
TPLP 22 (1): 37–50, 2022. c© The Author(s), 2021. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/S1471068421000223 First published online 14 October 2021

37

On Correctness and Completeness
of an n Queens Program

W�LODZIMIERZ DRABENT
Institute of Computer Science, Polish Academy of Sciences,

ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
and

Department of Computer and Information Science,
Linköping University S – 581 83 Linköping, Sweden

(e-mail: drabent@ipipan.waw.pl)

submitted 31 December 2019; revised 28 July 2021; accepted 20 August 2021

Abstract

Thom Frühwirth presented a short, elegant, and efficient Prolog program for the n queens prob-
lem. However, the program may be seen as rather tricky and one may not be convinced about
its correctness. This paper explains the program in a declarative way and provides proofs of
its correctness and completeness. The specification and the proofs are declarative, that is they
abstract from any operational semantics. The specification is approximate, it is unnecessary to
describe the program’s semantics exactly. Despite the program works on non-ground terms, this
work employs the standard semantics, based on logical consequence and Herbrand interpreta-
tions. Another purpose of the paper is to present an example of precise declarative reasoning
about the semantics of a logic program.

KEYWORDS: logic programming, declarative programming, program completeness, program
correctness, specification, nonground answers

1 Introduction

Thom Frühwirth (1991) presented a short, elegant, and efficient Prolog program for the

n queens problem. However, the program may be seen as rather tricky and one may not

be convinced about its correctness. The author’s description is rather operational. So it

should be useful to explain the program declaratively and to provide formal proof that

it is correct.

In imperative and functional programming, program correctness implies that the pro-

gram produces the “right” results. In logic programming, which is nondeterministic, the

situation is different. One also needs the program to be complete, that is to produce all

the results required by the specification. (In particular, the empty program producing no

answers is correct whatever the specification is.)

This paper provides proofs of correctness and completeness of the n queens program;

the proofs are declarative, that is they abstract from any operational semantics.

The paper is organized as follows. After technical preliminaries, Section 3 presents

the n queens program together with an informal description of its declarative semantics.

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068421000223
https://orcid.org/0000-0002-4700-7272
mailto:drabent@ipipan.waw.pl
https://doi.org/10.1017/S1471068421000223

38 W. Drabent

It also discusses how to overcome the difficulties with constructing its specification. The

next section presents a formal specification. Proofs of correctness and completeness of the

program are subjects of, respectively, Sections 5 and 6. Section 7 discusses the approach.

The last section concludes the paper.

2 Preliminaries

Basics. This paper considers definite clause logic programs. We employ the standard

terminology and notation (Apt 1997) and do not repeat here standard definitions and

results. We assume a fixed alphabet of function and predicate symbols. The Herbrand

universe will be denoted by HU , the Herbrand base by HB, and the set of all terms

(atoms) by T U (respectively T B); HBp is the set of ground atoms with the predicate

symbol p. By N we denote the set of natural numbers. We sometimes do not distinguish

a number i ∈ N from its representation as a term, si(0).

We use the list notation of Prolog. We assume that [e1, . . . , en|e] stands for e when

n = 0. A list (respectively open list) of length n ≥ 0 is a term [e1, . . . , en] ∈ T U
([e1, . . . , en|v] ∈ T U , where v is a variable); e1, . . . , en are the members of this (open)

list. We generalize the notion of (open) list membership, and say that e ∈ T U is member

of a term t ∈ T U if t = [e1, . . . , ek−1, e|e′], for some terms e1, . . . , ek−1, e
′, where k > 0. In

such case, we also say that e is the k-th member of t. Note that this kind of membership

is defined by the Prolog built-in predicate member/2. As in Prolog, each occurrence of _

stands for a distinct variable.

We follow the approach of Apt (1997) to SLD-resolution. So we consider queries instead

of goals. Queries are conjunctions of atoms. By an answer of a program P , we mean any

query Q such that P |= Q (Q is a logical consequence of P). So an answer is a query to

which a computed or correct answer substitution has been applied; Apt (1997) calls it

computed/correct instance of a query. (It does not matter whether correct or computed

answer substitutions are considered here, due to soundness and completeness of SLD-

resolution.) MP stands for the least Herbrand model of a program P . By the relation

defined by a predicate p in P , we mean {�t ∈ T Un | P |= p(�t) }, where n is the arity of p.

Specifications. In this paper, the treatment of specifications and reasoning about cor-

rectness and completeness follows that of Drabent (2016); missing proofs and further

explanations can be found there. For further discussion, examples and references, see

also Drabent (2018) and Drabent and Mi�lkowska (2005).

By a specification we mean an Herbrand interpretation S ⊆ HB. A program P is

correct w.r.t. a specification S when MP ⊆ S. This implies that S |= Q (S is a model

of Q) for any answer Q of P . Note that S |= Q means that each ground instance of each

atom of Q is a member of S. A program P is complete w.r.t. S when S ⊆ MP . This

implies that, for any ground query Q, if S |= Q, then Q is an answer of P . So Q is an

instance of an answer in each SLD-tree for P and any query Q0 more general than Q.1

1 As Prolog implements SLD-resolution except for the occur-check, the following holds in practice. If a
program P , complete w.r.t. S, is executed as a Prolog program with a query Q0, and the computation
terminates, then all the answers for Q0 described by S are computed. More precisely, if S |= Q for
a ground instance Q of Q0, then Q is an instance of some answer produced by the computation.
Similarly, assume that P is correct w.r.t. S and is executed with some query. Assume also that the
occur-check is not needed in this computation (P with the query is occur-check free (Apt 1997)). Then
S |= Q for each obtained answer Q. These two facts hold for any selection rule.

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

On Correctness and Completeness of an n Queens Program 39

Dealing with the n queens program we face a usual phenomenon: Often it is inconve-

nient (and unnecessary) to specify MP exactly, that is to provide a specification S for

which the program is both correct and complete, S = MP . It is useful to use instead

an approximate specification, which is a pair (Scompl , Scorr) of specifications for, re-

spectively, completeness and correctness. We say that a program P is fully correct w.r.t.

(Scompl , Scorr) when Scompl ⊆MP ⊆ Scorr. The approximation is exact if Scompl = Scorr.

The choice of an approximate specification depends on the properties of interest. See

for instance Drabent (2019) or Drabent and Mi�lkowska (2005) for various specifications

for append describing various properties of the program.

Proving program correctness. An obvious sufficient condition for correctness is provided

by Theorem 1 below. According to Deransart (1993), the condition is due to Clark (1979).

Theorem 1

For a program P and a specification S, if S |= P , then P is correct w.r.t. S.

Proof

As S is an Herbrand model of P , the least Herbrand model of P is a subset of S.

As S is an Herbrand interpretation, S |= P means that for each ground instance

H ← B1, . . . , Bn (n ≥ 0) of a clause of P , if B1, . . . , Bn ∈ S then H ∈ S.

Proving program completeness. First, we introduce some auxiliary notions.

Definition 2

A ground atom H is covered by a clause C w.r.t. a specification S if H is the head of

a ground instance H ← B1, . . . , Bn (n ≥ 0) of C, such that B1, . . . , Bn ∈ S (Shapiro

1983).

A ground atom H is covered by a program P w.r.t. S if H is covered w.r.t. S by some

clause C ∈ P .

Definition 3

A level mapping is a function | | : HB → N. A program P is recurrent w.r.t. a level

mapping | | (Bezem 1993) when, for each ground instance H ← B1, . . . , Bn (n ≥ 0) of a

clause of P and each i ∈ {1, . . . , n}, we have |H| > |Bi|.

The completeness proof presented in this paper will be based on the following lemma,

which is an immediate corollary of (Drabent 2016, Theorem 5.6 and Proposition 5.4) or

of (Deransart and Ma�luszyński 1993, Theorem 6.1).

Lemma 4

Let P be a program, and S a specification. If each atom A ∈ S is covered by P w.r.t. S,

and P is recurrent w.r.t. some level mapping, then P is complete w.r.t. S.

A note on built-ins. The presented approach can be generalized in a rather obvious way

to Prolog with some built-ins. We focus here on Prolog arithmetic. A program P using

arithmetic predicates (like is/2, or >/2) can be understood (Apt 1997) as augmented with

an infinite set of ground unit clauses defining the ground instances of arithmetic relations.

Apt denotes the set by P (Ar). Such clauses are for example (in the infix form) 4 is 2+2,

and 2+2 < 7. To deal with correctness or completeness of such program, we assume that

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

40 W. Drabent

the specification is augmented with P (Ar) (more precisely, that the set of atoms with

arithmetic predicates in the specification is P (Ar)). We also assume that |B| = 0 for each

B ∈ P (Ar). Now the sufficient conditions for correctness and completeness apply. (As

they are obviously satisfied by P (Ar), the condition for correctness needs to be checked

only for the clauses from P , and that for completeness only for atoms with non built-in

predicate symbols.)

This approach abstracts from run-time errors. So completeness w.r.t. S means that if

S |= Q and Q is a ground instance of a query Q0, then Q is an instance of an answer

of a Prolog computation starting with Q0, unless a run-time error or infinite loop is

encountered.

3 The n queens program

This section presents the n queens program of Frühwirth (1991), provides its informal

declarative description, and discusses how to construct its specification. Possible inac-

curacies due to informal approach will be corrected in the next sections, dealing with a

formal specification and proofs.

The problem is to place n queens on an n × n chessboard so that there is exactly

one queen on each row and each column, and at most one queen on each diagonal. The

main idea of the program is to describe the position of the queens by a data struc-

ture in which it is impossible that two queens are placed on the same row, column,

or a diagonal. In this way, the constraints of the problem are treated implicitly and

efficiently.

This paper considers the version of the program which represents natural numbers

as terms in a standard way. Another version employs Prolog arithmetic. The specifica-

tions and proofs of Sections 4, 5 and 6 can be, in a rather obvious way, transformed

to ones dealing with the latter version, following Anote on built-ins from the previous

section.

Here is the main part of the program (with abbreviated predicate names and with the

original comment); it will be named nqueens.

pqs(0,_,_,_).

pqs(s(I),Cs,Us,[_|Ds]):-

pqs(I,Cs,[_|Us],Ds), pq(s(I),Cs,Us,Ds).

% pq(Queen,Column,Updiagonal,Downdiagonal) places a single queen

pq(I,[I|_],[I|_],[I|_]).

pq(I,[_|Cs],[_|Us],[_|Ds]):- pq(I,Cs,Us,Ds).

(1)

(2)

(3)

(4)

Solutions to the n queen problem are provided by those answers of nqueens that are

of the form pqs(n, q, t1, t2), where n is a number and q a list of length n. A number

j ∈ {1, . . . , n} being the k-th member of q means that the queen of row j is placed on

column k. (The role of t1, t2 will be explained later.) So to obtain the solutions, one can

use a query Qin,n = pqs(n, q0, _, _), where q0 is a list of n distinct variables.

We quote the original description of the program, as it is an example of nondeclarative

viewing of logic programs:

Observing that no two queens can be positioned on the same row, column or diag-
onals, we place only one queen on each row. Hence we can identify the queen by its

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

On Correctness and Completeness of an n Queens Program 41

Fig. 1. Numbering of rows and columns. Numbering of up-diagonals (| -diagonals) and
down-diagonals (| -diagonals) in the context of row i (left), and i+ 1 (right), where i > 2.

row-number. Now imagine that the chess-board is divided into three layers, one that
deals with attacks on columns and two for the diagonals going up and down respec-
tively. We indicate that a field is attacked by a queen by putting the number of the
queen there.

Now we solve the problem by looking at one row at a time, placing one queen on the
column and the two diagonal-layers. For the next row/queen we use the same column
layer, to get the new up-diagonals we have to move the layer one field up, for the
down-diagonals we move the layer one field down.

This does not have much to do with the logic of the program; in particular, the relations

defined by the program are not described. Instead, actions of the program are described.

Also, the description does not seem to justify why the program is correct. Let us try to

treat the program declaratively, abstracting from the operational semantics.

Chessboard representation. Assume that columns and rows of the n × n chessboard are

numbered from 1 to n, from left to right and from top to bottom, respectively. So in an

up-diagonal (| -diagonal), all the squares have the same sum of the row number and the

column number. In a down-diagonal (| -diagonal), the difference of the two numbers is

the same. Each queen is identified by its row number.

In contrast to the numbering of rows and columns, the numbering of diagonals is not

fixed, it is specific to the context of the currently considered row; the diagonal number m

includes the m-th square of the row, for m ∈ {1, . . . , n} (Figure 1). So, in the context of

row i, a queen j (i.e. that of row j) placed on a column k is on the up-diagonal of number

k + j − i, and on the down-diagonal of number k + i − j. Consider, for instance, queen

1 placed on column 2 (Figure 1). Then, in the context of row i, it is on the up-diagonal

3− i, and on the down-diagonal 1 + i.

Given a set A ⊆ {1, . . . , n} of queens, by a correct placement of queens A we mean

placing them on the chessboard so that each row, column, up-diagonal and down-diagonal

contains at most one queen from A.

When the initial query is Qin,n as described above, the program represents the position

of queens (in the context of a given row i) by a list and two open lists. In a general

case, this representation consists of three terms of the form [t1, . . . , tl|t]. They represent,

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

42 W. Drabent

respectively, the columns, up-diagonals, and down-diagonals, so that

if column (up-diagonal, down-diagonal) k, where k > 0, contains the queen j

then j is the k-th member of the term representing the columns (respectively

up-diagonals, down-diagonals).

(5)

If a column (or a diagonal) k contains no queen then the k-th member of the respective

term is arbitrary2 or does not exist. Such representation guarantees that at most one

queen can be placed on each column and each diagonal with a positive number.3

For example, a chessboard with two queens 1, i placed as in Figure 1 is represented

as follows: The columns are represented by [i, 1| . . .]. In the context of row i, the up-

diagonals are represented by [i| . . .] (queen 1 is not represented here, as its up-diagonal

has number 3 − i ≤ 0); the down-diagonals are represented by [i, . . . , 1| . . .], where 1 is

the (i+1)-th member of the term (as the queen 1 is on the down-diagonal number i+1).

In the context of row i + 1, both queens are not represented in a term representing the

up-diagonals, and the down-diagonals are represented with [t, i, . . . , 1| . . .], where 1 is the

(i + 2)-th member of the term (and t is arbitrary).

Rationale. Now we informally describe the purpose of the predicates of the program. This

presentation is preliminary; the aim is to facilitate introducing the actual specification.

The role of pq is to define (a relation consisting of) tuples (i, cs, us, ds) ∈ T U4, where

for some j > 0, i is the j-th member of each cs, us, ds. (6)

This will be used to assure that a queen i is placed on a column, up-diagonal and down-

diagonal of the same number.

The role of pqs is to define tuples (i, cs, us, [t|ds]) ∈ N× T U3 such that

i > 0 and cs,us, ds represent as in (5)

a correct placement of queens 1, . . . , i on, respectively,

the columns, up-diagonals and down-diagonals,

where the diagonals are numbered in the context of row i,

(7)

and additionally all the tuples from {0} × T U3. For example, nqueens has an answer

A describing placing two queens on a 4× 4 chessboard, A = pqs(2, cs, us, [_|ds]), where

cs = [1, _, 2, _], us = [_, _, 2|_], and ds = [_, 1, 2|_]. The argument tuple of A satisfies (7).

Now we understand, for instance, why in clause (2) the third argument in the head

pqs(s(I),Cs ,Us , [_|Ds]) differs from that in the body atom pqs(I ,Cs , [_|Us],Ds). This

is because if, according to (7), term [_|Us] represents in the context of row I the up-

diagonals with positive numbers, then its tail Us does this in the context of row s(I).

Similar reasoning applies to the fourth argument and down-diagonals.

Note that property (7) is not closed under substitution. (E.g. answer A above has an

instance A′ = pqs(2, [1, 1, 2, _], us, ds) which places the same queen on two columns, and

two queens on a down-diagonal.) So what we described differs from the relation actually

defined by pqs , and our description needs to be corrected.

2 It is a variable when the initial query is Qin,n.
3 Diagonals with non-positive numbers are dealt with in contexts in which their numbers are positive.

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

On Correctness and Completeness of an n Queens Program 43

Informal specification. Note first that property (6) is closed under substitution (due to

employing the generalized notion of member). Thanks to this our specification for pq is

obvious:

Spq = { pq(i, [c1, . . . , ck, i|c], [u1, . . . , uk, i|u], [d1, . . . , dk, i|d]) ∈ HB | k ≥ 0 }. (8)

Note that this specification is exact, in the sense that {(3), (4)} (the fragment of nqueens

defining pq) is both correct and complete w.r.t.Spq.

The difficulty in constructing a specification for pqs is that the program has also

answers which represent incorrect placement of queens. This cannot be avoided, as any

answer of nqueens like A above (i.e. representing a correct placement of queens with

some columns empty) has instances which violate the conditions of the puzzle. It may

seem that we face a contradictory task: the role of our specification is to describe correct

placements, but it has to include some incorrect ones.

The idea to overcome the difficulty is to care only about those atoms pqs(i , cs , us , ds) ∈
HB, where cs is a list of distinct members. It leads to the following informal specification

for correctness for pqs :

the set of those pqs(i , cs , us , ds) ∈ HB where

i ∈ N, 1, . . . , i are members of term cs, and

if i > 0 and cs is a list of distinct members then

ds = [t|ds′] (for some t, ds′), and

condition (7) holds for i, cs, us, ds′.

(9)

It follows that if cs is a list of length i then it is a list of distinct members 1, . . . , i,

and hence it is a solution of the i queens problem. Now our specification for nqueens

is the union of the sets (8) and (9). Note that it serves its purpose, as correctness w.r.t.

it implies that the program solves the problem (each answer for the initial query Qin,n

represents a solution). Note also that the specification contains atoms which are not

answers of nqueens, for example pqs(1, [1, 1], [], []).

Such informal specification facilitates understanding of the program and makes possible

informal but precise reasoning about the program. For an example, consider a ground

instance of clause (2)

pqs(s(i), cs , us , [t |ds]) ← pqs(i , cs , [t ′|us], ds), pq(s(i), cs , us , ds).

Let us denote the body atoms by B1 and B2, respectively. Assume that they are as

described by the specification, that is B1 ∈ (9), B2 ∈ (8). We show that also the head is

as described by the specification, that is, it is in (9). By B2 ∈ (8), s(i) is a member of

cs. Assume that cs is a list of distinct members. So by B1 ∈ (9) and by (7), cs, [t ′|us]

and the tail of ds represent a correct placement of queens 1, . . . , i in the context of row i.

Hence, this placement in the context of row i+1 is represented by cs , us , ds . By B2 ∈ (8)

we have that, in the same context, cs, us, ds represent placing the queen i + 1. So its

column is distinct from those occupied by queens 1, . . . , i, the same holds for its up-

and down-diagonals. Thus, cs , us , ds represent a correct placement of queens 1, . . . , i+ 1.

Hence the head of the clause instance is in the set (9).

The reasoning of the last paragraph explains the clause and convinces us about its

correctness. Actually it is an informal outline of a central part of a correctness proof of

the program, based on Theorem 1. In the next section, the specification outlined here is

made formal and is augmented by a specification for completeness.

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

44 W. Drabent

4 Approximate specification

This section presents a pair of specifications for correctness and for completeness of

nqueens, formalizing the ideas from the previous section. We often do not distinguish

between number i and the queen i.

The specification for predicate pq is obvious. Both for correctness and for completeness

it is Spq from (8) in the previous section.

In order to formulate the specification for pqs , we introduce some additional notions.

Assume a queen j, that is that of row j, is in column k of the chessboard described by a

list of columns cs. This means that the k-th member of cs is j. Then, in the context of

row i, the numbers of the two diagonals containing this queen are defined as follows.

Definition 5

Let a number j be the k-th member of a list cs.

The up-diagonal number of j, w.r.t. i in cs is k + j − i.

The down-diagonal number of j, w.r.t. i in cs is k + i− j.

Obviously, queens j, j′ are on the same up (respectively down) diagonal iff for some i

they have the same up (down) diagonal number w.r.t. i.4 Note that “for some i” can

be replaced by “for all i,” so we can skip “w.r.t. i” when stating that some queens have

distinct up- (respectively down-) diagonal numbers.

Now we are ready to introduce the core of our specification.

Definition 6

A triple of terms (cs, us, ds) ∈ T U3 represents a correct placement up to row m in the

context of row i (in short: is correct up to m w.r.t. i) when 0 ≤ m ≤ i and

cs is a list of distinct members, and each j ∈ {1, . . . ,m} is its member,

the up (respectively down) diagonal numbers of 1, . . . ,m in cs are distinct, (10)

for each j ∈ {1, . . . ,m},

if the up (down) diagonal number of j w.r.t. i in cs is l > 0
(11)

then the l-th member of us (respectively ds) is j.

For example, ([1, a, 2, b], [c, d, 2], [e, 1, 2]) is correct up to 2 w.r.t. 2, and the same holds

w.r.t. 3 for ([1, a, 2, b], [d, 2], [f, e, 1, 2]); both triples represent a correct placement of

queens 1, 2 on a 4 × 4 chessboard. Given that queens (of rows) 1, . . . ,m are placed

on the columns as described by cs, condition (11) assures that us, ds describe the place-

ment of these queens on the diagonals with positive numbers. (An up-diagonal number in

(10), (11) may be negative, as j ≤ i.) Obviously, (10) implies that cs describes a correct

placement of queens 1, . . . ,m.

Now the specification for pqs is

Spqs =
{
pqs(0, cs, us, ds) | cs, us, ds ∈ HU

}
∪⎧⎨

⎩ pqs(i, cs, us, [t|ds]) ∈ HB

∣∣∣∣∣∣
i > 0, 1, . . . , i are members of cs,

if cs is a list of distinct members then

(cs, us, ds) is correct up to i w.r.t. i.

⎫⎬
⎭ ,

4 As an up-diagonal consists of those squares for which the sum k + j of the column number k and the
row number j is the same. Similarly, for a down-diagonal k − j is constant

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

On Correctness and Completeness of an n Queens Program 45

and our specification of nqueens for correctness is

S = Spq ∪ Spqs .

Note that correctness w.r.t. S implies the required property of the program. Take an

instance A of query Qin,n, so A = pqs(n, cs′, us′, ds′) ∈ T U , where n > 0 and cs′ is a list

of length n. If S |= A then cs′ is a solution of the n queens problem (as, for each ground

instance pqs(n, cs, us, u) of A, u is of the form [t|ds] and 1, . . . , n are members of cs; thus

cs is a list of distinct members 1, . . . , n, so (cs, us, ds) is correct up to n w.r.t. n, hence

cs represents a solution of the n queens problem).

While specifying completeness, we are interested in ability of the program to produce

all solutions to the problem. This leads to the following specification for completeness:

S0
pqs =

{
pqs(i, cs, us, [t|ds]) ∈ HB

∣∣∣∣ i > 0,

(cs, us, ds) is correct up to i w.r.t. i.

}
.

We conclude this section with a property which will be used later on.

Lemma 7

Assume 0 < m ≤ i. Consider two conditions

(cs, [t|us], ds) is correct up to m w.r.t. i, (12)

(cs, us, [t′|ds]) is correct up to m w.r.t. i + 1. (13)

For any t, t′ ∈ HU , (12) implies (13). For any t′ ∈ HU , (13) implies ∃ t ∈ HU (12).

Proof

Assume that cs is a list of distinct members and each j ∈ {1, . . . ,m} is a member of cs.

We will consider here the diagonal numbers in cs. Obviously, the up- (down-) diagonal

numbers w.r.t. i (of 1, . . . ,m) are distinct iff the diagonal numbers w.r.t. i + 1 are.

Let j ∈ {1, . . . ,m}. Then l is the down-diagonal number of j w.r.t. i iff l1 = l+1 is the

down-diagonal number of j w.r.t. i+1. Note that l > 0 (as j ≤ i). So for down-diagonals,

conditions (11) for i, j, l and ds, and (11) for i + 1, j, l1 and [t′|ds] are equivalent.

Number l is the up-diagonal number of j w.r.t. i iff l2 = l−1 is the up-diagonal number

of j w.r.t. i+1. For l2 > 0 we, similarly as above, obtain that for up-diagonals conditions

(11) for i, j, l and [t|us], (14)

(11) for i + 1, j, l2 and us (15)

are equivalent. For l2 = 0, (14) vacuously implies (15), and (15) implies that (14) holds

for some t, namely t = j. For l2 < 0 the equivalence of (14) and (15) is trivial.

This completes the proof of both implications of the lemma.

5 Correctness proof

Following Theorem 1, to prove correctness of program nqueens w.r.t. specification S,

one has to show that S is a model of each clause of the program. In other words to show,

for each ground instance of a clause of the program, that the head is in S provided the

body atoms are in S. For the unit clauses of nqueens

pq(I , [I |_], [I |_], [I |_]).

pqs(0, _, _, _).

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

46 W. Drabent

it is obvious that each ground instance of the clause is in S. Consider clause (4). For

any its ground instance

pq(i , [t1 |cs], [t2 |us], [t3 |ds])← pq(i , cs , us , ds),

it immediately follows from the definition of Spq that if the body atom is in S (thus in

Spq) then its head is in Spq ⊆ S.

The nontrivial part of the proof is to show that S is a model of clause (2). Consider

its ground instance

pqs(s(i), cs , us , [t |ds])← pqs(i , cs , [t1 |us], ds), pq(s(i), cs , us , ds).

Let H be its head, and B1, B2 the body atoms. Assume B1, B2 ∈ S. Now (by B2 ∈ S) s(i)

is the l-th member of cs, us, ds (for some l > 0). Note that l is the up (down) diagonal

number of s(i) w.r.t. s(i) in cs. So condition (11) holds for s(i) w.r.t. s(i).

Consider first the case of i = 0. Then (cs, us, ds) is correct up to s(0) w.r.t. s(0),

provided that cs is a list of distinct members. Hence H ∈ S.

Consider i > 0. Note first that 1, . . . , s(i) are members of cs (s(i) as explained above,

and 1, . . . , i by B1 ∈ S). Assume that cs is a list of distinct members. Then (by B1 ∈ S)

(cs, [t1|us], ds′) is correct up to i w.r.t. i, where ds′ is the tail of ds. Hence, by Lemma 7,

β = (cs, us , ds) is correct up to i w.r.t. s(i). As shown above, (11) holds for s(i) w.r.t.

s(i) (where l is both the up- and the down-diagonal number of s(i)). Thus, (11) holds

for 1, . . . , s(i) w.r.t. s(i). Hence, no up (or down) diagonal number of a j ∈ {1, . . . , i} is

l. As the latter diagonal numbers are distinct (due to β being correct up to i), (10) holds

for 1, . . . , s(i).

Hence β is correct up to s(i) w.r.t. s(i). Thus H ∈ S. This completes the proof.

6 Completeness proof

As explained in Section 4, we are interested in completeness of nqueens w.r.t. specifi-

cation S0
pqs . However, the sufficient condition of Lemma 4 does not hold for this specifi-

cation. Instead let us use

S0 = Spq ∪ S0
pqs ∪ { pqs(0, cs, us, ds) | cs, us, ds ∈ HU }

as the specification for completeness.5

We first show that each atom from specification S0 is covered by program nqueens.

Each atom

A = pq(i, [c1, . . . , ck, i|c], [u1, . . . , uk, i|u], [d1, . . . , dk, i|d])

from Spq is covered by nqueens w.r.t. S0; for k = 0 by clause (3) as A is its instance;

for k > 0 by clause (4) due to its instance A ← pq(i, [c2, . . . , ck, i|c], [u2, . . . , uk, i|u],

5 This is a common phenomenon in mathematics; an inductive proof of a property may be impossible,
unless the property is strengthened. Actually, the same happened in the case of correctness. We are
interested in correctness of nqueens w.r.t. Spqs ∪ HBpq . However, Spqs ∪ HBpq is not a model of the
program and Theorem 1 is not applicable. Instead, we used a stronger specification S = Spqs ∪ Spq .
Obviously, correctness (completeness) w.r.t. a specification implies correctness (completeness) w.r.t.
any its superset (subset).

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

On Correctness and Completeness of an n Queens Program 47

[d2, . . . , dk, i|d]) (as its body atom is in S0). Also, each atom pqs(0, cs, us, ds) is covered,

as it is an instance of clause (1).

The nontrivial part of the proof is to show that each A ∈ S0
pqs is covered. Consider

such atom, it is of the form

A = pqs(s(i), cs, us, [t|ds]),

where i ≥ 0 and (cs, us, ds) is correct up to s(i) w.r.t. s(i). So cs is a list of distinct

members, and each j ∈ {1, . . . , s(i)} is a member of cs. Let s(i) be the l-th member of

cs. Thus l is the up- and down-diagonal number of s(i) w.r.t. s(i) in cs, and (by Definition

6) s(i) is the l-th member of us and of ds.

We show that A is covered by clause (2) w.r.t. S0, due to its instance

A← B1, B2. where B1 = pqs(i, cs, [t′|us], ds), B2 = pq(s(i), cs, us , ds)

(and t′ ∈ HU will be determined later). We have B2 ∈ S0 (as s(i) is the l-th member of

cs, us and ds). If i = 0 then B1 ∈ S0, thus A is covered by (2).6

Assume i > 0. As (cs, us, ds) is correct up to s(i) w.r.t. s(i), it is correct up to i w.r.t.

s(i), and by Lemma 7, (cs, [t′|us], ds′) is correct up to i w.r.t. i, for some t′ ∈ HU , where

ds′ is the tail of ds. Hence for such t′ we have B1 ∈ S0
pqs ⊆ S0, thus A is covered by (2).

This completes the proof that each A ∈ S0 is covered by nqueens w.r.t. S0. It remains

to find a level mapping under which nqueens is recurrent. Consider the level mapping

defined by

| pqs(i, cs, us, ds) | = |i|+ |cs|,
| pq(i, cs, us, ds) | = |cs|, where

| [h|t] | = 1 + |t|,
| s(t) | = 1 + |t|,
|f(t1, . . . , tn)| = 0,

for any ground terms i, cs, us, ds, h, t, t1, . . . , tn, and any n-ary function symbol f distinct

from s and from [|] (n ≥ 0). An easy inspection shows that under this level mapping

nqueens is recurrent. Hence by Lemma 4, the program is complete w.r.t. S0.

Additionally, it follows by (Apt 1997, Corollary 6.9) that the program terminates for

initial queries Qin,n, as each Qin,n is bounded w.r.t. | | (Apt 1997, Definition 6.7).

7 Comments

A practical consequence of the correctness, completeness, and termination proven above

is as follows. Assume that nqueens with query Qin,n is executed by Prolog, however with

the occur-check. Then the computation will terminate, and the answers will represent

all the solutions to the n queens problem. This holds for arbitrary selection rule. The

occur-check is actually not needed (Drabent 2021), so this also holds for Prolog without

the occur-check.

Let us now discuss general applicability of the presented approach. Note first that

finding an appropriate specification was a crucial step to treat nqueens within the

standard declarative semantics.

Our construction of the approximate specification exemplifies a general pattern

(Drabent 2016; 2018). Some ground atoms may be irrelevant for the program properties

6 Note that in this case A is covered w.r.t. S0 but not w.r.t. S0
pq∪S0

pqs . This is why we use S0 ⊃ S0
pq∪S0

pqs
as a specification.

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

48 W. Drabent

we are interested in. (In our case, they are atoms pqs(i , cs , us , ds) ∈ HBpqs , where i = 0,

or i ∈ N, 1, . . . , i are members of cs, and cs is not a list of distinct members.) So HB
is divided into a set Sirr ⊆ HBpqs of irrelevant atoms and Srel = HB \ Sirr, the set

of relevant ones. From the latter, a set Sc ⊆ Srel of “correct” ones is chosen, so that

correctness w.r.t. specification Sirr ∪ Sc implies the program properties of interest.

In many cases, Sc describes the ground atoms which the program should compute, so

Sc is used as a specification for completeness, and Sirr ∪ Sc as one for correctness.

A contribution of our example is dealing with the fact that some answers of the program

represent expected solutions, but have instances which apparently should be considered

incorrect. The problem was overcome by including such instances into Sirr. In this way,

we do not need to consider nonground answers, instead it is sufficient to consider their

ground instances from HB\Sirr. This idea should be applicable to other programs posing

similar problems.

8 Conclusions

The paper provides an example of precise reasoning about the semantics of a logic pro-

gram. It presents detailed proofs of correctness and completeness of the n queens program

of Frühwirth (1991). The program is short, but may be seen as tricky or nonobvious. The

approach is declarative; the specifications and proofs abstract from any operational se-

mantics, the program is treated solely as a set of logical formulae. Note that, in many

cases, approaches based on the operational semantics are proposed for reasoning about

declarative properties of logic programs (Apt 1997; Bossi and Cocco 1989; Pedreschi and

Ruggieri 1999). This seems to introduce unnecessary complications (cf. (Drabent and

Mi�lkowska 2005, Section 3.2)).

The program uses nonground data, like open lists with some elements being variables.

Moreover, some of its answers (which represent solutions to the n queens problem) have

instances that represent incorrect positioning of the queens. So one may expect that ap-

proaches based on the standard semantics and Herbrand interpretations are inapplicable

here. Actually, this is not the case. We discuss difficulties with constructing a specifica-

tion, show how to overcome them, and provide a formal specification based on Herbrand

interpretations. Then we prove that the program is correct and complete with respect to

the specification. Building the specification is a crucial part of this work.

It may seem that s-semantics (Falaschi et al . 1989) is suitable here, as it explicitly

deals with non-ground answers. However, the approach employed in this paper seems

preferable, as analogical specification and proofs employing the s-semantics (Drabent

2020) turn out to be more complicated.

Our specification is approximate (see Section 2). Constructing an exact specification of

the program would be too troublesome and would result in more complicated correctness

and completeness proofs. This is quite common in logic programming—one often does

not need to know the exact semantics of one’s program. Some features of the program

are of no interest, for instance they may be irrelevant to its intended usage. So we do not

need to describe them.

The paper deals with a single program. In Section 7, we discuss the presented ideas as

an instance of a more general approach.

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

On Correctness and Completeness of an n Queens Program 49

The detailed proofs presented here may be seen as too impractical due to numerous

details. This is however usually the case when proving program properties. Experience

from imperative and logic programming shows that program correctness really does de-

pend on many details (see e.g. the example proofs in Apt et al . (2009) and in the papers

mentioned above). Maintaining the details by means of some proof assistant is outside

of the scope of this paper. On the other hand, in the author’s opinion proofs like those

presented here can be informally performed by programmers, possibly in a less detailed

way, during actual programming. Two fragments of such informal reasoning, with var-

ious levels of precision, are shown in Section 3 (in subsections Rationale and Informal

specification). We expect that formal proof methods, like those discussed here, can teach

programmers a systematic way of reasoning about their programs in practice.

Acknowledgement

Comments of anonymous referees and of Michael Maher were instrumental in improving

the presentation.

Conflicts of interest

The author declares none.

References

Apt, K. R. 1997. From Logic Programming to Prolog. International Series in Computer Science.
Prentice-Hall.

Apt, K. R., de Boer, F. S. and Olderog, E.-R. 2009. Modular verification of recursive pro-
grams. In Languages: From Formal to Natural, Essays Dedicated to Nissim Francez. Lecture
Notes in Computer Science, vol. 5533. Springer, 1–21.

Bezem, M. 1993. Strong termination of logic programs. Journal of Logic Programming 15, 1&2,
79–97.

Bossi, A. and Cocco, N. 1989. Verifying correctness of logic programs. In TAPSOFT, Vol. 2,
J. Dı́az and F. Orejas, Eds. Lecture Notes in Computer Science, vol. 352. Springer, 96–110.

Clark, K. L. 1979. Predicate logic as computational formalism. Tech. Rep. 79/59, Imperial
College, London. December.

Deransart, P. 1993. Proof methods of declarative properties of definite programs. Theoretical
Computer Science 118, 2, 99–166.

Deransart, P. and Ma�luszyński, J. 1993. A Grammatical View of Logic Programming. The
MIT Press.

Drabent, W. 2016. Correctness and completeness of logic programs. ACM Transactions on
Computational Logic 17, 3, 18:1–18:32.

Drabent, W. 2018. Logic + control: On program construction and verification. Theory and
Practice of Logic Programming 18, 1, 1–29.

Drabent, W. 2019. On correctness of an n queens program. CoRR abs/1909.07479. http://
arxiv.org/abs/1909.07479. A preliminary version of the current paper, with extended in-
troductory sections.

Drabent, W. 2020. S-semantics – an example. CoRR abs/2006.06077. http://arxiv.org/abs/
2006.06077. Presented at LOPSTR 2021.

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

http://arxiv.org/abs/1909.07479
http://arxiv.org/abs/1909.07479
http://arxiv.org/abs/2006.06077
http://arxiv.org/abs/2006.06077
https://doi.org/10.1017/S1471068421000223

50 W. Drabent

Drabent, W. 2021. A note on occur-check. In Proceedings 37th International Conference on
Logic Programming (Technical Communications), A. Formisano et al Eds. Electronic Proceed-
ings in Theoretical Computer Science, vol 345. Open Publishing Association, 54–67.

Drabent, W. and Mi�lkowska, M. 2005. Proving correctness and completeness of normal
programs – a declarative approach. Theory and Practice of Logic Programming 5, 6, 669–711.

Falaschi, M., Levi, G., Palamidessi, C. and Martelli, M. 1989. Declarative modeling of
the operational behavior of logic languages. Theoretical Computer Science 69, 3, 289–318.

Frühwirth, T. 1991. nqueens. A post in comp.lang.prolog. 1991-03-08. Also in (Sterling and
Shapiro 1994, Section 4.1, Exercise (v)).

Pedreschi, D. and Ruggieri, S. 1999. Verification of logic programs. Journal of Logic Pro-
gramming 39, 1–3, 125–176.

Shapiro, E. 1983. Algorithmic Program Debugging. The MIT Press.

Sterling, L. and Shapiro, E. 1994. The Art of Prolog , 2 ed. The MIT Press.

https://doi.org/10.1017/S1471068421000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000223

	Introduction
	Preliminaries
	The n queens program
	Approximate specification
	Correctness proof
	Completeness proof
	Comments
	Conclusions
	References

