H^*(G, \mathbb{F}_2) \cong \mathbb{F}_2[\alpha, \beta, \mu]/(\mu^2 + \alpha^2 \beta),$$

where deg $\alpha = 3$, deg $\beta = 4$ and deg $\mu = 5$.

Using the properties of the Steenrod operations, the action of the Steenrod algebra on $H^*(SD, \mathbb{F}_2)$ and the fact that Sq^i commutes with $\operatorname{Res}_{G,SD}$, we obtain the following:

PROPOSITION 1.3. In case 1, the action of the Steenrod algebra on $H^*(G, \mathbb{F}_2)$ is given as follows:

	Sq^1	Sq^2	Sq^3	Sq^4	Sq^{5}	
α	0	μ	α^2	0	0	_
α β	0	α^2	0	β^2	0	
μ	α^2	0	0	$\alpha^3 + \beta \mu$	μ^2	

CASE 2. 3 $||A_G(Q_8)|, 3| |A_G(C_2 \times C_2)|.$

The Poincaré series of $H^*(G, \mathbb{F}_2)$ in this case is

$$P_G(t) = \frac{1+t^5}{(1-t^3)(1-t^4)} + \frac{t(1+t)}{(1-t^4)}$$
$$= \frac{1+t+t^2-t^4}{(1-t^3)(1-t^4)}.$$

We have

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\dim_{\mathbf{F_2}} H^n(G, \mathbb{F}_2)$	1	1	1	1	2	2	1	2	3	2	2	3	3	3	3	3

Let ξ denote the generator of degree 1 in $H^*(G, \mathbb{F}_2)$. Then $\operatorname{Res}_{G,SD} \xi$ is w_1 , $w_1 + w_x$ or w_x . Suppose that $\operatorname{Res}_{G,SD} \xi = w_x$. Then ξ is a non-nilpotent generator of $H^*(G, \mathbb{F}_2)$. Since $\dim_{\mathbb{F}_2} H^n(G, \mathbb{F}_2) = 1$ for n = 3, 4, it follows that w_3 and c_4 are non-stable elements of $H^*(SD, \mathbb{F}_2)$. Since $\dim_{\mathbb{F}_2} H^5(G, \mathbb{F}_2) = 2$, there must exist an element $\nu \in H^5(G, \mathbb{F}_2)$ such that $H^5(G, \mathbb{F}_2) = \langle \xi^5, \nu \rangle$. By inspection the possibilities for $\operatorname{Res}_{G,SD} \nu$ are the same as the possibilities for $\operatorname{Res}_{G,SD} \mu$ in Case 1 except for w_x^5 . Then $H^6(G, \mathbb{F}_2) = \langle \xi^6, \xi \nu \rangle$. Since $\dim_{\mathbb{F}_2} H^7(G, \mathbb{F}_2) = 1$ and $\xi^7 \neq 0$, so we must have $\operatorname{Res}_{G,SD} \nu = w_1 c_4$. Since $\dim_{\mathbb{F}_2} H^8(G, \mathbb{F}_2) = 2$ there is some element $\zeta \in H^8(G, \mathbb{F}_2)$ such that $H^8(G, \mathbb{F}_2) = \langle \xi^8, \zeta \rangle$. For all the possibilities of $\operatorname{Res}_{G,SD} \zeta$ we have that ξ^{10}, ν^2 and $\xi^2 \zeta$ are \mathbb{F}_2 -linearly independent; contradicting the fact that $\dim_{\mathbb{F}_2} H^{10}(G, \mathbb{F}_2) = 2$. By the same argument, $\operatorname{Res}_{G,SD} \xi \neq w_1 + w_x$. Therefore $\operatorname{Res}_{G,SD} \xi = w_1$. Since $w_1^3 = 0$, so $\xi^3 = 0$. Let α and β denote the generators of degrees 3 and 4 in $H^*(G, \mathbb{F}_2)$, respectively. The possibilities for $\operatorname{Res}_{G,SD} \alpha$ are w_x^3 , w_3 and $w_x^3 + w_3$. Therefore $\operatorname{Res}_{G,SD} \xi \alpha = 0$ and hence $\xi \alpha = 0$. It follows that $0 = \operatorname{Sq}^1(\xi \alpha) = \xi^2 \alpha + \xi \operatorname{Sq}^1(\alpha) = \xi \operatorname{Sq}^1(\alpha)$. If $\operatorname{Sq}^1(\alpha) = \beta$, then $\xi \beta = 0$ and the possibilities for $\operatorname{Res}_{G,SD} \beta$ are w_x^4 , $w_x w_3$ and $w_x^4 + w_x w_3$. But $\operatorname{Sq}^1(\beta) = 0$ implies that $\operatorname{Res}_{G,SD} \beta = w_x^4$ and hence, $\operatorname{Res}_{G,SD} \alpha = w_x^3$ or $w_x^3 + w_3$.

Since dim_{F2} $H^5(G, \mathbb{F}_2) = 2$, there are elements μ, ν such that $H^5(G, \mathbb{F}_2) = \langle \mu, \nu \rangle$. Then since dim_{F2} $H^{10}(G, \mathbb{F}_2) = 2$, we must have that

$$\operatorname{Res}_{G,SD} \alpha = w_x^3$$
, $\operatorname{Res}_{G,SD} \mu = w_x^5$ and $\operatorname{Res}_{G,SD} \nu = w_1 c_4$.

Then

$$H^6(G, \mathbb{F}_2) = \langle \xi \nu, \alpha^2 \rangle \text{ and } H^7(G, \mathbb{F}_2) = \langle \alpha \beta \rangle.$$

Since $\beta^2 = \alpha \mu \in H^8(G, \mathbb{F}_2)$ and $\dim_{\mathbb{F}_2} H^8(G, \mathbb{F}_2) = 2$, there must exist an element $\zeta \in H^8(G, \mathbb{F}_2)$ such that $H^8(G, \mathbb{F}_2) = \langle \alpha \mu, \zeta \rangle$. In order that $\dim_{\mathbb{F}_2} H^{10}(G, \mathbb{F}_2) = 2$, we must have $\operatorname{Res}_{G,SD} \zeta = c_4^2$. Then $H^9(G, \mathbb{F}_2) = \langle \xi \zeta, \alpha^3, \eta \rangle$ for some η .

Since dim_{F2} $H^{10}(G, \mathbb{F}_2) = 2$, so $\operatorname{Res}_{G, SD} \eta$ must be an \mathbb{F}_2 -linear combination of $w_x^6 w_3$ and $w_x^2 w_3 c_4$. Then $\operatorname{Res}_{G, SD} Sq^2 \eta \in \langle w_x^7 c_4, w_x^4 w_3 c_4 + w_x^3 c_4^2 \rangle$. Note that $\operatorname{Res}_{G, SD} \alpha \beta^2 = w_x^{11}$ and $\operatorname{Res}_{G, SD} \alpha \zeta = w_x^3 c_4^2$. Then $\alpha \beta^2$, $\alpha \zeta$ and $Sq^2 \eta$ are \mathbb{F}_2 -linearly independent in $H^{11}(G, \mathbb{F}_2)$; contradicting the fact that dim_{F2} $H^{11}(G, \mathbb{F}_2) = 2$.

Therefore Sq¹(α) = 0 and we must have Res_{G,SD} α = w₃. By an argument similar to that above we have $\xi\beta \neq 0$, so the possibilities for Res_{G,SD} β are c_4 , $w_x^4 + c_4$, $w_x w_3 + c_4$ and $w_x^4 + w_x w_3 + c_4$. If Res_{G,SD} β is $w_x w_3 + c_4$ or $w_x^4 + w_x w_3 + c_4$, then Res_{G,SD} Sq¹(β) = Sq¹ Res_{G,SD}(β) = $w_x^2 w_3$. Therefore $H^5(G, \mathbb{F}_2) = \langle \xi\beta, \mu \rangle$ where Res_{G,SD} $\mu = w_x^2 w_3$. Then $H^{10}(G, \mathbb{F}_2) = \langle \mu^2, \xi^2 \beta^2, \alpha^2 \beta \rangle$; contradicting the fact that dim_{F2} $H^{10}(G, \mathbb{F}_2) = 2$. Suppose Res_{G,SD} $\beta = c_4$. Then $H^5(G, \mathbb{F}_2) = \langle \xi\beta, \mu \rangle$ for some μ such that Res_{G,SD} $\mu \neq w_1c_4$. Since Res_{G,SD} Sq²(α) = Sq² Res_{G,SD} $\alpha =$ Sq² (w_3) = $w_x^2 w_3 + (w_x + w_1)c_4$, so Res_{G,SD} μ is either $w_x^2 w_3 + (w_x + w_1)c_4$ or $w_x^2 w_3 + w_x c_4$. In either case $H^{10}(G, \mathbb{F}_2) = \langle \xi^2 \beta^2, \alpha^2 \beta, \mu^2 \rangle$; contradicting the fact that dim_{F2} $H^{10}(G, \mathbb{F}_2) = 2$. Hence, we must have Res_{G,SD} $\beta = c_4 + w_x^4$. By the same reason, there is some element μ such that $H^5(G, \mathbb{F}_2) = \langle \xi\beta, \mu \rangle$ and Res_{G,SD} $\mu = w_x^2 w_3 + (w_x + w_1)c_4$. Then $\xi\mu = 0$ and $\mu^2 = \alpha^2 \beta$. It is straightforward to check that ξ, α, β and μ are sufficient to generate the ring $H^*(G, \mathbb{F}_2)$.

We have thus proved the following:

PROPOSITION 1.4. In case 2,

$$H^*(G, \mathbb{F}_2) = \mathbb{F}_2[\xi, \alpha, \beta, \mu]/(\xi^3, \xi \alpha, \xi \mu, \mu^2 + \alpha^2 \beta)$$

where deg $\xi = 1$, deg $\alpha = 3$, deg $\beta = 4$, deg $\mu = 5$,

$$\operatorname{Res}_{G,SD} \xi = w_1, \quad \operatorname{Res}_{G,SD} \alpha = w_3, \quad \operatorname{Res}_{G,SD} \beta = c_4 + w_x^4$$

and $\operatorname{Res}_{G,SD} \mu = w_x^2 w_3 + (w_x + w_1)c_4$.

Using the Steenrod algebra axioms, we obtain

PROPOSITION 1.5. In case 2, the action of the Steenrod algebra on $H^*(G, \mathbb{F}_2)$ is given as follows:

	Sq ¹	Sq^2	Sq^3	Sq^4	Sq^{5}	
ξ	ξ ²	0	0	0	0	
α	0 0 α^2	μ	α^2	0	0	
β	0	α^2	0	β^2	0	
ς β μ	α^2	0	0	$\alpha^3 + \beta \mu$	μ^2	4

CASE 3. 3 $||A_G(Q_8)|, 3 / |A_G(C_2 \times C_2)|.$

The Poincaré series of $H^*(G, \mathbb{F}_2)$ in this case is

$$\begin{split} P_G(t) &= \frac{1+t^5}{(1-t^3)(1-t^4)} + \frac{t}{(1-t)(1-t^3)} \\ &= \frac{1+t^3}{(1-t)(1-t^4)}. \end{split}$$

We have

n	1	2	3	4	5	6	7	8	9	10	11	12
$\overline{\dim}_{\mathbf{F_2}} H^n(G, \mathbb{F}_2)$	1	1	2	3	3	3	4	5	5	5	6	7

Let ξ denote the generator of degree 1 in $H^*(G, \mathbb{F}_2)$. Then $\operatorname{Res}_{G,SD} \xi$ is one of w_1, w_x and $w_1 + w_x$. Suppose that $\operatorname{Res}_{G,SD} \xi = w_1$. Then

$$egin{aligned} H^2(G,\,\mathbb{F}_2\,) &= \langle \xi^2
angle,\ H^3(G,\,\mathbb{F}_2\,) &= \langle a_3,\,b_3
angle \end{aligned}$$

where $\operatorname{Res}_{G, SD} a_3 = w_3$, $\operatorname{Res}_{G, SD} b_3 = w_x^3$,

$$H^4(G, \mathbb{F}_2) = \langle a_4, b_4, d_4 \rangle$$

where $\operatorname{Res}_{G, SD} a_4 = c_4$, $\operatorname{Res}_{G, SD} b_4 = w_x^4$, $\operatorname{Res}_{G, SD} d_4 = w_x w_3$,

$$H^5(G, \mathbb{F}_2) = \langle \xi a_4, a_5, b_5, c_5 \rangle$$

where $\operatorname{Res}_{G,SD} a_5 = w_x^5$, $\operatorname{Res}_{G,SD} b_5 = w_x^2 w_3$, $\operatorname{Res}_{G,SD} c_5 = w_x c_4$; contradicting the fact that $\dim_{\mathbf{F}_2} H^5(G, \mathbb{F}_2) = 3$.

Now suppose that $\operatorname{Res}_{G,SD} \xi = w_z$. Then

$$\begin{split} &H^{2}(G, \mathbb{F}_{2}) = \langle \xi^{2} \rangle, \\ &H^{3}(G, \mathbb{F}_{2}) = \langle \xi^{3}, a_{3} \rangle \quad \text{where} \quad \operatorname{Res}_{G,SD} a_{3} = w_{3}, \\ &H^{4}(G, \mathbb{F}_{2}) = \langle \xi^{4}, \xi a_{3}, a_{4} \rangle \text{where} \quad \operatorname{Res}_{G,SD} a_{4} = c_{4}, \\ &H^{5}(G, \mathbb{F}_{2}) = \langle \xi^{5}, \xi^{2} a_{3}, \xi a_{4} \rangle, \\ &H^{6}(G, \mathbb{F}_{2}) = \langle \xi^{6}, \xi^{3} a_{3}, \xi^{2} a_{4}, a_{3}^{2} \rangle; \end{split}$$

contradicting the fact that $\dim_{\mathbf{F}_2} H^6(G, \mathbb{F}_2) = 3$. Hence, we must have $\operatorname{Res}_{G,SD} \xi = w_x + w_1$. Then

$$\begin{aligned} H^3(G, \mathbb{F}_2) &= \langle \xi^3, \mu \rangle \quad \text{where} \quad \operatorname{Res}_{G,SD} \mu = w_3, \\ H^4(G, \mathbb{F}_2) &= \langle \xi^4, \xi\mu, \beta \rangle \quad \text{where} \quad \operatorname{Res}_{G,SD} \beta = c_4, \\ H^5(G, \mathbb{F}_2) &= \langle \xi^5, \xi^2\mu, \xi\beta \rangle. \end{aligned}$$

Since $\operatorname{Res}_{G,SD} \mu^2 = w_3^2 = (w_x^2 + w_1^2)c_4 = \operatorname{Res}_{G,SD} \xi^2 \beta$, so $\mu^2 = \xi^2 \beta$. By inspection, we have that ξ, μ, β are sufficient to generate the ring. We have thus proved the following:

PROPOSITION 1.6. In case 3,

$$H^*(G,\mathbb{F}_2)=\mathbb{F}_2[\xi,\mu,eta]/ig(\mu^2+\xi^2etaig)$$

where deg $\xi = 1$, deg $\mu = 3$, deg $\beta = 4$,

$$\operatorname{Res}_{G,SD} \xi = w_x + w_1, \quad \operatorname{Res}_{G,SD} \mu = w_3, \quad \operatorname{Res}_{G,SD} \beta = c_4.$$

By the Steenrod algebra axioms, we have

PROPOSITION 1.7. In case 3, the action of the Steenrod algebra on $H^*(G, \mathbb{F}_2)$ is given as follows:

CASE 4. 3 $/ |A_G(Q_8)|, 3 / |A_G(C_2 \times C_2)|.$

The Poincaré series of $H^*(G, \mathbb{F}_2)$ in this case is

$$P_G(t) = \frac{1+t^5}{(1-t^3)(1-t^4)} + \frac{t(1+t)}{1-t^4} + \frac{t}{(1-t)(1-t^3)}$$
$$= \frac{1+t}{(1-t)(1-t^4)}.$$

This is the same as the Poincaré series of $H^*(SD, \mathbb{F}_2)$. We thus have

PROPOSITION 1.8. In case 4, $H^*(G, \mathbb{F}_2) \cong H^*(SD, \mathbb{F}_2)$.

The action of the Steenrod algebra on $H^*(G, \mathbb{F}_2)$ follows from the action on $H^*(SD, \mathbb{F}_2)$.

REMARK.

This method can clearly be used to obtain the cohomology ring of a finite group once its additive structure and the cohomology of its Sylow *p*-subgroups are known.

In [1], Asai and Sasaki obtained the mod-2 cohomology rings of finite groups with dihedral or quaternion Sylow 2-subgroups algebraically. The method used here is different from theirs. We note that one of the criteria for the method of Asai and Sasaki to work is that $\dim_{\mathbf{F}_2} H^{n+1}(G, \mathbf{F}_2) \ge \dim_{\mathbf{F}_2} H^n(G, \mathbf{F}_2)$ for all $n \ge 1$. (see [1, Theorem 2.5]). We thus see that their method would not work in general for finite groups with semi-dihedral Sylow 2-subgroups.

2. THE 2-PART $H^*(G, \mathbb{Z})_2$

Let $\Delta : H^i(G, \mathbb{F}_2) \to H^{i+1}(G, \mathbb{F}_2)$ and $\delta : H^i(G, \mathbb{F}_2) \to H^{i+1}(G, \mathbb{Z})$ denote the Bockstein homomorphisms. Then $\Delta = \pi_* \cdot \delta$ where $\pi_* : H^i(G, \mathbb{Z}) \to H^i(G, \mathbb{F}_2)$ is induced from $\pi : \mathbb{Z} \to \mathbb{F}_2$.

PROPOSITION 2.1. (Cárdenas and Lluis, [2]) The Poincaré series of $H^*(G, \mathbb{Z})_2 \otimes \mathbb{F}_2$ is

$$P_G(H^*(G,\mathbb{Z})_2\otimes\mathbb{F}_2,t)=\frac{t}{1+t}P_G(H^*(G,\mathbb{F}_2),t)+\frac{1}{1+t}.$$

The integral cohomology ring of a semi-dihedral group has been obtained by Priddy and Evens [3]:

If SD is of order 2^{n+1} , then

$$H^*(SD,\mathbb{Z})=\mathbb{Z}[lpha,eta,\eta,\gamma]$$

where deg $\eta = \text{deg }\beta = 2$, deg $\alpha = 4$, deg $\gamma = 5$ subject to the relations

$$2^{n}\alpha = 2\beta = 2\eta = 2\gamma = 0,$$

$$\eta^{2} = \eta\beta = \eta\gamma = 0, \quad \gamma^{2} = \beta^{3}\alpha \quad (n \ge 3).$$

CASE (1). $3 | |A_G(Q_8)|, 3 | |A_G(C_2 \times C_2)|$.

By Proposition 2.1,

$$P_G(H^*(G, \mathbb{Z})_2 \otimes \mathbb{F}_2, t) = \frac{1+t^5}{(1-t^3)(1-t^4)} \cdot \frac{t}{1+t} + \frac{1}{1+t}$$
$$= \frac{1-t^3+t^6}{(1-t^3)(1-t^4)}.$$

We have

n	1	2	3	4	5	6	7	8	9	10	11	12
$\dim_{\mathbb{F}_2} H^n(G,\mathbb{Z})_2\otimes \mathbb{F}_2$	0	0	0	1	0	1	0	1	1	1	0	2

Let ξ and ζ denote the generators of degrees 4 and 6 in $H^*(G, \mathbb{Z})_2$, respectively. We have shown that $H^*(G, \mathbb{F}_2) = \mathbb{F}_2[a_3, b_4, c_5]/(c_5^2 + a_3^2 b_4)$ where the subscript gives the degree of the generator. Since $\Delta(a_3) = \mathrm{Sq}^1(a_3) = 0$, so $\delta(a_3) \in \mathrm{Ker} \pi_* = \mathrm{Im} 2$. Then since $\mathrm{Res}_{G,SD} a_3 = w_3$, so $\delta(a_3) = 2^{n-1}\xi$. Since $\Delta(c_5) = a_3^2 \neq 0$, so $\delta(c_5) \neq 0$. We may then take $\zeta = \delta(c_5)$. Let ν denote the generator of degree 9 in $H^*(G, \mathbb{Z})_2$. Since $\Delta(a_3c_5) = a_3^3 \neq 0$, so $\delta(a_3c_5) \neq 0$. Hence, we may take $\nu = \delta(a_3c_5)$. Note that

$$u^2 = \delta(a_3c_5)\delta(a_3c_5) = \delta((a_3c_5)\Delta(a_3c_5)) = \delta(a_3^4c_5)$$

and

$$\zeta^3 = \delta(c_5)\delta(c_5)^2 = \delta(c_5\Delta(c_5))\delta(c_5) = \delta(a_3^2c_5)\delta(c_5) = \delta(a_3^4c_5).$$

Therefore, $\nu^2 = \zeta^3$. By inspection, the elements ξ , ζ and ν are sufficient to generate $H^*(G, \mathbb{Z})_2$. We have thus shown

PROPOSITION 2.2. In case 1, $H^*(G, \mathbb{Z})_2$ is generated by the elements

 ξ, ζ, ν

where deg $\xi = 4$, deg $\zeta = 6$, deg $\nu = 9$ subject to the relations

$$2^n\xi=2\zeta=2\nu=0$$

and

$$\nu^2=\zeta^3.$$

Further, $\operatorname{Res}_{G,SD} \xi = \alpha$, $\operatorname{Res}_{G,SD} \zeta = \alpha\beta$ and $\operatorname{Res}_{G,SD} \nu = \gamma\alpha$.

Case (2). $3 \mid |A_G(Q_8)|, 3 \mid |A_G(C_2 \times C_2)|.$

By Proposition 2.1,

$$P_G(H^*(G, \mathbb{Z})_2 \otimes \mathbb{F}_2, t) = \frac{1+t+t^2-t^4}{(1-t^3)(1-t^4)} \cdot \frac{t}{1+t} + \frac{1}{1+t}$$
$$= \frac{1+t^2-t^3-t^5+t^6}{(1-t^3)(1-t^4)}.$$

We have

n	1	2	3	4	5	6	7	8	9	10	11	12
$\dim_{\mathbf{F_2}} H^n(G,\mathbb{Z})_2\otimes \mathbf{F_2}$	0	1	0	1	0	2	0	1	1	2	0	2

A. Chin

For convenience, let $\xi = a_1$, $\alpha = b_3$, $\beta = d_4$, $\mu = e_5$ in Proposition 1.4. Let ξ denote the generator of degree 2 in $H^*(G, \mathbb{Z})_2$. Since $\Delta(a_1) = a_1^2 \neq 0$, so $\delta(a_1) \neq 0$. We may then take $\xi = \delta(a_1)$. Since

$$\xi^2=\delta(a_1)\delta(a_1)=\delta(a_1\Delta(a_1))=\deltaig(a_1^3ig)=0,$$

so $\operatorname{Res}_{G,SD} \xi = \eta$. Let ζ denote the generator of degree 4 in $H^*(G, \mathbb{Z})_2$. Since $\Delta(b_3) = \operatorname{Sq}^1(b_3) = 0$, so $\delta(b_3) \in \operatorname{Ker} \pi_* = \operatorname{Im} 2$. Therefore $\delta(b_3) = 2^{n-1}\zeta$. Then $H^6(G, \mathbb{Z})_2 = \langle \xi \zeta, \nu \rangle$ for some ν . Since $\Delta(e_5) = \operatorname{Sq}^1(e_5) = b_3^2 \neq 0$, so $\delta(e_5) \neq 0$. Hence we may take $\nu = \delta(e_5)$. Note that

$$\xi \nu = \delta(a_1)\delta(e_5) = \delta(a_1\Delta(e_5)) = \delta(a_1b_3^2) = 0.$$

Let μ denote the generator of degree 9 in $H^*(G, \mathbb{Z})_2$. Since $\Delta(b_3e_5) = b_3(b_3^2) \neq 0$, so $\delta(b_3e_5) \neq 0$. Hence we may take $\mu = \delta(b_3e_5)$. Then

$$\mu^{2} = \delta(b_{3}e_{5})\delta(b_{3}e_{5}) = \delta(b_{3}e_{5}\Delta(b_{3}e_{5})) = \delta(b_{3}e_{5}(b_{3}^{3})) = \delta(b_{3}^{4}e_{5})$$

and

$$u^3 = \delta(e_5)\delta(e_5)\delta(e_5) = \delta(e_5b_3^2)\delta(e_5) = \delta(b_3^4e_5).$$

Therefore $\mu^2 = \nu^3$. It follows that $\operatorname{Res}_{G,SD} \nu$ must $\alpha\beta$ and $\operatorname{Res}_{G,SD} \mu$ must be $\alpha\gamma$. Note that

$$\xi\mu=\delta(a_1)\delta(b_3e_5)=\delta\bigl(a_1^2b_3e_5\bigr)=0.$$

By inspection, the elements ξ , ζ , ν , μ are sufficient to generate $H^*(G, \mathbb{Z})_2$. We thus have

PROPOSITION 2.3. In case 2, $H^*(G, \mathbb{Z})_2$ is generated by the elements

 ξ, ζ, ν, μ

where deg $\xi = 2$, deg $\zeta = 4$, deg $\nu = 6$, deg $\mu = 9$ subject to the relations

$$2\xi = 2^n \zeta = 2\nu = 2\mu = 0$$

$$\xi^2 = \xi\nu = \xi\mu = 0, \quad \mu^2 = \nu^3.$$

Further, $\operatorname{Res}_{G,SD} \xi = \eta$, $\operatorname{Res}_{G,SD} \zeta = \alpha$, $\operatorname{Res}_{G,SD} \nu = \alpha\beta$, $\operatorname{Res}_{G,SD} \mu = \alpha\gamma$.

CASE (3). 3 $||A_G(Q_8)||$, 3 $/|A_G(C_2 \times C_2)|$.

By Proposition 2.1,

$$P_G(H^*(G, \mathbb{Z})_2 \otimes \mathbb{F}_2, t) = \frac{1+t^3}{(1-t)(1-t^4)} \cdot \frac{t}{1+t} + \frac{1}{1+t}$$
$$= \frac{1+t^5}{(1-t^2)(1-t^4)}.$$

We have

n	1	2	3	4	5	-6	7	8	9	10	11	12
$\dim_{\mathbf{F_2}} H^n(G,\mathbb{Z})_2\otimes \mathbb{F}_2$	0	1	0	2	1	2	1	3	2	3	2	4

For convenience, let $a_1 = \xi$, $b_3 = \mu$ and $d_4 = \beta$ in Proposition 1.6. Since $\Delta(a_1) = a_1^2 \neq 0$, so $\delta(a_1) \neq 0$. Then $H^2(G, \mathbb{Z})_2 = \langle \xi \rangle$ where $\xi = \delta(a_1)$. Since $\xi^2 \neq 0$, so $H^4(G, \mathbb{Z})_2 = \langle \xi^2, \zeta \rangle$ for some ζ . Let ν denote the generator of degree 5 in $H^*(G, \mathbb{Z})_2$. Since $\Delta(a_1b_3) = a_1^2b_3 \neq 0$, so $\delta(a_1b_3) \neq 0$. We may then take $\nu = \delta(a_1b_3)$. Clearly, $\operatorname{Res}_{G,SD} \xi = \eta + \beta$, $\operatorname{Res}_{G,SD} \zeta = \alpha$ and $\operatorname{Res}_{G,SD} \nu = \gamma$. Since $\gamma^2 = \beta^3 \alpha$, so we must have $\nu^2 = \xi^3 \zeta$. By inspection, the elements ξ , ζ and ν are sufficient to generate $H^*(G, \mathbb{Z})_2$. We thus have

PROPOSITION 2.4. In case 3, $H^*(G, \mathbb{Z})_2$ is generated by the elements

 ξ, ζ, ν

where deg $\xi = 2$, deg $\zeta = 4$, deg $\nu = 5$ subject to the relations

$$2\xi = 2^n \zeta = 2\nu = 0,$$

$$\nu^2 = \xi^3 \zeta.$$

Further, $\operatorname{Res}_{G,SD} \xi = \eta + \beta$, $\operatorname{Res}_{G,SD} \zeta = \alpha$, $\operatorname{Res}_{G,SD} \nu = \gamma$.

CASE (4). $3 \not| |A_G(Q_8)|, 3 \not| |A_G(C_2 \times C_2)|.$

The Poincaré series of $H^*(G, \mathbb{Z})_2 \otimes \mathbb{F}_2$ is

$$P_G(H^*(G, \mathbb{Z})_2 \otimes \mathbb{F}_2, t) = \frac{1+t}{(1-t)(1-t^4)} \cdot \frac{t}{1+t} + \frac{1}{1+t}$$
$$= \frac{1+t^2-t^4+t^5}{(1-t^2)(1-t^4)}.$$

We have

n	1	2	3	4	5	6	7	8	9	10	11	12
$\dim_{\mathbb{F}_2} H^n(G,\mathbb{Z})_2\otimes \mathbb{F}_2$	0	2	0	2	1	3	1	3	2	4	2	4

Since $\dim_{\mathbf{F}_2} H^n(G, \mathbb{Z})_2 \otimes \mathbb{F}_2 = \dim_{\mathbf{F}_2} H^n(SD, \mathbb{Z}) \otimes \mathbb{F}_2$ for $n \leq 5$ and $H^*(SD, \mathbb{Z})$ is generated by elements of degrees ≤ 5 , we have

PROPOSITION 2.5. In case 4, $H^*(G, \mathbb{Z})_2 \cong H^*(SD, \mathbb{Z})$.

A. Chin

References

- T. Asai and H. Sasaki, 'The mod 2 cohomology algebras of finite groups with dihedral Sylow 2-subgroups', Comm. Algebra 21 (1993), 2771-2790.
- [2] H. Cárdenas and E. Lluis, 'On the integral cohomology of a Sylow subgroup of the symmetric group', Comm. Algebra 18 (1990), 105-134.
- [3] L. Evens and S. Priddy, 'The cohomology of the semi-dihedral group', in Conference on Algebraic Topology in Honour of P. Hilton, (R. Piccinini and D. Sjerve, Editors), Contemporary Mathematics Vol. 37 (American Mathematical Society, Providence, RI, 1985), pp. 61-72.
- [4] J. Martino, Stable splittings of the Sylow 2-subgroups of $SL_3(\mathbb{F}_q)$, q odd, Thesis (Northwestern University, 1988).
- [5] P. Webb, 'Two classifications of simple Mackey functors with applications to group cohomology and the decomposition of classifying spaces', J. Pure Appl. Algebra 88 (1993), 265-304.

Department of Mathematics The University of Queensland Queensland 4072 Australia