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Abstract
This paper addresses the potential impact of adverse aircraft-pilot couplings on tiltrotor safety, when a pilot or
autopilot attempts to constrain flight dynamics with strong control. The work builds on previously published
research on the theory and application of constrained flight to fixed- and rotary-wing aircraft. Tiltrotor aircraft
feature characteristics from both types of aircraft and how these determine behaviour in a unique manner is investi-
gated using a FLIGHTLAB simulation model of the XV-15 aircraft. Two different scenarios are explored in detail,
using linearised models that reflect the flight-physics of stability for small deviations from trim. First, the control of
vertical flight path with longitudinal cyclic pitch and elevator, and the consequences for the stability of the aircraft
surge mode and short-period pitch-heave mode. The classical surge-mode instability for flight at speeds below min-
imum power is shown to apply to the tiltrotor in helicopter mode but alleviated in conversion and airplane modes.
The impact on the short–period mode is seen to be a trade-off between the stabilising pitch attitude and destabilising
incidence (angle-of-attack) contributions to the flight-path angle. The second example concerns strong control of
roll attitude in the presence of adverse aileron-yaw. Here, the yaw-sway motion can be driven unstable, a problem
encountered on fixed-wing aircraft with weak weathercock stability, but rare in the rotorcraft world. For both exam-
ples, the loss of stability is expressed as the change in sign of effective damping or stiffness stability derivatives.
The explanatory theory for these non-oscillatory or low-frequency aircraft-pilot couplings is presented, along with
interpretations in terms of handling qualities criteria. The paper also addresses the question of how to translate the
findings into a form of aeronautical knowledge useful for the pilot training community.

Nomenclature
A, B, C coefficients in characteristic equation
A, B state and control matrices in the state-space dynamic equations
CD, CL drag and lift coefficients
g acceleration due to gravity [ft/s2, m/s2]
k1 interlink parameter between DCP and aileron [deg/deg]
kw0 feedback gain from vertical speed to controls [inch (deg)/(ft/min), inch (deg)/(m/s)]
kẇ0 feedback gain from vertical acceleration to controls [inch/(m/s2)]
kφ feedback gain from roll attitude φ to aileron [deg/deg]
Lv, Mq, etc. moment stability derivatives normalised by moments of inertia [rad/(s·ft), 1/s etc.]
LXa , MXb

, etc. moment control derivatives normalised by moments of inertia [rad/(s2·inch) etc.]
Lηa , Lηr roll control derivatives normalised by moments of inertia [rad/(s2·rad)]
Nηa , Nηr yaw control derivatives normalised by moments of inertia [rad/(s2·rad)]
tD time to double amplitude [s]
u control input vector
p, q, r angular velocity components of rotorcraft about fuselage x-, y-, z-axes [deg/s, rad/s]
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u, v, w translational velocity components of rotorcraft along fuselage x-, y-, z-axes [ft/s, m/s]
Ue, We components of trim velocity along aircraft x-axis and z-axis
Vg horizontal gust [ft/s, m/s]
w0 vertical velocity [ft/s, m/s]
x state variable vector
Xb, Xc pilot longitudinal cyclic and collective inputs [inch]
XXb

, ZXb
, etc. force control derivatives normalised by aircraft mass [ft/(s2·inch) etc.]

Xu, Zw, etc. force stability derivatives normalised by aircraft mass [1/s, ft/(s·rad) etc.]
α angle-of-attack [rad]
B1, θ1s longitudinal cyclic pitch [rad, deg]
γ flight path angle [rad]
δe,ηe elevator deflection angle [rad, deg]
ηa, ηr aileron and rudder deflection angles [rad, deg]
θ , φ Euler pitch and roll angles [rad, deg]
θ0D differential (proprotor) collective pitch (DCP) [rad, deg]
λs surge mode eigenvalue [-]

Subscript

e equilibrium or trim
eff effective

Acronyms

6dof six Degrees of Freedom
APC Aircraft-Pilot-Coupling
ASRA Advanced Systems Research Aircraft
DCP Differential (proprotor) Collective Pitch
FCS Flight Control System
HQ Handling Qualities
LCDP Lateral Control Divergence Parameter
LOC-I Loss-Of-Control In-flight
PBL Problem-Based-Learning
PIO Pilot-Induced/Involved-Oscillation
PVS Pilot-Vehicle System

1.0 Introduction
The description of Aircraft-Pilot Couplings (APCs) from [1] is adopted in this paper.

“Unfavorable aircraft-pilot coupling (APC) events are rare, unexpected, and unintended excur-
sions in aircraft attitude and flight path caused by anomalous interactions between the aircraft
and the pilot. The temporal pattern of these pilot-vehicle system (PVS) excursions can be oscil-
latory or divergent (non- oscillatory). The pilot’s interactions with the aircraft can form either a
closed-loop or open-loop system, depending on whether or not the pilot’s responses are tightly
coupled to the aircraft response. When the dynamics of the aircraft (including the flight control
system [FCS]) and the dynamics of the pilot combine to produce an unstable PVS, the result is
called an APC event.”

Reference [1] examines a wide range of APC events experienced on prototype and operational
aircraft, with a strong emphasis on pilot-induced/involved oscillations (PIOs). In [2], the authors specifi-
cally address PIOs, emphasising the importance of a clear definition; so, we have, the ‘PIO is a sustained
or uncontrollable unintentional oscillation in which the airplane attitude, angular rate, normal acceler-
ation, or other quantity derived from these states, is approximately 180 deg out of phase with the pilot’s
control inputs, and in which the amplitude of pilot control inputs, aircraft response, or both, is large
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Figure 1. The coupled pilot vehicle system.

enough to be intrusive on normal flying.’ The emphasis in both [1] and [2] is examination of situations
where the control by a pilot can drive the motion being controlled unstable. In the case of rotorcraft,
experience has brought a broader perspective. For example, in [3], several cases are cited where it is
the interaction of the pilot controlling the aircraft with uncontrolled higher-order dynamics that lead to
adverse APCs. Reference [4] presents the example of the interactions of the fuselage and rotor dynam-
ics, examining the physics involved in the energy flow through rotor lead-lag, flap and fuselage attitude
dynamics; how negative flow can cause instability and air-resonance behaviour.

In the present paper, we examine a different form of APC, where subtle and insidious nature can lead
to quite remarkable, and sometimes difficult for pilots to predict, flight behaviour. A common character-
istic is a pilot applying strong control to constrain flight path or aircraft attitude, with the result that the
more weakly controlled flight dynamics are driven unstable. These non-oscillatory or low-frequency
forms of APC are subtle because pilot attention is on the strongly controlled dynamic, and insidious
because they often grow from a slow divergence.

Figure 1 illustrates the coupled PVS, suppressing task errors in the presence of disturbances and dis-
tractions. Although handling qualities (HQ) deficiencies make it more difficult to achieve the required
suppression, a pilot can normally overcome moderately objectionable (Level 2) deficiencies by increas-
ing compensation. However, with what can be described as hidden deficiencies within the closed loop of
the PVS, pilot action can degrade stability and, because attention is on fixing one problem, the emerging
APC can develop unseen.

When considering the application to tiltrotor aircraft, two general questions arise from this overview:

a) what characteristics of the aircraft, pilot behaviour or task increase the risk of an APC event?
b) what scope is there for theory to describe and predict the behaviour of the PVS in the presence

of an adverse APC?

The first author reported the problem of the loss of speed stability under flight-path constraint for
rotary- and fixed-wing aircraft in [5] and [6], citing several fatal accidents where this form of control
was a major causal factor; the pilot or FCS attempting to control flight path with cyclic or elevator
when flying below the minimum power speed. A flight-physics interpretation is that speed instability
occurs because the effective drag derivative, Xueff , changes sign at the minimum power speed. Below
this speed, attempts to correct flight-path errors with cyclic or elevator result in the aircraft being pulled
or pushed along the constrained flight path by a reversed (effective) drag force. Another consequence of
strong flight-path control is loss of stability of the pitch short-period mode, due to the effective vertical
damping Zweff and static stability Mueff reversing signs. Less well understood is the problem of the loss of
directional stability under bank angle constraint, a handling qualities deficiency that emerged during the
early developments of swept-wing aircraft [7]. The problem here relates to adverse aileron-yaw, leading
to a reversal in sign of the effective directional stability, Nveff . In both cases, strong control by the pilot
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dramatically changes the low-frequency dynamics of the PVS, captured in the limit by the distortion of
stability derivatives.

These problems are not new; nor are the understandings of the underlying aeronautical physics.
Neumark [8] and Pinsker [7] developed theories for the basic physics behind the couplings more than
50 years ago. The first author, with his project supervisor, developed these basics into an APC theory
applied to both flight path and attitude control, as described in [9]. Despite the obvious importance of
these historical perspectives, accidents continue to occur as reported in [5] and [6], where speed insta-
bility was described as a forgotten problem. In the official reports [10,11] on two high-profile accidents
described in [5], there was no mention of adverse APCs being the primary causal factor. Inappropriate
pilot action was cited, but the dangers associated with the pilot adopting specific control strategies,
leading to adverse and destabilising couplings, were not addressed.

Our paper presents the theory of flight stability under constraints and its application to tiltrotor air-
craft, using a FLIGHTLAB XV-15 simulation [5]. Specifically, vertical flight-path control in helicopter,
conversion and airplane modes for approach configurations are explored in Section 2, to illustrate the
risks associated with the loss of speed and short-period mode stability. Roll control in airplane mode is
explored in Section 3, to illustrate the potential loss of horizontal flight path and yaw stability. The theory
underlying these forms of APC is summarised in Appendix A. Appendix B contains details of the sta-
bility and control derivatives derived from the simulation model (FXV-15) in helicopter (H), conversion
(C) and airplane (A) modes used in the analysis.

Loss of stability under dynamic constraints can occur well within the normal flight envelope and, as
discussed in [1], can be classed as a handling qualities deficiency of the coupled PVS. In [6], the first
author made the point that pilot training related to these adverse couplings appears to be inadequate to
prepare them for the risks and consequent dangers of entering such flight regimes. How to address this
aspect without obscuring the problem with mathematical detail is a challenge that the authors begin to
address in Section 4, to bridge the divide between complex flight physics and aeronautical knowledge
for aircrew. Specific recommendations for how this might be achieved and expressed in terms of risk and
safety margins are presented. The paper is closed with conclusions and recommendations in Section 5.

2.0 Flight-path control and speed stability
2.1 The general problem
In [12], the authors applied the approximation theory for strong flight-path control with cyclic to heli-
copters, including results from comparative flight and simulation trials with the National Research
Council of Canada’s Bell 412 (ASRA) and Liverpool’s HELIFLIGHT-R simulator, configured with
a simulation of ASRA. The results confirmed the predicted loss of stability through the adverse cou-
pling. Figure 2 shows an example result from the trials. From an initial trim speed of 50kts, a disturbance
was simulated with a pulse input in cyclic. The pilot’s task was then to maintain the aircraft’s flight path
(rate of descent), initially using both cyclic and collective, then with only cyclic. The trajectories in
Fig. 2 show that the pilot maintained airspeed within 5kts using the coupled-control technique. With
cyclic-only control, the airspeed gradually reduced, decelerating to the hover in the simulator; in flight
the pilot recovered when the airspeed reached 20kts. Pilots are taught to use the coupled technique when
flying below minimum power speed, or, if assisted by an autopilot, to engage both airspeed and vertical
speed hold modes.

In 2013, three years after this research was first published, there were two accidents caused by such
couplings; a Boeing 777 on approach to San Francisco [10] and a Eurocopter AS-332 on approach
to Sumburgh [11]. The first author discussed these accidents in detail in [5], drawing attention to the
apparent lack of awareness of pilots and their training organisations concerning the true nature of the
problem.

An aircraft is naturally stable when flying below minimum power, exchanging potential and kinetic
energy in the phugoid, but speed stability is threatened by inappropriate pilot control action, as in the case
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Figure 2. Variation of flight speed with time during trials with flight-path constraint; comparison of
flight and simulator [5,12].

of the B-777 accident. The same effect can be brought about by automatic control, as in the case of the
AS-332 accident, through the functioning of the vertical-speed hold mode of the autopilot. In both sce-
narios, the aircrew did not monitor the consequent speed reduction and only took recovery action when
it was too late to avoid a crash. Such accidents occur all too often, with the initial problem described,
misleadingly, as the approach being unstable. The use of the term unstable refers to flight conditions
outside defined trim speeds and flight-path angles at specified horizontal and vertical distances from the
landing point. This has nothing to do with the aircraft’s stability and is a classic example of aeronau-
tical physics being lost in the translation to operational phraseology. The argument that distinguishing
between trim and stability is too subtle, or complicated, for aircrew or training organisations has no
merit in the authors’ opinion. Rather more, aircrew understanding of the physical causes and effects
of adverse APCs is considered crucial to elimination of accidents arising from such causal factors. We
return to this topic later in the paper, in Section 4, but first the aeronautical physics.

Figure 3 shows the trim power curves for the FXV-15 in H-mode, C-mode and A-mode, with and
without rotor-wake on wing interference, in level and descending flight; flight test points from [13]
are included, although the precise test conditions for these are not known. The simulated impact of
rotor-wake on wing interference is suspected as being too abrupt between 40 and 60kts, and the anal-
ysis is restricted to cases where the interference effects are minimal. The shape of the power curves in
Fig. 3 reflects a similar pattern for the aircraft drag, albeit with the minimum shifted to a higher velocity.
When flying below minimum drag, a reduction in velocity leads to an increase in drag and a further
reduction in velocity; seemingly unstable, in contrast to stability for speed perturbations during flight
above minimum drag. As will be shown, this intuitive interpretation in terms of stability is incorrect and
it is only through the action of closed-loop control that stability is compromised.

Consider the aircraft on an approach, with speed and flight path under the control of a pilot or autopilot
system. To analyse stability, we assume the deviant dynamics to be small perturbations about the trim
condition, and write the equations of longitudinal (pitch-surge-heave) motion in the linearised form,

d

dt

⎡
⎢⎢⎢⎢⎣

u

w

q

θ

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

Xu Xw Xq − We −g cos �e

Zu Zw Zq + Ue g sin �e

Mu Mw Mq 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u

w

q

θ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

XXb

ZXb

MXb

0

⎤
⎥⎥⎥⎥⎦ Xb (1)
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Figure 3. Power curves for the FXV-15 in various configurations showing minimum power speeds (note
predicted C-mode power lines with (wintf) and without (nintf) interference overlie).

u and w are the deviant surge and heave translational velocities, q and θ are the deviant pitch rate and
Euler attitude respectively; Ue and We are the equilibrium (trim) velocities and �e the corresponding
trim pitch attitude. Xu, Mq etc. are the stability derivatives and XXb, MXb etc. are the control derivatives
for the pilot’s longitudinal stick, Xb. The pilot also has the collective control lever Xc, for control of
flight path and speed, but the present analysis is concerned only with flight-path control with centre
stick. For a tiltrotor, the centre stick has a primary function of controlling longitudinal cyclic pitch of
the proprotors in H-mode and elevators in A-mode. For the XV-15, the elevator is also connected to
Xb in H-mode and C-mode with the same gearing at all nacelle angles. In C-mode, the cyclic pitch
control is blended out as a function of nacelle angle such that it is completely phased out in A-mode.
In Appendix B, the derivatives for all three controls, the cyclic pitch (B1 in FLIGHTLAB notation, -θ 1s

in the notation of [5]), elevator angle (δe in FLIGHTLAB notation, ηe in the notation of [5]) and pilot’s
stick Xb, are tabulated, along with the stability derivatives. Aft movement of the stick gives positive (up)
elevator angle and negative B1 (proprotor disc tilts back). Appendix B also contains details of the control
gearings on the XV-15 aircraft used in the FXV-15.

2.2 Constrained flight-path control in H-mode
The natural pitch-surge-heave stability of the aircraft is quantified in terms of the longitudinal eigen-
values shown in Fig. 4, for the FXV-15 in H-mode from hover to 80kts. The assumption here is that
stability is not strongly affected by the couplings with lateral-directional motion, as discussed in [5].
The low-frequency phugoid mode is shown to be stable between 40–80kts with a time to half-amplitude
of about 14secs. With a period of about 21secs, the phugoid motions decay to half-amplitude in about
two-thirds of a cycle. The civil certification standards for dynamic stability in instrument flight condi-
tions [14] require that ‘any oscillations having a period of 20 seconds or more may not achieve double
amplitude in less than 20 seconds’. It is noted that, while the FXV-15 phugoid is stable at speeds above
40kts, instability is allowed according to the CS-29 requirement. The short-period mode morphs from
the pitch and heave subsidences between 20–30kts, advancing to an oscillation with a period of about
5secs and time to half amplitude of about 0.5secs at 80kts. At 40kts, the oscillation has higher relative
damping, so decaying in a much smaller fraction of the ‘short’ period than at 80kts. CS-29 requires that
‘any oscillation having a period of less than 5 seconds must damp to half amplitude in not more than
1 cycle’.

In H-mode, control of flightpath and speed are normally achieved through pilot action with both
centre stick and collective, as discussed earlier. In the present study, we are concerned specifically with
flight-path control using the centre stick. The behaviour of the aircraft then differs markedly for flight
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Figure 4. Longitudinal eigenvalues as a function of speed for the FXV-15 in H-mode; descent
γ = 3.5deg XV-15 in hover (photo NASA).

Figure 5. Flight trajectories following a disturbance with unconstrained and constrained flight path.

on the front side (above min-power speed) compared with flight on the back side of the power curve. To
begin with, we consider the classic case discussed by Neumark in [8], where the flight path is perfectly
constrained; the aircraft effectively flying on sky-rails. Figure 5 illustrates the difference between the
unconstrained and constrained scenarios.

As shown, the flight-path angle (positive for descent) is the difference between the aircraft incidence
and pitch angle.

γ = α − θ (2)

For unconstrained flight, a pulse-like disturbance in velocity or pitch attitude excites both the short-
period and phugoid modes, the former decaying rapidly. The phugoid takes much longer to decay but
the aircraft would eventually return to its trim condition on the original flight path. Flying on either the
front side or the back side of the power curve (Fig. 3), the transient phugoid involves an exchange of
potential and kinetic energy at essentially constant angle of incidence. For the constrained flight-path
case, the perturbed incidence and pitch angle are equal, the aircraft remaining on the initial flight-path
trajectory. Any disturbance would impact the speed, incidence and pitch, but the loss of speed is not
converted into potential energy as in the phugoid; the increasing or decreasing induced drag on the
back side of the power curve thus continually slowing or accelerating the aircraft. On the front side of
the curve, perturbations in speed are countered by the growing or reducing parasite drag such that the
surge motion is stable, even under constrained flight. This physical reasoning can be reinforced by the
analytics, as follows.

Assuming small angles of incidence and flight path, we can write the total flight speed V≈Ue, then
from Equation (2), on the flight path, the deviant vertical velocity w0 can be written as,

w0 = w − Ueθ (3)
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In the constrained flight-path scenario, w0 = 0 (with zero or non-zero trim value), and w and Ueθ are
locked together as described above. The deviant equations of motion can then be simplified to form the
coupled surge and heave dynamics.

du

dt
− Xuu −

(
Xu − g

Ue

)
w = 0

−Zuu − Zww = 0
(4)

These equations can be combined into a single surge mode with eigenvalue expressed as an effective
drag derivative Xueff ,

λs = Xueff = Xu − Zu

Zw

[
Xw − g

Ue

]
(5)

This is Neumark’s approximation to the speed mode for fixed-wing aircraft and the analysis in [8]
showed that the mode becomes unstable when the slope of the drag vs lift curve is equal to 1.5 times the
ratio of drag to lift; this is the condition for minimum power and expressed in coefficient form as,

3CD

2CL

= ∂CD

∂CL

(6)

From Equation (4), the contribution of the weight component along the flight-path (gα) is destabilis-
ing and the scaling by the heave derivative ratio (approximately inversely proportional to CL) determines
its impact on speed stability. The Xw effect is typically small for H-mode in low-speed flight, but will
be shown to have a major impact on speed stability in C-mode. An important point here concerns the
minimum power point as the stability divide. This assumes that the thrust-generating device (e.g. rotor,
propeller, turbofan) contributes to the drag derivative Xu [15] through the governed rotorspeed. For the
case where there is little or no thrust response to u perturbations (e.g. turbojet-powered aircraft, glider),
the stability boundary is located at the minimum drag speed [5]. Aircrew training is often couched in
energy management terms for flight above and below minimum drag, and thrust required to trim, with
little or no mention of power. The minimum power (maximum endurance) speed is approximately 0.75
of the minimum drag (maximum range) speed.

Both [5] and [12] showed that the approximation to the surge mode as an effective drag derivative
(Equation (5)) also applies to helicopters. Figure 6 shows λs as a function of speed for the FXV-15 in
H-mode, constrained to fly a 3.5deg descending flight-path angle. The mode is predicted to become
unstable around 75kts, slightly higher than the minimum power speed in Fig. 3. This simple theory
predicts that the surge mode instability is more severe at lower speeds, with time to double amplitude
(tD) reducing to a few seconds at about 30kts. Longitudinal cyclic is totally ineffective at controlling
flight path at very low speed; the increasing rotor downwash overpowering the upwash as the rotor disc
incidence increases.

The stability divide is shown schematically in Fig. 7. The approximation predicts a response to a
horizontal gust Vg being driven by a (normalised) force λsVg, the effective drag force, that subdues the
effect of the disturbance for flight on the front side and increases the effect for flight on the back side of
the power curve.

The surge mode discussed above represents the limit of the pilot applying feedback control with
cyclic or elevator to maintain constant flight-path angle. This limiting case, effectively locking together
incidence and pitch attitude, implies infinite feedback gain and the question arises as to what value of
finite gain would be required to drive the surge mode unstable? Once again, the theory for finite gain
analysis for helicopters was presented in [5,12], and here we extend its application to tiltrotor aircraft.
Based on the power curves in Fig. 3, the flight speeds of 55kts and 75kts are selected for analysis.

The proportional feedback control law takes the form,

Xb = kw0w0 (7)

Xb is the longitudinal stick, w0 the vertical velocity and kw0 is the feedback gain. In the following analysis,
we examine the three feedback loops: control with B1, with δe and combined with Xb. Recall that +B1
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Figure 6. Approximation to the surge eigenvalue as function of airspeed, FXV-15 H-mode, descent
γ = 3.5deg.

Figure 7. Surge mode stability either side of the minimum power speed.

leads to forward rotor disc tilt, hence kw0 should be negative to correct a positive w0; +δe corresponds to
up-elevator, hence kw0 should be positive to correct a positive w0: +Xb leads to +δe and –B1, hence kw0

should be positive to correct a positive w0. In all three cases, the feedback leads to a positive pitching
moment to counteract the increasing (downward) w0 perturbation. The signs of the control derivatives
listed in Appendix B are summarised in Tables 1 and 2. It is particularly important to note that, from
Equation (3), positive perturbations in w0 can be caused by perturbations in incidence, (+w/ Ue) or pitch
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Table 1. Control derivative effects in H-mode

B1 δe Xb

X −ve +ve +ve
Z +ve +ve −ve
M −ve +ve +ve

Table 2. Feedback gains at neutral surge mode stability; FXV-15 at 55kts

B1 δe Xb

kw0 −0.022rad/m/s 0.086rad/m/s 0.407in/m/s
−0.6deg/100ft/min 2.5deg/100ft/min 0.2in/100ft/min

Figure 8. FXV-15 at 55kts in H-mode; eigenvalue loci for varying gain kw0 with feedback to cyclic B1,
elevator δe and pilot’s stick Xb.

attitude, (−Ueθ ). The consequences of this combined dynamic will be discussed as part of the following
analysis.

With vertical velocity control given by Equation (7), the closed-loop PVS can be described by the
partitioned linear differential equation,

(8)

where Equation (3) has been used to substitute w0 for θ and small terms have been neglected, e.g. sin
�e/Ue. The X-force control derivatives have also been neglected in the analysis as they have a minor
influence on the approximations in H-mode. The eigenvalue loci for varying gains for all three feedback
loops are shown for the 55kts (back side) flight case in Fig. 8. Initially, we focus discussion on the
low-frequency mode. This unstable surge mode develops from the phugoid, with its stable counterpart
heading to infinity on the real axis as gain increases; this is the strongly controlled flight-path mode.
The unstable surge mode is located at approximately the same position in all three cases and close to
the approximate value shown in Fig. 6, with λs ≈+0.05 (tD ≈14sec). The gains required to de-stabilise
the surge mode are highlighted in Fig. 8 and summarised in Table 2. These are shown in the units used
in the FLIGHTLAB analysis, and in control units per 100ft/min, a measure available to the pilot on the
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Figure 9. FXV-15 at 75kts in H-mode; eigenvalue loci for varying gain kw0 with feedback to cyclic B1,
elevator δe and pilot’s stick Xb.

rate of climb/descent indicator. The B1 and Xb gains can be described as low; the pilot or autopilot would
not need to work hard to drive the surge mode unstable.

The behaviour of the short-period mode, the second branch of the loci in Fig. 8, warrants further
discussion. But first, Fig. 9 shows the eigenvalue loci for the feedback loops at the 75kts case, on the
front side of the power curve. The pattern of change for the phugoid mode is similar to the 55kts case,
but the surge mode comes to rest close to neutral stability. As forward speed increases, the trim point
moves further up the front side of the power curve, and the zero moves further left as the surge mode
stabilises.

The theory described in Appendix A provides the framework for deriving an approximation to the
surge mode stability in the case of finite gain. The conditions for the use of the approximation, based
on the partitioning shown in Equation (8), are generally satisfied, even at the relatively low gain levels
required to create the surge mode. The mode is separated from the short-period and flight-path modes
on the plane and is dominated by u-deviations. At low-moderate gain levels, it is difficult to find an
approximation for all three modes based on three-level partitioning but the two-level partitioning shown
in Equation (8) gives an approximate eigenvalue in the form,

λs = Xu + Zu

Zw

[
−Xw + g

Ue

(
1

MXb kw0

(
Mw − MuZw

Zu

))]
(9)

where Xb is used as the control variable. The limiting case given by Equation (5) emerges as kw0 → ∞.
The approximation works reasonably well for low gain values with the effective static stability moment
within Equation (9) (Mweff ) contributing to bringing the surge mode towards neutral stability, a conse-
quence of the close coupling between surge and heave velocity. Figure 10 shows a comparison between
the Equation (9) approximation and the exact surge mode eigenvalue predicted by the 3dof pitch-surge-
heave dynamics for both 55kts and 75kts conditions, with w0 feedback to Xb. The stability boundary for
the 55kts case matches the result shown in Fig. 8, while the surge mode remains stable at 75kts.

Although the surge mode is a relatively benign dynamic, its insidious nature makes it very dangerous
as the details in the accident reports cited in this paper demonstrate. As shown in Figs. 8 and 9, the pitch-
heave short-period mode is also driven unstable and, with a period of about 10sec at 55kts, reducing
with increasing flight speed, presents a different challenge to a pilot. Some insight into the reason for
this loss of stability can be gained by noting that the w0 feedback has two components; one from aircraft
incidence (w/ Ue), the other from pitch attitude (θ ). Feedback from θ is always stabilising but it is the
feedback from incidence that destabilises the short-period mode. As incidence increases, all three control
feedback loops result in a pitch-up response, increasing the incidence further in the short term. The
impact on the short-period mode for control with elevator differs from control with cyclic or stick. A
positive (up) δe decreases the lift on the aircraft, as does a positive (forward) B1. However, for flight-
path control, it is the moment that defines the feedback strategy; so, positive δe and negative B1 are
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Figure 10. Variation of approximate and ‘exact’ surge mode damping for the FXV-15 at 55kts and
75kts.

Figure 11. Eigenvalue loci showing comparison between θ and w0 feedback; FXV-15 in H-mode at
55kts (left) and 75kts (right).

used. Since in H-mode at low-medium speeds, the cyclic moment is much stronger than that due to the
elevator, the former dominates with Xb control. The consequence is that, as the feedback gain is increased
with elevator control, the magnitude of the effective heave damping (Zw + kw0Zδe) reduces. The loci for
elevator control never return to the stable half of the plan as shown in Figs. 8 and 9.

Control of pitch attitude alone does not result in flight path constraint of course, but it is a much safer
control strategy for a pilot to adopt for speed control, on either side of the power curve, with vertical flight
path controlled with collective. Figure 11 shows a comparison of eigenvalue loci for vertical flight path
(w0) and pitch attitude (θ) feedback to stick (Xb). With θ feedback, as the gain is increased, the short-
period mode frequency increases with constant damping, although reducing relative damping, hence
degrading the handling qualities. Simultaneous increase of frequency and relative damping requires the
addition of pitch rate feedback, or increased anticipation by the pilot.

Under the influence of the strong flight-path control, the short-period mode has changed in character
and the two-level partitioning in Equation (8) cannot be further divided to isolate the unstable oscillatory
mode. The conditions for weak coupling between sub-system dynamics do not apply; for example, both
have a similar modulus, approximately unity in Fig. 11 at the gain for neutral stability, so they are not
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Figure 12. Comparison of eigenvalue loci with different feedback loops; θ , w0 and w to Xb (right) and
the expanded phugoid for w to Xb (left); FXV-15 in H-mode at 75kts, 3.5deg descent.

sufficiently separated on the eigenvalue plane. The third-order system created by the partitioning in
Equation (8) has approximate eigenvalues given in the form

λ3 + Aλ2 + Bλ + C = 0 (10)

where

A = −Mq − Zw − kw0Zη (11)

B = ZwMq − UeMw + kw0ZηMq (12)

C = kw0Ue

(
ZηMw − MηZw

)
(13)

where η is used as a general control variable. According to the Routh-Hurwitz stability criteria [15], the
oscillatory mode changes stability when

AB = C (14)

Substituting the derivatives from Appendix B into these expressions results in close agreement with
the cross-over frequencies for B1 and Xb control shown in Fig. 11. Reasonable agreement can also
be derived if we assume that the kw0 terms in Equations (11) and (12) are small compared with the
short-period mode damping and frequency, so that the gain for neutral stability of the lower branches in
Fig. 11 is then approximated by the expression

kw0 ≈ [− (
Mq + Zw

) (
ZwMq − UeMw

)
/
(
Ue

(
ZηMw − MηZw

))]
(15)

For the 55kts flight speed, this corresponds to kw0 = 0.5in/m/sec, only 10% lower than the exact result
in Fig. 11. Flight-path control by cyclic or elevator is natural for both fixed-wing and rotary-wing air-
craft at higher flight speeds, e.g. terrain-following, and such low-frequency guidance strategies should
not present a problem for pilots. However, when manoeuvring in turbulence to maintain a constant
vertical rate, e.g. optimum climb or descent profiles, the strategy not only risks surge mode instabil-
ity but a divergent oscillatory mode. The absence of any discussion on this problem in most of the
standard flight dynamics textbooks is surprising. Reference [16] does discuss the surge mode insta-
bility resulting from controlling the vertical flight-path and even shows the short-period mode being
driven unstable in the relevant system survey diagram common in that text, but without comment.
Figure 12 shows a comparison of the eigenvalue loci for the components of w0 feedback to Xb with
the w feedback case expanded. This shows the stick being pulled back to counteract the increase in w
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(incidence). The phugoid mode is now driven unstable, demonstrating the failure of this feedback loop in
isolation.

The modal pattern under closed-loop control for the tiltrotor in H-mode closely resembles the results
for a conventional helicopter presented in [5] and [12]. In C-mode, new dynamics come into play which
will now be explored.

2.3 Constrained flight-path control in C-mode
The eigenvalue loci as a function of speed, for the FXV-15 in C-mode, with nacelle angle at 60deg (i.e.
tilted forward 30deg) are shown in Fig. 13. The aircraft is trimmed in a 3.5deg descent angle and the
flap setting is 40deg. The speed range shown corresponds to flight just below and extended above the
minimum power speed shown in Fig. 3.

Figure 13. Longitudinal eigenvalues as a function of speed for the FXV-15 in C-mode, 60deg nacelle
angle, flap setting 40deg, flight-path angle 3.5deg descent. XV-15 in C-mode (photo NASA).

Based on the minimum power shown in Fig. 3, the 95kts and 105kts conditions are selected for
feedback analysis. As discussed earlier, in C-mode both cyclic pitch and elevator are connected to the
pilot’s control stick, with the gearing to cyclic reducing as a function of nacelle angle. The eigenvalue
loci for varying feedback gains at the 95kts flight condition are shown in Fig. 14. The striking difference
with the H-mode case below minimum power is the absence of the unstable surge mode. The reason for
this can be found within the approximation for the surge mode in Equation (9). The derivative Xw changes
character markedly as the nacelles tilt forward. A perturbation in w now leads to an increase in rotor
thrust, as in H-mode due to the inflow dynamic; but the thrust now has a large component in the fuselage
x-direction. The derivative tables in Appendix B show that Xw changes from −0.012/sec in H-mode at
75kts to +0.143/sec in C-mode at 95kts; a sign change and order-of-magnitude increase. The surge mode
still exists as the gain increases, but remains stable. Cyclic pitch control no longer destabilises the short-
period mode as the pitching moments from the proprotors strengthen the natural static stability (Mw)
to overpower the incidence destabilising feedback. Elevator control remains destabilising for the short-
period mode, however, with destabilising gain of 3.5deg/100ft/min, or 2.5deg/deg of flight-path angle
change. The pilot’s control is therefore destabilising with cross-over gain of about 1in/deg of flight-path
angle.

The patterns described for the 95kts case are repeated at 105kts with similar conclusions. At both
speeds, pitch attitude feedback to elevator or stick is stabilising, as in H-mode. For completeness, com-
parisons of θ and w0 feedback loci are shown in Fig. 15, with a similar pattern to the H-mode results in
Fig. 11. The w0 feedback gains for short-period neutral stability can be derived using the approximate
Routh-Hurwitz formulae in Equation (15).

https://doi.org/10.1017/aer.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.20


The Aeronautical Journal 1631

Figure 14. FXV-15 at 95kts in C-mode, nacelle angle 60deg, flap 40deg, descent angle 3.5deg;
eigenvalue loci for varying gain kw0 with feedback to cyclic B1, elevator δe and pilot’s stick Xb.

Figure 15. Eigenvalue loci showing comparison between pitch attitude and vertical velocity feedback;
FXV-15 in C-mode with 60deg nacelle, 3.5deg descent at 95kts and 105kts.

2.4 Constrained flight path control in A-mode
Examination of closed-loop control of flight path with elevator for the FXV-15 in A-mode reveals
new characteristics that further mitigate the adverse effects on surge mode stability. The longitudinal
eigenvalues are shown as a function of flight speed in Fig. 16.

Based on the power curves in Fig. 3, the 135kts and 180kts airspeeds are selected as points below and
above the minimum power condition. Figure 17 illustrates the eigenvalue loci for w0 feedback to pilot’s
stick for these two cases, with the aircraft on a 3.5deg descent trajectory. Under strong control, the surge
mode is stable at both airspeeds, with a time to half-amplitude of about 2sec at the 135kts condition.
The reason the surge mode remains stable below minimum power is mainly due to the large value of the
drag derivative Xu. The surge mode approximation in Equation (9) works reasonably well in A-mode
as shown in Fig 18. At 135kts, the error is about 20% but the trend follows the exact results as gain is
increased. In [5], the first author discussed the contribution to the drag derivative, Xu, from the propeller
of a turboprop-powered aircraft. With constant power propulsion, the thrust decreases following a u
perturbation, hence increasing the magnitude of Xu. However, the XV-15 features a rotorspeed governor
that acts through collective pitch feedback; a positive u perturbation initially reduces both thrust and
rotorspeed, leading to a further reduction in thrust as the proprotor collective pitch is reduced to maintain
rotorspeed. The sensitivity of rotor thrust to collective is similar in A-mode and H-mode, impacting
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Figure 16. Longitudinal eigenvalues as a function of speed for the FXV-15 in A-mode, flap setting
40deg, flight-path angle 3.5deg descent. XV-15 in A-mode (photo NASA).

Figure 17. Eigenvalue loci for FXV-15 longitudinal modes with w0 feedback to stick (Xb) in A-mode,
135kts (left), 180kts (right), 3.5deg descent angle.

different control derivatives of course (Xθ0 cf. Zθ0), therefore strongly augmenting the drag derivative in
A-mode.

The short-period mode is driven unstable at relatively low values of gain at both flight conditions
(0.53in/m/s, 0.42in/m/s). Just as in H-mode and C-mode, controlling flight path with elevator will risk
PIO tendency and eventually instability with these levels of gain.

It is emphasised that the analysis and results for the impact of closed-loop control of flight path on
aircraft stability relate to the FXV-15 Level-2 complexity model [5], developed within the FLIGHTLAB
[17] simulation environment. In H-mode, the surge instability for flight below minimum power closely
matches the results for conventional helicopters. In C- and A-modes, mitigating aerodynamic effects
reflected in the variation of stability derivatives, Xw and Xu, mean that the surge mode remains stable
under strong flight-path control. This does not mean that flight-path control with centre stick below min-
imum power, for example on the approach or climb-out, or cruising for maximum endurance, does not
have safety consequences. In all cases, the low-frequency dynamics contain a surge mode with relatively
low damping, and the flight-path response to stick is opposite on the two sides of the minimum power
speed. Energy management with combined cyclic/elevator and collective/thrust is the only safe strategy
to adopt in this flight regime. Short-term corrective control of pitch attitude with cyclic/elevator has been
shown to be a successful stabilisation strategy, but this does not replace the need for coupled-control for
the management of flight path and airspeed.

The destabilising influence of strong flight-path control with elevator on the pitch-heave short-period
mode has been demonstrated for flight on both back and front sides of the power curve in all three
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Figure 18. Surge mode stability under flight path control; FXV-15 in A-mode.

Figure 19. Responses to 0.25inch Xb step input; comparison of linear (6dof) and nonlinear FXV-15 in
A-mode at 180kts for θ , and γ.

tiltrotor modes. The source of the problem is the feedback from the incidence component of flight path;
the corrective moment for flight-path deviations resulting in an increased excursion of incidence. An
equivalent interpretation is expressed in terms of the lag in the flight-path response, relative to pitch
attitude, as shown in Fig 19. Flight-path angle γ lags the pitch attitude θ by about 1sec, so feedback
from γ is equivalent to feeding a lagged θ , the opposite of anticipation. Figure 19 also shows the good
comparison between the nonlinear FXV-15 and the 6dof linear model, reinforcing the utility of the latter
for small-amplitude response analysis, in addition to stability. The θ response shows the classic drop-
back characteristic as the control pulse is removed at 6sec, which also requires pilot anticipation when
commanding a change in attitude or flight-path angle. References [18] and [19] examine this dynamic,
describing handling qualities criteria for short-term pitch control and including a proposal for a metric
based on the time to achieve a flight-path angle change. The adoption of any handling qualities metric
related to flight-path control should clearly be evaluated for the connection with the APCs described in
this paper.

The analysis above shows that the level of pilot/autopilot gain required to destabilise the short-period
mode is similar to that for the surge mode destabilising. A successful control strategy based on flight
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Figure 20. Short-period pitch-heave mode eigenvalue loci map for varying feedback of vertical velocity
and acceleration to Xb; FXV-15 in A-model, 135kts, γ = 3.5deg.

path would need to include pilot anticipation, or feedback of flight-path rate (normal acceleration), as in
Equation (16), and as illustrated in Fig. 20 for the 135kts A-mode flight case. A relatively small amount
of anticipation (0.5in/m/s2) would be required to recover the natural short-period damping from the
neutral stability case with proportional control (kw0 = 0.5inch/m/s).

Xb = kw0w0 + kẇ0ẇ0 (16)

The guidance for requirements on flight-path stability and response to elevator for US military fixed-
wing aircraft is described in MIL-HDBK 1797 [20]. Here, the issues relating to flight on the front side
and back side of the power curve are discussed, particularly with application to flight-path control on the
approach, for example to an aircraft carrier. The key metric defining handling quality is the flight path
change to elevator/speed change at constant power. In [20], a positive flight-path angle denotes a climb,
so opposite to the sense used in this paper. On the back side, the flight-path angle decreases (descent)
with speed reduction, and increases (climb) with speed increase, at constant power. The reverse occurs
on the front side. To quote from [20],

“Flight-path stability is defined in terms of flight-path-angle change with airspeed when regulated by
use of the pitch controller only (throttle setting not changed by the crew). For the landing approach Flight
Phase, the curve of flight-path angle versus true airspeed shall have a local slope at V 0min. (minimum
approach speed) that is negative or less positive than. . .” the values given in Table 3 below in terms of
HQ levels. The values relate to the slope of the flight-path vs speed curve below minimum power and
are essential conditions on trim, rather than stability. Ref [20] makes the link with stability of closed-
loop control by drawing on Neumark’s analysis [8] to approximate the slope metric in terms of stability
derivatives as given in Equation (17). The metric is proportional to the surge mode approximation and
corresponding HQ boundary values are included in Table 3.

dγ

du
= 1

g

[
Xu −

(
Xw − g

Ue

)
Zu

Zw

]
(17)

In contrast, the US military helicopter handling qualities standard (ADS-33, [21]) addresses flight-
path control on the back side in terms of response to collective. The flight-path/vertical-rate response
to collective ‘should have a first-order appearance for at least 5sec following a step input.’ Ref [21]
also states that ‘pitch attitude excursions shall be limited so that they have a negligible effect on the
vertical rate response.’ So, the cyclic is expected to be active in this test for the purposes of minimising
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Table 3. Flight-path angle change for different HQ levels [20]
and associated surge eigenvalues

Level 1 0.06deg/kt λs≈0.005/sec
Level 2 0.15deg/kt λs≈0.013/sec
Level 3 0.24deg/kt λs≈0.02/sec

pitch attitude changes. For front-side operations, the HQ metric is quantified in terms of the flight-
path response lag. To quote again from [21]; ‘The vertical rate response shall not lag the pitch attitude
response, with the collective controller held fixed, by more than 45 degrees at all frequencies below
0.40 rad/sec for Level 1 and 0.25 rad/sec for Level 2.’ Of course, these criteria reflect the open-loop
response of the aircraft and do not address the question of how such criteria might impact closed-loop
operations, to minimise or eliminate the potential for flight-path related APCs.

The control of flight-path angle with elevator or cyclic has also revealed a loss of stability of the
short-period mode across all three tiltrotor configurations, on the back and front side of the power
curve, caused by the implicit feedback of the incidence component within γ . It has been shown that
the instability can be avoided by the pilot or autopilot applying anticipation (normal acceleration feed-
back) but the underlying problem remains. As noted above, the first author explored the development of
HQ metrics for pitch and flight-path control of tiltrotors in [19], proposing a metric combining control-
anticipation with flight-path delay. However, this research did not specifically address the connection
with APCs and the loss of stability described in this paper. It is recommended that this topic is explored
more extensively to determine the safe limits on closed-loop control of vertical flight path for tiltrotor
aircraft.

3. Constrained roll control and yaw divergence
3.1 A well-understood problem for some fixed-wing aircraft
The flight control and handling problems associated with adverse-yaw due to aileron deflection have
been infamous in aeronautical history. The Wright brothers first experienced the effect on their 1901
glider [22]; Wilbur noted in a presentation that ‘We proved that our machine does not turn towards the
lowest wing under all circumstances, a very unlooked for result and one which completely upsets our
theories as to the causes which produce the turning to right or left.’ They designed their 1902 glider
and powered Flyer family with an interlink between wing-warp and rudder [23] and [24]; there was
no separate yaw control on these aircraft. The re-occurrence of the problem on different types over the
first 70 years of aviation led to adverse-yaw being recognised as a practical handling problem needing
attention in the design of military fixed-wing aircraft [20]. A theory was developed by Pinsker [7] to
predict what he described as a ‘minimum acceptable value’ for weathercock stability, Nv, in the presence
of adverse-yaw from aileron deflection, ξ. Pinsker’s theory predicted that under strong control of roll, the
yaw would diverge when the effective weathercock stability reduced to zero; the condition for stability
becoming,

Nv =
(

Nv − Nξ

Lξ

Lv

)
> 0 (18)

As with Neumark’s approximation [8] for surge-mode stability, Equation (5), the complex combina-
tion of pilot and aircraft control is reduced to the behaviour of a single effective derivative in Equation
(18). MIL-STD 1797 [20] frames the ‘problem’ in terms of the lateral control divergence parameter
(LCDP), essentially the same as Pinsker’s effective stability derivative, and describes examples of air-
craft that featured rudder shaping to reduce adverse-yaw and improve so-called nose-slice departure
resistance.
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3.2 Application to tiltrotor aircraft
The first author reported analysis of the impact of adverse-yaw on tiltrotor stability in airplane mode
using the FXV-15 in [5]. The analysis is extended here, in the notation of [5], with aileron deflection
denoted by ηa, rudder deflection by ηr, differential (proprotor) collective pitch (DCP) by θ0D. First, the
constrained flight analysis to derive Pinsker’s effective directional stability is described. The linear equa-
tions for small perturbation, lateral-directional motion (sway v, roll rate and angle p and φ, yaw rate r),
with associated stability and control derivatives, can be written as⎡

⎢⎢⎢⎢⎣
v̇

ṗ

φ̇

ṙ

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

Yv Yp + We g cos �e Yr − Ue

Lv Lp 0 Lr

0 1 0 0

Nv Np 0 Nr

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v

p

φ

r

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Yηa Yηr

Lηa Lηr

0 0

Nηa Nηr

⎤
⎥⎥⎥⎥⎦

[
ηa

ηr

]
(19)

or, more generally, with stability and control matrices A and B

dx
dt

− Ax = Bu (20)

Pinsker assumed that, in the limit of infinitely strong control, a pilot could effectively suppress the roll
motion with ailerons, so that the roll equation could be written as a quasi-steady relationship between
the sway and yaw motions and the aileron deflection

Lvv + Lrr + Lηaηa = 0 (21)

With constrained roll motion, and neglecting the small Yp + We term, the sway and yaw equations
take the form

v̇ − Yvv + Uer = 0

ṙ − Nvv − Nrr = 0
(22)

where the compound yaw derivatives are the effective directional stability and yaw damping, augmented
by the aileron control, and given by the expressions

Nv = Nv − Nηa

Lηa

Lv; Nr = Nr − Nηa

Lηa

Lr (23)

Combining Equations (21) and (22), yaw motion is then described by the second-order equation

r̈ − (
Nr + Yv

)
ṙ + (

NvUe + YvNr

)
r = 0 (24)

In many fixed-wing aircraft, the product YvNr is small compared with the NvUe term, so the effective
directional stiffness is approximated by NvUe. The condition for directional stability is then given by
Pinsker’s expression

Nv =
(

Nv − Nηa

Lηa

Lv

)
> 0 (25)

This effective directional stability depends on the sign of Nηa ; negative (adverse aileron-yaw) and sta-
bility is reduced; positive (proverse aileron-yaw) and the coupling increases the yaw stability. Normally
for fixed-wing aircraft, Nηa is negative and, at high angles of attack, natural directional stability Nv can
also reduce (fin-shielding effect) and the ratio of control derivatives in Equation (25) can become so
large that the coupling term overpowers the natural stability. Strong control by the pilot attempting to
maintain roll attitude can then lead, in the limit, to the ‘nose-slice’ yaw departure.

How this might translate into tiltrotor flight dynamics can be explored using the FXV-15. The flight
condition examined is a 280kts straight and level flight condition at sea-level. The A and B matrices
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corresponding to this flight condition are

A =

⎡
⎢⎢⎢⎢⎣

−0.36 −6.4 9.8 −137

−0.071 −1.34 0 −0.19

0 1 0 0

0.072 −0.184 0 −1.21

⎤
⎥⎥⎥⎥⎦ (26)

and

B =

⎡
⎢⎢⎢⎢⎣

−0.52 −12.07 −6.68

5.17 −1.17 22.04

0 0 0

−0.183 6.78 40.7

⎤
⎥⎥⎥⎥⎦ (27)

where the control vector contains three controls; the aileron, rudder and differential collective pitch
(DCP or θ0D).

u =
⎡
⎢⎣

ηa

ηr

θ0D

⎤
⎥⎦ (28)

For the XV-15 in A-mode, roll control is achieved through aileron only and yaw control is achieved
through rudder only. In contrast, with Leonardo’s AW609 tiltrotor, DCP provides the yaw control func-
tion. In the present study, the FXV-15 H-mode DCP range (±1.6deg) is retained in A-mode but inputs
are only made through an interlink with aileron (±19deg) to provide the mechanism for coupled roll
yaw, hence adverse or proverse aileron-yaw. To examine the impact of this coupling, the rudder function
is not activated in the feedback loop, or by the pilot. From the B matrix, the FXV-15 has a small natural
adverse aileron-yaw (element 4,1), but the ratio Nηa /Lηa is only 0.04, so the effective directional stabil-
ity (Equation (25)) is only 5% less than the natural directional stability, Nv. There should be no risk of
adverse roll-yaw coupling reducing the directional stability with strong roll control for the XV-15 in this
flight condition.

The control law to be investigated is one where the pilot (or automatic FCS) controls roll attitude
with aileron, coupled with the feed forward to DCP, θ0D, through the combined proportional forms

ηa = kφφ

θ0D = k1ηa

(29)

To achieve stabilisation with φ control, the feedback to aileron is negative; i.e. kφ < 0. The interlink
coupling that applies adverse-yaw is achieved with k1 < 0. For the case with no interlink, k1 = 0, the
eigenvalue loci are shown in Fig. 21, with points shown for kφ values up to −1.0deg/deg. The attitude
feedback leads to the spiral and roll subsidence modes combining into a yaw-sideslip oscillation with
frequency and damping, in the limit of infinite gain, given by Equation (24). This closed-loop zero is
essentially the Dutch roll mode free of roll motion, highlighting that the frequency of the Dutch roll
is well predicted by the approximation. Reference [20] (MIL-HDBK 1797) makes the point that the
propensity to nose slicing is related to the separation of the open-loop Dutch roll mode and this closed-
loop zero. In the limit, the Dutch roll mode itself transforms into a roll oscillation with damping given
by −Lp/2 and infinite frequency. As expected, there is no instability resulting from the adverse-yaw of
the FXV-15 for the case k1 = 0.

With aileron-DCP coupling increased to k1 = −0.08deg/deg, the eigenvalue loci transform as shown
in Fig. 22. For every +1.0deg of aileron, the interlink now applies −0.08deg of DCP, resulting in negative
yawing and rolling moments. Lθ0D is naturally positive, from the changing in-plane lift forces on the
proprotor; positive DCP results in an up-force on the left rotor and down-force on the right rotor. We
now see a situation where the adverse-yaw has increased 20-fold and the effective roll control sensitivity
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Figure 21. Eigenvalue loci for FXV-15 lateral-directional dynamics with varying kφ; k1 = 0.

Figure 22. Eigenvalue loci for FXV-15 lateral-directional dynamics for varying kφ; k1 = −0.08.

has reduced to 66% of the value with k1 = 0. The topology of the loci changes, the spiral and roll modes
moving only slightly on the real axis, morphing into yaw-sway subsidence modes. The loci for the
oscillatory roll mode show a similar pattern to k1 = 0, both damping and relative damping decreasing
with increasing gain.

From Equation (24), the approximation to the two subsidences at high gain can be written as

λ2 + (N
′
r + Yv)λ + (N

′
vUe + YvN

′
r) = 0 (30)

where the effective yaw stiffness and damping are given by the expressions

N
′
v = Nv − Nηa

L̄ηa

Lv; N
′
r = Nr − Nηa

L̄ηa

Lr (31)

with the compound control derivatives

L̄ηa = Lηa + k1Lθ0D

Nηa = Nηa + k1Nθ0D

(32)
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Figure 23. Eigenvalue loci for FXV-15 lateral-directional dynamics for varying kφ; k1 = −0.1.

Using the derivative values from the A and B matrices, the approximate zeros on Fig. 22 are,

λ1 = −1.5; λ2 = −0.27; (33)

The effective directional stability (Equation (25)) is close to zero, with the only stabilising effect
coming from the product of the sway and (effective) yaw damping. Also, the ratio of effective yaw to
roll control (from Equation (32)) is about 1. Adverse-yaw contributed by the DCP is now acting like the
adverse aileron-yaw described in [7].

Increasing the coupling into DCP from aileron has a predictable impact. The results for
k1 = −0.1deg/deg are shown in Fig. 23. The attitude feedback control now drives the yaw-sway mode
unstable, with approximations for the closed-loop zeros again given by the solutions to Equation (30),

λ1 = −2.7; λ2 = +0.8; (34)

The agreement with Fig. 23 is reasonable, although the strength of the unstable mode is under-
predicted by about 30%. Nevertheless, the fundamental physical mechanism of the instability is captured
by the approximation. From Equation (25), the lower the natural directional stability Nv, then the smaller
the adverse-yaw, from either natural aerodynamics or control couplings, is required to drive the mode
unstable.

The analytic approximation above represents the limiting case of infinitely strong control of roll atti-
tude with aileron. As with strong vertical flight-path control discussed in the first part of the paper, the
approximation for finite-gain control by the pilot or an automatic FCS, can be derived from a partitioned
form of the equations of motion; separating the strongly controlled roll motion from the weakly con-
trolled sway-yaw motion. Re-arranging the equations of motion, Equation (19), into weakly and strongly
controlled states, gives the new closed-loop A matrix

(35)

As discussed in Appendix A, the conditions for the approximation to work are that the eigenvalues
of the sub-systems and their modal content are separated and the couplings between the weakly and
strongly controlled dynamics are small. As gain is increased, both conditions become increasingly valid.
Neglecting some of the small terms, e.g. Yp, the approximating quadratics for the low modulus (λ1) and
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high modulus (λ2) eigenvalues can be written as

λ2
1 −

(
Yv + N ′

v − g
Lv

kφL̄ηa

)
λ1 + (

N ′
vUe + YvN ′

r

) + g

kφL̄ηa

(
N ′

vLr − N ′
rLv

) = 0 (36)

λ2
2 − Lpλ2 − kφL̄ηa = 0 (37)

The roots of Equation (36) converge to those of Equation (30) as gain kφ increases, one solution
becoming positive (yaw-sway divergence) as the gain increases. The value of gain kφ for neutral stability
can be found by setting the stiffness term in Equation (36) to zero, i.e.

kφ = − g

L̄ηa

(
N ′

vLr − N ′
rLv

)
(
UeN ′

v + YvN ′
r

) (38)

With further simplification, a more concise expression captures the main effect

kφ ≈ g
N ′

rLv

L̄ηa UeN ′
v

(39)

The yaw derivatives now include the interlinked DCP control (from Equations (31) and (32)). For
the case with k1 = −0.1, the gain value for neutral stability is −0.09deg/deg from Equation (38), and
−0.07deg/deg from the simple approximation in Equation (39). This relatively simple expression can be
used to establish the destabilising gain for different values of k1 and the effective aileron-yaw Nηa

. Noting
the aileron control gearing of 3.9deg/inch of pilot stick, when seen as a pilot feedback, the gains are low.
The dominant effect is, of course, the coupling into DCP which has a roll control sensitivity more than
four times greater than the aileron. The simplified Equation (39) also links with the original Pinsker
result; zero effective directional stability equates to infinitely strong roll control (kφ →∞). Rearranging
the terms in Equations (31) and (32), an expression for the level of coupling required to produce neutral
stability, as a function of the stability and control derivatives can be derived in the form of Equation
(40), showing the importance of the ratios of static stability derivatives Nv and Lv.

k1 = −
Nηa − Nv

Lv

Lηa

Nθ0D − Nv

Lv

Lθ0D

(40)

The presence of other inputs into the roll channel has not been investigated, but are likely to modify
the results and make the problem considerably more complicated. For example, the addition of stability
augmentation through increased roll damping will position the eigenvalues of the modes further to the
left on the complex plane; but eventually the attitude feedback will overpower the rate stabilisation in the
presence of adverse aileron-yaw. The addition of other DCP inputs, for example for structural load allevi-
ation, as discussed in [5], or to minimise torque splitting during turns, have also not been explored. These
are important since their presence will influence the amount of DCP available for the primary flight con-
trol through the interlink with aileron. Any rate limiting in the actuation system will further complicate
the problem. To quote from [1], ‘These features combine to make PVS behavior at the margins of the
control-effector/control-function envelope a multidimensional surface of bewildering complexity.’ The
analysis described in this paper is essentially linear so it cannot contribute to understanding the impact
of these additional features.

How might this adverse coupling be experienced by a pilot? If they are struggling to maintain roll
attitude, then, with the addition of adverse-yaw, the threatening yaw-sway divergence should be apparent.
In the fixed-wing carrier approach scenario, controlling horizontal flight path through roll control is
paramount, so the pilot must find a compensatory technique in the presence of the incipient APC. Yaw
compensation with pedals is the obvious strategy but the phasing with roll control will be important for
the outcome, because this motion is superimposed on the oscillatory roll. Any pedal inputs intended to
counteract the oscillatory yaw could suppress or exacerbate the divergent motion, depending on their
phase with the roll motion and roll control inputs.
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The results from the above study of the impact of adverse-yaw on the directional stability of the FXV-
15 are certainly compelling. However, it is stressed that the validation of the FXV-15 with flight-test data,
reported in [5], is very limited. Furthermore, the analysis carried out has been linear, so it is strictly only
applicable to small-amplitude stability and response. The results are indicative, but the problems they
express are often inherently nonlinear and change character with the amplitude of deviations from trim.
Consequently, as with the conclusions from the vertical flight-path control study reported in this paper,
the potential for such problems to occur on a different tiltrotor, or indeed any unconventional rotorcraft
configuration, requires extensive and specifically detailed exploration.

Such exploration should include piloted simulation trials to understand better the flight manoeuvres
susceptible to such APCs, and how different control strategies influence the outcomes. The exploration
space here is vast and methods for identifying APC signatures (e.g. Ref [2]) will need to be developed to
assist in gaining insight into the physics of the couplings. This can lead to the creation of new handling
qualities criteria related to the kind of adverse APCs discussed in this paper. In [25], an assessment
of tiltrotor handling criteria related to lateral-directional control was reported, endorsing the attitude
bandwidth metric as appropriate for tiltrotor aircraft performing tracking tasks. Response bandwidth
and the associated phase-delay are considered critical for the assessment of an aircraft’s susceptibility
to PIO-type APCs; but [25] did not address HQ criteria related to the non-oscillatory APCs examined
in this paper.

A necessary further step should involve the development of new approaches to pilot training, or more
generally PVS training, since the V side of a semi-autonomous aircraft will also need to be sufficiently
intelligent to learn to recognise and avoid adverse APCs and their consequences; and not to compete
with the human pilot. The link between HQ metrics and criteria and pilot training can be reinforced
in these developments. Then, there is the question of how to ensure pilots are equipped with a solid
grounding in aeronautical science so that they understand the importance of recognition and corrective
control strategies. In this paper, we only briefly address this topic, as follows.

4.0 APC aeronautical knowledge for pilots; risks and safety margins
Most, if not all, of the APCs experienced with prototype or operational aircraft have been explained,
usually after the event, by dynamic analysis based on approximate solutions to the equations of motion.
Even for situations of bewildering complexity referred to in [1], explanations based on how aerome-
chanical forces and moments interact to deplete the natural aerodynamic damping or stiffness and drive
an aircraft unstable will form the foundation for understanding and setting within the compendium of
aeronautical knowledge. Wilbur and Orville Wright understood this, as the extensive entries in their
daily diaries reveal [22]. They experienced both non-oscillatory APCs described in this paper, on sev-
eral occasions, sometimes resulting in a crash, but the low-speeds of flight, and resilient design of their
gliders meant that they could quickly learn from their mistakes and develop safer control strategies and
design changes, e.g. interlinking rudder and wing warp to reduce adverse-yaw. Their problem-solving
skills, aeronautical knowledge and understanding grew with their manual flying skills; as it should be
in the flight training of the modern-day pilot of course. A question arises as to the depth of aeronautical
knowledge required by pilots so that they understand the risks and how to maintain adequate safety mar-
gins associated with APCs. Drawing on such understanding in practice depends on the pilot’s alertness
and spare capacity for cognitive processing.

During the first decade of aviation, pilots would typically devote close to 100% of their mental and
physical effort to the manual flying task, and the only means of training was to fly the aircraft. Any kind
of emergency, for example an encounter with bad weather or engine failure, significantly increased the
risk of a crash. Nowadays, of course, things are different. In normal situations, a rotary or fixed-wing
pilot might devote only 30% or less of their effort to the flying task, the other 70% or more on mission
management, navigation, communications, system health monitoring and other duties. Skills for the fly-
ing task, the manual command and corrective control strategies for guidance and stabilisation (G&S)
are developed through training to be instinctive; motion sensations forming the inputs in these natural
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feedback loops. However, a pilot needs to be sufficiently engaged in the G&S control loops for such
instinctive responses to be fully effective. It is well understood that increased control automation reduces
this engagement as augmentation functions take over the pilot’s role. For a tiltrotor aircraft, such aug-
mentation has a multitude of forms; e.g. stability and guidance, flight envelope protection and structural
load alleviation; Reference [5] discusses how these functions feature in the V-22 Osprey. An impor-
tant PVS design challenge is then to ensure that these operate cooperatively, rather than competitively,
with each other and with the pilot. An equally important training challenge is to ensure that the pilot
understands their role in the cooperate-compete tension, and how to develop appropriate risk-mitigation
strategies.

A pilot’s technical aptitude and problem-solving skills to deal with unexpected behaviour and emer-
gencies are clearly critical here. These are mostly honed during ground-based simulation training, and
this is also where a pilot can learn to deal with APCs, i.e. be able to identify, diagnose and correct
behaviour quickly enough to avoid departure or loss of control. The opportunity is taken in this paper to
propose an approach to aeronautical knowledge capture and skill development for pilots, providing learn-
ing that endures. This is particularly germane to tiltrotor aircraft as they enter commercial service with a
wide range of new operational capabilities. In [26], the first author described a problem-based-learning
(PBL) module that featured as part of the final-year Master’s programme in Aerospace Engineering
with Pilot Studies at the University of Liverpool. The module was introduced within Liverpool’s Active
Learning agenda where the focus was on acquiring knowledge and skills through contextualised problem
framing and problem solving. The approach should be familiar to pilots but the formalised framework of
PBL, which includes deep reflections recorded within personal learning journals, reinforces the lasting
value of the learning.

PBL exercises related to APCs could be embedded within normal training schedules addressing, for
example:

a) Transformation of aeronautical knowledge currently found in pilot’s handbooks into dynamic
forms; specifically, impact on PVS stability and response rather than aircraft trim.

b) Demonstration of the impact of different closed-loop control strategies on stability; how weakly
controlled dynamics can be driven unstable, e.g. loss of speed stability under flight-path control,
loss of yaw stability under roll control.

c) For PIO-type APCs the solution often requires the pilot to back out of the control loop, but a PBL
exercise could involve flying through the incipience in the controlled dynamic to demonstrate the
impact.

d) Demonstration exercises at the edge of the flight envelope exploring so-called cliff-edge diver-
gent APCs; these are usually caused by strongly nonlinear PVS characteristics, e.g. actuator rate
limiting, augmentation function conflicts; the bewildering complexity at envelope edges referred
to in [1].

Creating simulation-based PBL exercises around such problems raises the question, ‘what are the nec-
essary simulator fidelity requirements to ensure sufficient realism for training APC events?’ This is
closely linked to understanding the simulator requirements for training in, more general, rotorcraft loss-
of-control in-flight (LOC-I, [27]) scenarios. As tiltrotors and other high-speed rotorcraft are developed
and brought into service, the opportunity presents itself to address both the PBL outcomes and fidelity
requirements in concert. A strong recommendation from the work presented in this paper is that this edu-
cational opportunity is wholeheartedly embraced by the industry to raise pilot awareness of the potential
impact of adverse APCs on the safety of tiltrotor operations.

5.0 Conclusions and recommendations
In this paper, a theoretical approach for isolating the physics of a class of APCs has been presented. The
approach has then been applied in two scenarios. The first relates to the classic problem of flight-path

https://doi.org/10.1017/aer.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.20


The Aeronautical Journal 1643

management and speed instability during operations on the back side of the power curve. The second
concerns strong control of roll attitude and the consequent loss of directional stability attributable to
adverse-yaw effects. The study has been carried out using a FLIGHTLAB simulation model of the XV-
15 research aircraft, described in detail in [5]. The study has focussed largely on non-oscillatory APCs
that arise under strong control, with the weakly controlled dynamic driven unstable. From the results
presented, the following conclusions are drawn and associated recommendations made.

5.1 APC analysis method for the PVS
The weakly coupled dynamic system partitioning can, with the underlying assumptions for mode separa-
tion and weak couplings satisfied, enable stability under strong control to be analysed to provide insight
into the flight-physics of a class of APCs. Typically, weakly controlled dynamics are driven unstable by
the couplings arising from strong control of a different dynamic. The changes in stability are typically
reflected by the variations in effective stability derivatives that feature in the frequency and damping of
the lower-order modal approximations.

To encourage greater understanding and wider practice of this form of APC analysis within the engi-
neering community, it is recommended that the approach be included in flight dynamics and control
modules at Masters-level Aerospace Engineering courses and short courses to Industry.

A principal recommendation from this study is that the theory should be applied in the HQ anal-
yses for new rotorcraft configurations with coverage of practical manoeuvres throughout the flight
envelope. Extensive investigations are required because, as described earlier in the paper, these low-
frequency or non-oscillatory APCs are often hidden in the closed-loop dynamics, with subtle and
insidious consequences.

5.2 Loss of stability from vertical flight-path constraint
A tiltrotor in H-mode displays similar behaviour to conventional helicopters under strong control of
vertical flight path by cyclic. Below minimum-power speed, a surge mode features as the weakly con-
trolled dynamic, driven unstable by a pilot or autopilot controlling flight path with cyclic. The stability
boundary is reflected in the change of sign of the effective derivative Xueff . In C-mode, the strong surge
force from incidence perturbations (Xw) appears to protect the tiltrotor from the instability. In A-mode,
the strong surge damping (Xu) from the proprotor governor system extends the surge mode stability into
the back-side region.

The short-period mode is also driven unstable by proportional flight-path control, caused by the
contribution of aircraft incidence to flight-path angle, increasing the risk of a PIO. Pilot lead, through
inclusion of the flight-path rate change in the feedback loop provides effective stabilisation.

The analysis should be extended to explore the impact of flight-path control strategies on APCs
throughout the flight envelope; the sensitivity to configuration could be explored on a baseline, like
the FXV-15, but analysis needs to be applied to all new tiltrotor and other novel rotorcraft.

5.3 Loss of directional stability from roll attitude constraint
The effective weathercock stability (Nveff ) reduces in the presence of adverse-yaw, leading to the risk of
a yaw-sway divergent APC when the pilot controls roll attitude. For the FXV-15, the adverse-yaw was
implemented through a coupling between aileron and differential-collective-pitch control. The level of
pilot control gain required to destabilise the aircraft, changing the sign of Nveff , was shown to be a function
of the ratio of natural dihedral to weathercock stability (Lv/ Nv).

The analysis should be extended to explore the behaviour of this form of APC throughout the tiltrotor
flight envelope for both A-mode and C-mode configurations. The behaviour will be considerably com-
plicated when the pilot and augmentation functions are in competition; the analysis should be extended
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into this nonlinear domain, to establish the safety margins for operation in the normal flight envelope
of a tiltrotor.

5.4 Handling qualities standards
Existing handling qualities standards for fixed and rotary-wing aircraft do not fully address the kind
of low-frequency, non-oscillatory APCs described in this paper. Requirements for flight on the back
side of the power-curve are described in terms of trim characteristics, rather than closed-loop stability.
Requirements for yaw stability in fixed-wing aircraft are described in terms of effective static stability;
again, rather than closed-loop dynamic stability. The absence of established HQ standards for tiltrotor
aircraft exacerbates this problem, but this issue was outside the scope of the present work, and our
recommendation is more specific.

APC behaviour in tiltrotors should be examined within the context of the handing qualities standards
to ensure that appropriate design criteria and test manoeuvres can be developed.

5.6 Aeronautical knowledge for pilots; risk and safety margins
Rotorcraft APC-related flight training is considered inadequate to assist pilots in the maintenance of ade-
quate safety margins. An important factor here concerns the necessary simulator fidelity requirements
for APC events and, more generally, loss of control situations. Current facilities are likely to have short-
comings, for both the flight-modelling and pilot-cueing systems. A problem-based learning approach
to training pilots for APC events has been described; elements could be woven into the pilot-training
programmes to draw out the important aeronautical knowledge required for pilots to fully understand
the risks and associated safety margins throughout and beyond the edges of the normal flight envelope.

As tiltrotors and other novel rotorcraft enter commercial operations it is recommended that the PBL-
approach described in this paper be included in basic and continuation pilot training programmes.
Since much of the training will use flight simulators, it is recommended that an assessment of the fidelity
requirements for such training be undertaken in concert with the development of the PBL material.
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Appendix A. Underlying Theory for Analysing the Stability of Aircraft under Constraint
Small-perturbation dynamic motions of an aircraft can be described in the form of n, coupled, ordinary
differential equations. This n-state system has n natural modes described by their eigenvalues and eigen-
vectors. For the case when the natural modes are widely separated, in terms of their eigenvalue location
on the complex plane and the state-content of their eigenvectors, a useful approximation can be derived
that effectively partitions the system into a collection of weakly coupled subsystems. The technique can
be illustrated by considering the system partitioned into two levels, with states x1 and x2 (dimensions �

and m) such that n = � + m

(A1)

Equation (A1) can be expanded into two first-order equations and their eigenvalues determined from
the characteristic equations

f1(λ) = |λI − A11 − A12(λI − A22)−1A21| = 0 (A2)

f2(λ) = |λI − A22 − A21(λI − A11)−1A12| = 0 (A3)

We assume that the eigenvalues of the subsystems A11{λ(1)
1 , λ(2)

1 , . . . , λ(�)
1 } and A22{λ(1)

2 , λ(2)
2 , . . . , λ(m)

2 }
are widely separated in modulus. Specifically, the eigenvalues of A11 lie on the complex plane within
a circle of radius r(r = max |λ(j)

1 |), and the eigenvalues of A22 lie without the circle of radius R(R =
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min |λ(j)
2 |). The theory of weakly coupled systems [28] posits that the solutions to the characteristic

Equation (A2) can be approximated by the roots of the first m + 1 terms and the solution to the char-
acteristic Equation (A3) by the roots of the last � + 1 terms, solved separately. This hypothesis is valid
when two conditions are satisfied,

(i) the eigenvalues form two disjoint sets separated as described above, i.e.[ r

R

]
� 1 (A4)

(ii) the coupling terms are small, such that if γ and δ are the maximum elements of the coupling
matrices A12 and A21, then [

�rδ

R2

]
� 1 (A5)

When these conditions are satisfied, the eigenvalues of the complete system can be approximated by
the two polynomials

f1(λ) = |λI − A11 + A12A−1
22 A21| = 0 (A6)

f2(λ) = |λI − A22| = 0 (A7)

The larger eigenvalue set is thus approximated by the roots of A22, while the smaller roots are approx-
imated by A11 augmented by the quasi-steady behaviour of the faster subsystem A22. In [5], examples are
presented showing how the approximation theory can be used to derive first or second-order approxima-
tions to a helicopter’s natural modes, revealing the important derivatives that contribute to, e.g. phugoid
or Dutch roll damping. As demonstrated in this paper, the method is particularly effective at describing
the way dynamics are separated by the action of strong control.

Appendix B. Stability and Control Derivatives and Control Gearings for the FXV-15

Table B1. FXV-15 longitudinal stability and control derivatives

u w q θ B1 η Xb

H-mode; 55kts, γ = 3.5deg

X −0.042 −0.007 −0.735 −9.811 4.597 0.908 −0.104
Z −0.128 −0.310 20.393 0.233 5.079 1.116 −0.121
M 0.024 −0.024 −1.062 0.000 −5.735 1.845 0.352

H-mode; 75kts, γ = 3.5deg

X −0.059 −0.012 0.939 −9.774 4.099 1.727 −0.025
Z −0.145 −0.618 38.906 0.885 9.673 2.073 −0.210
M 0.014 −0.037 −1.474 0.000 −5.684 3.403 0.458
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Table B1. Continued.

u w q θ B1 η Xb

60deg nacelle; 95kts, γ = 3.5deg

X −0.096 0.143 −8.793 −9.737 −3.514 1.773 0.243
Z −0.089 −0.544 43.453 −1.223 12.288 2.974 −0.176
M 0.046 −0.142 −1.366 0.000 −3.266 4.567 0.435

60deg nacelle; 105kts, γ = 3.5deg

X −0.142 0.208 −4.037 −9.814 −6.931 2.927 0.432
Z −0.059 −0.780 54.278 0.006 16.507 4.495 −0.195
M 0.031 −0.102 −1.521 0.000 −2.068 6.893 0.566

A-mode; 135kts, γ = 3.5deg

X −0.196 0.073 −10.03 −9.780 −3.215 2.455 0.178
Z −0.150 −0.839 65.556 −0.823 1.642 7.132 0.518
M 0.096 −0.346 −1.593 0.000 −2.641 11.356 0.825

A-mode; 180kts, γ = 3.5deg

X −0.200 −0.011 −2.949 −9.809 −1.619 5.407 0.393
Z −0.165 −0.980 91.461 0.327 −2.162 13.555 0.984
M 0.051 −0.340 −2.217 0.000 −1.203 21.400 1.554

Table B2. FXV-15 control gearings [5]

Longitudinal stick to elevator
(

∂δe
∂Xb

)
4.16◦/in

Nacelle Angle (deg)

Ref [13] FXV-15 [5]
(

∂B1
∂Xb

)
(◦/in)

0 (H-mode) 90 (H-mode) 2.100
30 (C-mode) 60 (C-mode) 1.810
90 (A-mode) 90 (A-mode) 0.000
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