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THE COHOMOLOGY RINGS OF FINITE GROUPS WITH
SEMI-DIHEDRAL SYLOW 2-SUBGROUPS

ANGELINA CHIN

In this paper we determine the mod-2 cohomology rings and the 2-primary part
of the integral cohomology rings of finite groups with semi-dihedral Sylow 2-
subgroups. The method used here is algebraic and can be considered as elementary.

INTRODUCTION

In this paper we determine the mod-2 cohomology rings and the 2-primary part of
the integral cohomology rings of finite groups with semi-dihedral Sylow 2-subgroups.
The mod-2 cohomology rings of such groups have in fact been obtained by Martino [4]
via topological methods. The method used here is algebraic and can be considered as
elementary.

Let G be a finite group with a semi-dihedral Sylow 2-subgroup. The starting point
here is a result of Webb [5] on the Poincaré series of H*(G, F;). For any subgroup H of
G,let Ag(H) = Ng(H)/Cq(H) where as usual, Ng(H) denotes the normaliser of H
in G and Cg(H) denotes the centraliser of H in G. Using some structural properties
of Mackey functors, Webb proved the following:

THEOREM. (Webb, [5]) The Poincaré series of H*(G, F,) is

_ 14 At(1+¢) pt
P =gmaomt aom T aoou=o)

where

1 otherwise 1 otherwise.

{ 0 if3|]Ac(Qs)l { 0 if3]|Ac(C: x C)|
A= and p=

THE METHOD
It is well-known that if A is a G-ring, the p-part of the cohomology H*(G, A)p
is isomorphic (via the restriction map) to the stable elements of the cohomology ring
of its Sylow p-subgroup for each prime p dividing the order of G. Using this fact,
the Poincaré series of H*(G, F;), the ring structure of H*(SD, F;) and the action of
the Steenrod algebra on H*(SD, F;), we are able to determine the ring structure of
H*(G, F;).
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1. THE RING H*(G, )
The algebra H*(SD, F,) has been obtained by Priddy and Evens [3] and is as

follows:
H*(SD, F,) is generated by the elements
Wz, Wy, Ws, C4
where degw, = degw; =1, degws = 3, degcy = 4 subject to the relations

2 _ 2, _
w? = wyw;, wywy =0,

2
w3 = wa(wz +wi)es, wiws=0.

The action of the Steenrod algebra on H*(SD, IF;) is given as follows:

| Sql sqz qu Sq4
Wz w? 0 0 0
w, wf 0 0 0
wg 0 (we+wi)(cs +wews) wi 0
cq 0 wa(wz + w1)es 0 c2

By Webb’s theorem, we have four cases to consider.
Case 1. 3 I IAG(Qs)l, 3 | IAG(C2 X Cz)l
In this case, the Poincaré series of H*(G, I,) is

1415

o= Ty

We have

n 1(2(3]|4[(5(6|7{8[9]10}11]12
dimg, H*(G,F)[0 |01 |1[1|1{1}2[2]1[2]3

Let o, 3, p denote the generators of degrees 3, 4, 5 in H*(G, F,), respectively. The
possibilities for the restrictions of these generators to H*(SD, ;) are as follows:

The possibilities

3
Resg,spa wi, ws, wi + wg
4
Resg,spf w, wows, cq, wh + waws, wk + ¢y, wows + 4,
w; + wews + ¢4
R 3 Z 5 2 51+
€sG,SDp W3, WWs, WzCq, W1Cs, Wy + Wy Ws, W, + WeC4,

wd + wics, wWiws + wees, wWiws + wics, o + wycy,

w3 + wlwy + wecq, wE +wiws + wicy, wd + (wz + wi)ea,
5

wiws + (e + wi)es, wi + wiws + (we + wi)es

For all the above possibilities, we have that a?8 and p? are both non-zero. Then since
dimg, H'°(G, F;) = 1, we must have that u? = a?f. From this relation it is clear that
Resg,sp p # wics. Therefore a, B, p are non-nilpotent elements.

https://doi.org/10.1017/50004972700014246 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014246

(3] Cohomology rings of finite groups 423

PROPOSITION 1.1. Incasel, Resg,sp a =ws, Resgspf = ca+w?, Resg,sp p

= wlws + (wz + w1 )eq.

PROOF: Suppose that Resg spa = wi. Then
Resg,sp Sq' (@) = Sq’ (w3) = w; #0.
Hence, Sq' (a) # 0 and it follows that 8 = Sq' (). Since
Resg,sp Sq° (@) = Sq® Resg,sp (a) = Sq® (w}) = w; #0,
so Sq? (@) # 0 and we must have that u = Sq? (a). Therefore
Resg,sp ° = wy = Resg,sp ap

and hence, 2 = ap. Then since dimy, H*(G, F2) = 2, there must be an element
¢ € H®(G, F;) such that H3(@, F;) = (#%,¢). Clearly, Resg,sp{ # wf. Since
dimy, H'*(G, F;) = 1, so Resg, sp { must be c¢2. Then H''(G, F;) = (aff?, ) and
by inspection, H®(G, F;) = (a®); contradicting the fact that dimg, H*(G, F;) = 2.
Hence, Resg,sp o # w3.

Next suppose that Resg,spa = w3 + ws. Then

Resg,sp Sq' (@) = Sq* Resg,sp (a) = Sq* (wd +ws) = w? #0.

Hence Sq’ (a) # 0 and so Sq’ (a) = B. Then Resg,sp (;1.2) = Resg,spa®f =
(w8 + wd)w? = (wd + wsw:)z. Since u? # 0 for any non-zero u € H*(SD, F,), it fol-
lows that Resg,sp g = w + wsw?. Therefore Resg,sp Sq' (1) = Sq (Resg,sp (1)) =
Sq (w8 +wsw?) = wl. But w? is not in the image of Resg,sp generated by
wl + ws,w? and w? + wsw?. Hence Resg,sp a # w3 + ws.

We must therefore have Resg,sp a = ws. Then Resg,sp Sq? (a) = Sq¢? Resg,sp(a)
= Sq® ws = (w, + w1)(cs + wows) # 0. Therefore Sq? (a) # 0 and hence, u = Sq° (a).
Since u? = a?f, so

(wlws + (we + w1)es)” = Resg,sp p? = Resq,sp («?f)

2
wg Resg,sp B.

Hence, we must have that Resg,sp 8 = ¢4 + wi. 0

By Proposition 1.1 and the Poincaré series of H*(G, F,) we see that the elements
a,B,u are sufficient to generate the ring H*(G, F;). We thus have
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ProPOSITION 1.2. In case l,

H*(Gv ]F2) = Bla, B, /‘]/(/1’2 + azﬂ);

where deg a =3, deg B =4 and deg p=5.

Using the properties of the Steenrod operations, the action of the Steenrod algebra
on H*(SD, ;) and the fact that Sq' commutes with Resg,sp, we obtain the following:

PROPOSITION 1.3. In casel, the action of the Steenrod algebra on H*(G, ;)
is given as follows:

I Sql qu qu Sq‘ qu

a 0 © o? 0 0
B 0 a? 0 B? 0
p o? 0 0 o*+pp 4

Case 2. 3 [14a(Qs)l, 3| 146(Ca x Ca)l.
The Poincaré series of H*(G, F;) in this case is

1+1° 1(1+1)
Pg(t) =
o) =a-ma—m T o=@
_ 1+t4+t2 -
- (1—e)(1—1t)
We have
n 1[273]4]5[6]7[8[9]10[11]12]13]14]15]16

dimy, H™(G,F)|1[1[1[1[2[2][1]2

w
[ V]
[ M
w
w
w
w
w

Let ¢ denote the generator of degree 1 in H*(G, F,). Then Resg,sp€ is wy,
w; + wy or w,. Suppose that Resg ,spf = w.. Then £ is a non-nilpotent generator
of H*(G, F;). Since dimy, H*(G, F;) = 1 for n = 3, 4, it follows that ws and
¢4 are non-stable elements of H*(SD, F,). Since dimg, H*(G, F;) = 2, there must
exist an element v € H5(G, F,) such that H°(G, F;) = (¢, v). By inspection the
possibilities for Resg,sp v are the same as the possibilities for Resg,sp p in Case 1
except for w3. Then H®(G, F2) = (¢8, ¢v). Since dimp, H'(G, F,) = 1 and ¢7 # 0,
so we must have Resg,sp ¥ = wycs. Since dimy, H 8(G, F2) = 2 there is some element
¢ € H%(G, F;) such that H%(G, F,) = (¢8, ¢). For all the possibilities of Resg, sp {
we have that ¢!°, v? and ¢2( are F;-linearly independent; contradicting the fact that
dimg, H!°(G, F;) = 2. By the same argument, Resg sp¢ # w; + w,. Therefore
Resg,sp ¢ = w;. Since w} =0, so ¢3 =0.
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Let a and B denote the generators of degrees 3 and 4 in H*(G, F3), respectively.
The possibilities for Resg,sp @ are w3, wy and w3 + ws. Therefore Resg,spfa =0
and hence éa = 0. It follows that 0 = Sq' (¢a) = £%2a + £Sq’ (a) = €Sq' (a). If
Sq! (a) = B, then €8 = 0 and the possibilities for Resg,spfB are wi, w,ws and
w +w,ws. But Sq' () = 0 implies that Resg,sp 8 = w? and hence, Resg,sp & = w}
or w3 + ws.

Since dimy, H(G, F;) = 2, there are elements p, v such that H3(G, F;) = (g, v).
Then since dimy, H!°(G, F;) = 2, we must have that

) 5
Resg,sp a = w;, Resg,sp p = w, and Resg spv = wics.

Then
HY(G, F;) = (¢v, o?) and H'(G, F;) = {(aB).

Since 82 = ap € H3(G, F;) and dimg, H8(G, F;) = 2, there must exist an element
¢ € H¥(G, ;) such that H3(G, F,) = {(ap, {). In order that dimg, H'*(G, F;) =2,
we must have Resg,sp ( = ¢Z. Then H®(G, F,) = (¢(, a®, n) for some 7.

Sincedimy, H'*(G, F;) = 2, so Resg,spn must be an F,-linear combination
of wlws and wiwscs. Then Resg, sp S¢’n € (wles, wiwses + wic2). Note that
Resg, sp aff? = wl! and Resg,sp al = wic2. Then af?, a and Sq¢?7 are Fy-linearly
independent in H'!(G, F,); contradicting the fact that dimy, H'!(G, F,) = 2.

Therefore Sq' (a) = 0 and we must have Resg,sp @ = ws. By an argument sim-
ilar to that above we have {8 # 0, so the possibilities for Resg,sp B are cs, w3 + ¢4,
wyws + ¢4 and wi + wyws + ¢s. If Resg,sp B is wows + ¢4 or w? + wows + ¢4, then
Resg,sp Sq' (8) = Sq* Resg,sp (8) = w2ws. Therefore H5(G, F;) = (¢B, p) where
Resg,spp = wiws. Then H'Y(G, F;) = (u?, €282, a®B); contradicting the fact that
dimy, H'°(G, F;) = 2. Suppose Resg,spB = cs. Then H3(G, F) = (¢B, p) for
some p such that Resg spp # wics. Since Resg,sp Sq? (a) = Sq? Resg,spa =
Sq® (ws) = wiws + (w +wi)es, so Resg,spp is either w2ws + (wz + wi)cs or
wiws + wzcs. In either case HY(G, F2) = (€262, a®B, p?); contradicting the fact
that dimy, H°(G, F;) = 2. Hence, we must have Resgspf = cs + w:. By
the same reason, there is some element p such that H®%(G,F,) = (£8, ) and
Resg,spp = wlws + (wz +w1)cs. Then €u = 0 and p? = o?B. It is straightfor-
ward to check that {, a, # and p are sufficient to generate the ring H*(G, F;).

We have thus proved the following:

PROPOSITION 1.4. In case 2,

H‘(G1 Fz) = R[¢, o, B, #]/(53, €a, €p, #2 + azﬂ)
where degé =1, dega =3, degf =4, degpu =35,

4
Resg,sp{ = w1, Resgspa=ws, Resgspf =csi+w,
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and Resg,spp = wiws + (wz + wi)es.
Using the Steenrod algebra axioms, we obtain

PROPOSITION 1.5. In case2, the action of the Steenrod algebra on H*(G, F;)
is given as follows:

| Sq 1 Sq 2 qu Sq4 qu
3 ¢ 0 0 0 0
a 0 7 a? 0 0
B 0 o? 0 Jik 0
7 o? 0 0 o*+pup p°

Cask 3. 3| |46(Qs)l, 3 | 14a(C2 x C2)).
The Poincaré series of H*(G, F,) in this case is

1415 t
t) =
Pe(t) = amn—m Y aooa =
_ 1418
TR TED)
We have
n 1[2[3[4]5]6[7([8[910]11[12

dimg, H"(G,F,)[1|1]2|3|3|3|4]|5|5]|5 |6 | 7

Let ¢ denote the generator of degree 1 in H*(G, F;). Then Resg,sp € is one of
w;, wy and w; + w.. Suppose that Resg, sp & = wi. Then

HY(G, F;) = (£%),
HY(G, F2) = (as, bs)

where Resg, sp as = ws, Resg, sp bs = v},
HY(G, F,) = (a4, b, ds)
where Resg, sp a4 = ¢4, Resg,sp by = w?, Resg,sp ds = wows,
H3(G, F2) = {taa, as, bs, cs)

where Resg,spas = wf,, Resg,spbs = w:wg, Resg, sp ¢s = wzcq; contradicting the
fact that dimy, H*(G, F2) = 3.
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Now suppose that Resg,sp { = w;. Then

Hz(G’ Fz) = (£2>’

H3(G, F,) = (¢%, as) where Resg,spas = ws,

H*(G, F) = (€%, tas, as)where Resg,spas = ca,

HS(G1 ]F2) = (&5’ £2a31 5“‘4),

He(Ga IF?) = (£61 fsas, 52‘7’41 a'g);
contradicting the fact that dimy, H®(G, F;) = 3. Hence, we must have Resg,sp§ =
wz +wy. Then

H*(G,F;) = (¢%, p) where Resg spp = ws,

H*(G, F,) = (¢*, ép, B) where Resg,spB =ca,

Hs(Gi ]Fz) = (651 Ezﬂ'a fﬂ)
Since Resg,sp p? = wi = (w2 + w})cy = Resg,sp €26, so u? = ¢28. By inspection, we
have that &, p, O are sufficient to generate the ring. We have thus proved the following:

PROPOSITION 1.6. In case 3,

H*(Gv ]Fz) =T, [67 [ ﬂ]/(l"‘z + Ezﬂ)
where degé =1, degu =3, deg 8 =4,
Resg,sp € =w: +w;, Resgspp =ws, Resgspf =cs.

By the Steenrod algebra axioms, we have

PROPOSITION 1.7. Incase3, the action of the Steenrod algebra on H*(G, ;)
is given as follows:

I sql qu qu Sq4

3 & 0 0 0
b 0 &ut+ép 0
i 0 I 0 B?

Case 4. 3 *lAG(Qg)', 3 IlAg(Cz X Cz)l
The Poincaré series of H*(G, F2) in this case is

1415 t(1+1¢) t
Felt) = A-o)i—) ' 1-# T @-Ha-2)
14t
(- -te)

This is the same as the Poincaré series of H*(SD, F,). We thus have
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PrROPOSITION 1.8. Incase4, H*(G,F;)= H*(SD, ;).

The action of the Steenrod algebra on H*(G, IF,) follows from the action on
H*(SD, IF,).

REMARK.

This method can clearly be used to obtain the cohomology ring of a finite group
once its additive structure and the cohomology of its Sylow p-subgroups are known.

In [1], Asai and Sasaki obtained the mod-2 cohomology rings of finite groups with
dihedral or quaternion Sylow 2-subgroups algebraically. The method used here is dif-
ferent from theirs. We note that one of the criteria for the method of Asai and Sasaki
to work is that dimy, H**1(G, F;) > dimy, H*(G, F;) for all n > 1. (see [1, Theorem
2.5]). We thus see that their method would not work in general for finite groups with
semi-dihedral Sylow 2-subgroups.

2. THE 2-PART H*(G, Z),

Let A: H(G,F;) — H*Y(G, F;) and §: H(G, F;) —» H*'(G, Z) denote the
Bockstein homomorphisms. Then A =, - § where 7, : HY(G, Z) —» H(G, F;) is
induced from 7 : Z - F;.

PrROPOSITION 2.1. (Cirdenas and Lluis, [2]) The Poincaré series of
H*(G,Z),®F, is

" t . 1
PoH*(C, Z), ©s, 1) = 1y Po(H*(G, Bo), )+ 1oy

The integral cohomology ring of a semi-dihedral group has been obtained by Priddy
and Evens [3]:
If SD is of order 2™*?, then

H*(SD, Z)=Zla, B, 1, 7]
where degn = degf = 2, dega = 4, degy = 5 subject to the relations
2"a=20=2p=2y=0,
”=18=1r=0, v'=F (n>23)

Case (1). 3]]46(Qs)l, 3| 4a(Cs x C3)|.
By Proposition 2.1,

. 1+ t !
Pg(H (G,Z),@Fz,t)=(1_,3)(1_t4) EETAEEY
1—t3 4148
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We have

34
(=]
-3
o0
©
[y
o
[a—ry
—
i
[ V]

n 11234
dimy, H*(G,Z), ® F{0f0jJo|1{0of1j0oj1j1j1]0]2

Let £ and ( denote the generators of degrees 4 and 6 in H*(G, Z),, respectively.
We have shown that H*(G, F;) = F»[as, b4, cs]/(cZ + abs) where the subscript gives
the degree of the generator. Since A(as) = Sq'(as) = 0, so §(as) € Kerm, = Im 2.
Then since Resg,sp as = ws, so §(as) = 2""1¢. Since A(cs) = a2 # 0, so §(cs) #0.
We may then take { = §(cs). Let v denote the generator of degree 8 in H*(G, Z),.
Since A(ascs) = a3 # 0, so §(ascs) # 0. Hence, we may take v = §(ascs). Note that

v = §(ases)6(ascs) = 6((ases)A(ascs)) = 6(ajes)
and
¢® = 8(cs)é(es)” = 8(esA(es))b(cs) = 8(afes)8(cs) = 6(ases).

Therefore, 2 = (3. By inspection, the elements ¢, { and v are sufficient to generate
H*(G, Z),. We have thus shown

ProPoOSITION 2.2. In case 1, H*(G, Z), is generated by the elements

&G

where degé = 4, deg{ =6, degv =9 subject to the relations
M =2(=20=0
and
v =5
Further, Resg,sp { = a, Resg,sp ( = aff and Resg spv =vya.
CASE (2). 3 [|46(Qs)l, 3| |46(C2 x C2)).
By Proposition 2.1,

1+t+¢2 -t t 1

A—o)1-v) T+t 1+¢

14235 44"
(1-¢)(1 -1

Pg(H*(G,Z),®F,,t) =

We have

n 1(2[3[4[5]6[7[8][9[10] 1112
dimy, H*(G,2),®¥,|0|1]0[1]0|2]0|1]1| 2|0 2
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For convenience, let £ = a;, a = b3, f#=ds, p = es in Proposition 1.4. Let ¢ denote
the generator of degree 2 in H*(G, Z),. Since A(a1) = a? #0, so §(a,) # 0. We may
then take ¢ = §(a1). Since

52 = 6((11)6((11) = 6(0,1 (ll)) = 6( ) = 0

so Resg,sp& = 1. Let ( denote the generator of degree 4 in H*(G, Z),. Since
A(bs) = Sq'(bs) = 0, so §(bs) € Kerm, = Im 2. Therefore §(b3) = 2"7!¢. Then
H%(G, Z), = (¢, v) for some v. Since A(es) = Sq'(es) = b # 0, so 6(es) # 0.
Hence we may take v = §(es). Note that

€v = 6(a1)b(es) = 6(a; A(es)) = 6(asb3) = 0.
Let u denote the generator of degree 9 in H*(G, Z),. Since A(bses) = bs(b2) # 0, so
§(bses) # 0. Hence we may take p = §(bses). Then

[l, = 6(6365)6(6365) = 6(b3€5A(b3€5)) = 6(b3€5(b )) = 6(6325)

and

l/3 = 6(65)6(65)6(65) = 6(8517%)6(65) = 6(b§85)

Therefore p? = 1. It follows that Resg,spv must af and Resg,spp must be ay.
Note that

ép = 6(a1)b(bses) = 6(albses) = 0.

By inspection, the elements &, ¢, v, p are sufficient to generate H*(G, Z),. We thus
have

ProPOSITION 2.3. In case 2, H*(G, Z), is generated by the elements
LGvp
where degé =2, deg{ =4, degv =6, degp = 9 subject to the relations
2=2"=2v=2u=0
E=tv=¢u=0, p’=0"
Further, Resg,sp€ =1, Resg,sp{ = a, Resg,spv =afl, Resg,;spp = ay.

CasE (3). 3|140(Qs)l, 3 | 140(Ca x C2)).
By Proposition 2.1,

. 14148 t 1
Pg(H (G,Z)2®Fz,t)=(l_t)(l_t4).1+t+1+t
1+

Ta-e)a-)
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We have

ot
[ V]
w
>
(S
(o]
-3
oo
0
S
=
[
[ ]

n .
dimp, H"(G,Z2),9F;| 0102 |1 [2[1[3[2[3[2 | 4

For convenience, let a; = €, by = p and dy = B in Proposition 1.6. Since
Afay) = a2 # 0, so §(a;) # 0. Then H?*(G, Z), = (£) where ¢ = §(a1). Since
&2 #0,s0 H*(G, Z), = (¢2, () for some (. Let v denote the generator of degree 5 in
H*(G, Z),. Since A(a1bs) = a?bs # 0, so 6(ayb3) # 0. We may then take v = §(a1b3).
Clearly, Resg,sp £ =1+, Resg,sp( = o and Resg,spv = 7. Since 42 = B3a, so we
must have v? = ¢3(. By inspection, the elements ¢, ¢ and v are sufficient to generate
H*(G, Z),. We thus have

PROPOSITION 2.4. In case 3, H*(G, Z), is generated by the elements

€& ¢ v

where degé = 2, deg( = 4, degv = 5 subject to the relations
2 =2 = 2w =0,
Vi = €3¢

Further, Resg,sp§ =1+ 8, Resg,sp{ =, Resg,spv =7.

CaSE (4). 3 [|46(Qs)], 3 [14c(C2 x C2)|.
The Poincaré series of H*(G, Z), ® F; is

. 1+1 ¢ 1
Pg(H*(G,2Z),®F2, t) = 1-11-1t) 1+t +1+t
14—t 4 tf

S (-e) -y

We have

o
[V
w
NS
o
(2]
-3
(e ]
©
fury
o
—
pa—
ju—y
[ M)

n

dimg, H*(G,Z), ®F,| 02 ]0|2|1]3]1[3[]2]4 ]2 ] 4

Since dimg, H*(G, Z), @ F; = dimy, H*(SD, Z)® F; for n < 5 and H*(SD, Z)
is generated by elements of degrees < 5, we have

PROPOSITION 2.5. Incase 4, H*(G,Z), = H*(SD, Z).
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