GENERALISATIONS OF SOME INTEGRALS INVOLVING BESSEL FUNCTIONS AND E-FUNCTIONS
 by FOUAD M. RAGAB
 (Received 30th October, 1950)

§ 1. Introductory. In § 3 a generalisation of the formula [MacRobert, Phil. Mag., Ser. 7, XXXI, p. 258]

$$
\begin{equation*}
4 \int_{0}^{\infty} \lambda^{m-1} K_{n}(2 \lambda) E\left(p ; \alpha_{s}: q ; \rho_{t}: x \lambda^{-2}\right) d \lambda=E\left(p+2 ; \alpha_{s}: q ; \rho_{t}: x\right) \tag{1}
\end{equation*}
$$

where $\alpha_{p+1}=\frac{1}{2} m+\frac{1}{2} n ; \alpha_{p+2}=\frac{1}{2} m-\frac{1}{2} n, R(m \pm n)>0$, and x is real and positive, will be established. In the course of the proof Hardy's formula [Mess. of Maths., LVI, (1927), p. 190],

$$
\begin{equation*}
\int_{0}^{\infty} K_{n}(x) K_{n}\left(\frac{b}{x}\right) d x=\pi K_{2 n}(2 \sqrt{ } b) \tag{2}
\end{equation*}
$$

where $R(b)>0$, will be required. This was originally proved by an application of Mellin's Inversion Formula. An alternative proof is given in §2, and some related formulae are deduced.
§ 2. Proof of Hardy's Formula. Denote the integral on the left of (2) by $F(b)$; then
and

$$
\begin{aligned}
& F^{\prime \prime}(b)=\int_{0}^{\infty} K_{n}(x) K_{n}^{\prime}\left(\frac{b}{x}\right) \frac{1}{x} d x \\
& F^{\prime \prime \prime}(b)=\int_{0}^{\infty} K_{n}(x) K_{n}^{\prime \prime}\left(\frac{b}{x}\right) \frac{1}{x^{2}} d x
\end{aligned}
$$

so that

$$
\begin{aligned}
b^{2} F^{\prime \prime}(b) & =\int_{0}^{\infty} K_{n}(x)\left\{\left(\frac{b^{2}}{x^{2}}+n^{2}\right) K_{n}\left(\frac{b}{x}\right)-\frac{b}{x} K_{n}\left(\frac{b}{x}\right)\right\} d x \\
& =n^{2} F(b)-b F^{\prime}(b)+b^{2} \int_{0}^{\infty} K_{n}(x) K_{n}\left(\frac{b}{x}\right) \frac{d x}{x^{2}} .
\end{aligned}
$$

But, on replacing x by b / x in $F(b)$, it is seen that

$$
F(b)=b \int_{0}^{\infty} K_{n}(x) K_{n}\left(\frac{b}{x}\right) \frac{1}{x^{2}} d x .
$$

Hence

$$
\begin{equation*}
b^{2} F^{\prime \prime}(b)+b F^{\prime}(b)-\left(b+n^{2}\right) F(b)=0 . \tag{3}
\end{equation*}
$$

Now in the equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+4 n^{2}\right) y=0 \tag{4}
\end{equation*}
$$

with solutions $K_{2 n}(x)$ and $I_{2 n}(x)$, put $x=2 \sqrt{ } b$, and it reduces to (3). Therefore

$$
\int_{0}^{\infty} K_{n}(x) K_{n}\left(\frac{b}{x}\right) d x=A K_{2 n}(2 \sqrt{ } b)+B I_{2 n}(2 \sqrt{ } b)
$$

Here let $b \rightarrow \infty$, and it is seen that B must be zero. Thus

$$
\int_{0}^{\infty} K_{n}(x)\left\{I_{-n}\left(\frac{b}{x}\right)-I_{n}\left(\frac{b}{x}\right)\right\} d x=\frac{A}{2 \cos n \pi}\left\{I_{-2 n}(2 \sqrt{ } b)-I_{2 n}(2 \sqrt{ } b)\right\} .
$$

Now assume that $R(n)>0$, multiply by b^{n} and let $b \rightarrow 0$; then

$$
\frac{2^{n}}{\Gamma(1-n)} \int_{0}^{\infty} K_{n}(x) x^{n} d x=\frac{A}{2 \cos n \pi \Gamma(1-2 n)} .
$$

But, if $R(m \pm n)>0$,

$$
\begin{equation*}
\int_{0}^{\infty} K_{n}(x) x^{m-1} d x=2^{m-2} \Gamma\left(\frac{m+n}{2}\right) \Gamma\left(\frac{m-n}{2}\right) . \tag{5}
\end{equation*}
$$

Therefore

$$
\frac{2^{2 n-1}}{\Gamma(1-n)} \Gamma\left(n+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)=\frac{A}{2 \cos n \pi \Gamma(1-2 n)},
$$

and from this it follows that $A=\pi$.
From (2) other formulae of the same type can be derived as follows.
In (2) let amp b decrease by $\frac{1}{2} \pi$, finally writing b / i in place of b; then, since

$$
\begin{equation*}
K_{n}(t)=i^{n} G_{n}(i t) \tag{6}
\end{equation*}
$$

the formula becomes

$$
\begin{equation*}
\int_{0}^{\infty} K_{n}(x) G_{n}\left(\frac{b}{x}\right) d x=\pi i^{-n} K_{2 n}\left(2 \sqrt{ } b \cdot e^{-i \pi / 4}\right) \tag{7}
\end{equation*}
$$

provided that $-\frac{5}{2}<R(n)<\frac{5}{2}$.
Similarly, on replacing b by $i b$, it is seen that

$$
\begin{equation*}
\int_{0}^{\infty} K_{n}(x) G_{n}\left(\frac{b}{x} e^{i \pi}\right) d x=\pi i^{i-n} K_{2 n}\left(2 \sqrt{ } b \cdot e^{i \pi / 4}\right) \tag{8}
\end{equation*}
$$

where $-\frac{5}{2}<R(n)<\frac{5}{2}$.
Hence, using the formula

$$
\begin{equation*}
\pi i J_{n}(t)=G_{n}(t)-i^{2 n} G_{n}\left(t e^{i \pi}\right), \tag{9}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
i \int_{0}^{\infty} K_{n}(x) J_{n}\left(\frac{b}{x}\right) d x=i^{-n} K_{2 n}\left(2 \sqrt{ } b . e^{-i \pi / 4}\right)-i^{n} K_{2 n}\left(2 \sqrt{ } b . e^{i \pi / 4}\right), \tag{10}
\end{equation*}
$$

where $-\frac{5}{2}<R(n)<\frac{5}{2}$. This formula also is given in Hardy's paper.
Again, let amp x and amp b increase simultaneously by $\frac{1}{2} \pi$, so that x becomes $i x$ and b becomes $i b$; then

$$
\begin{equation*}
\int_{0}^{\infty} G_{n}\left(x e^{i \pi}\right) J_{n}\left(\frac{b}{x}\right) d x=K_{2 n}\left(2 \sqrt{ } b \cdot e^{i \pi / 2}\right)-i^{-2 n} K_{2 n}(2 \sqrt{ } b) \tag{11}
\end{equation*}
$$

where $-\frac{1}{2}<R(n)<\frac{5}{2}$.
Similarly, if amp x and amp b decrease simultaneously by $\frac{1}{2} \pi,(10)$ becomes

$$
\begin{equation*}
\int_{0}^{\infty} G_{n}(x) J_{n}\left(\frac{b}{x}\right) d x=i^{-2 n} K_{2 n}\left(2 \sqrt{ } b \cdot e^{-i \pi / 2}\right)-K_{2 n}(2 \sqrt{ } b) \tag{12}
\end{equation*}
$$

where $-\frac{1}{2}<R(n)<\frac{5}{2}$.
Finally, from (9), (11) and (12) it follows that
so that

$$
\begin{aligned}
\pi i \int_{0}^{\infty} & J_{n}(x) J_{n}\left(\frac{b}{x}\right) d x \\
& =i^{-2 n} K_{2 n}\left(2 \sqrt{ } b \cdot e^{-i \pi / 2}\right)-i^{2 n} K_{2 n}\left(2 \sqrt{ } b \cdot e^{i \pi / 2}\right) \\
& =G_{2 n}(2 \sqrt{ } b)-i^{4 n} G_{2 n}\left(2 \sqrt{ } b \cdot e^{i \pi}\right) \\
& =\pi i J_{2 n}(2 \sqrt{ } b),
\end{aligned}
$$

$$
\begin{equation*}
\int_{0}^{\infty} J_{n}(x) J_{n}\left(\frac{b}{x}\right) d x=J_{2 n}(2 \sqrt{ } b) \tag{13}
\end{equation*}
$$

where $R(n)>-\frac{1}{2}$. This formula was given by Bateman (Proc. Camb. Phil. Soc., XXI, (1908), p. 186).
§ 3. Generalisation of the Integral. The formula to be proved is

$$
\begin{array}{r}
2^{2^{r_{+}+1}} \pi^{2 r-1} \int_{0}^{\infty} \lambda^{2^{r_{m-1}}} K_{2^{r} n}\left(2^{r+1} \lambda\right) E\left(p ; \alpha_{s}: q ; \rho_{t}: x \lambda^{-^{2 r+1}}\right) d \lambda \\
=E\left(p+2^{r+1} ; \alpha_{s}: q ; \rho_{t}: x\right), \ldots . . \tag{14}
\end{array}
$$

where $r=0,1,2, \ldots$, and

$$
\left.\begin{array}{l}
\alpha_{p+2 k+1}=\frac{1}{2} m+\frac{1}{2} n+\frac{k}{2^{r}} \tag{14'}\\
\alpha_{p+2 k+2}=\frac{1}{2} m-\frac{1}{2} n+\frac{k}{2^{r}}
\end{array}\right\} k=0,1,2, \ldots, 2^{r}-1,
$$

$R(m \pm n)>0$ and x is real and positive.
It can be proved by induction; for, assuming that it is valid, it follows that

$$
\begin{aligned}
& E\left(p+2^{r+2} ; \alpha_{s}: q ; p_{t}: x\right) \\
& =2^{2^{r}+r+1} \pi^{2 r-1} \int_{0}^{\infty} \lambda^{2 r} l-1 K_{2^{r} n}\left(2^{r+1} \lambda\right) E\left(p+2^{r+1} ; \alpha_{s}: q ; \rho_{t}: x \lambda^{-2^{r+1}}\right) d \lambda,
\end{aligned}
$$

where

$$
\left.\begin{array}{c}
\alpha_{p+2^{r+1}+2 k+1}=\frac{1}{2} l+\frac{1}{2} n+\frac{k}{2^{r}} \\
\alpha_{p+2^{r+1}+2 k+2}=\frac{1}{2} l-\frac{1}{2} n+\frac{k}{2^{r}}
\end{array}\right\} k=0,1,2, \ldots, 2^{r}-1,
$$

Here replace μ by μ / λ and get

$$
\begin{aligned}
& 2^{2^{r+1}+2 r+2} \pi^{2^{r+1}-2} \int_{0}^{\infty} \lambda^{2^{r}(l-m)-1} K_{2^{r} n}\left(2^{r+1} \lambda\right) d \lambda \\
& \quad \times \int_{0}^{\infty} \mu^{2^{r} r_{m-1}} K_{2^{r} n}\left(2^{r+1} \frac{\mu}{\lambda}\right) E\left(p ; \alpha_{s}: q ; \rho_{t}: x \mu^{-2^{r+1}}\right) d \mu .
\end{aligned}
$$

Next put $l=m+2^{-r}$ and change the order of integration, so getting

$$
\begin{aligned}
& 2^{2^{r+1}+2 r+2} \pi^{2^{r+1}-2} \int_{0}^{\infty} \mu^{2^{r} m-1} E\left(p ; \alpha_{s}: q ; \rho_{t}: x \mu^{-2^{r+1}}\right) d \mu \\
& \quad \times \int_{0}^{\infty} K_{2^{r_{n}}}\left(2^{r+1} \lambda\right) K_{2^{r_{n}}}\left(2^{r+1} \frac{\mu}{\lambda}\right) d \lambda,
\end{aligned}
$$

where

$$
\left.\begin{array}{l}
\alpha_{p+2^{r+1}+2 k+1}=\frac{1}{2} m+\frac{1}{2} n+\frac{2 k+1}{2^{r+1}} \\
\alpha_{p+2^{r+1}+2 k+2}=\frac{1}{2} m-\frac{1}{2} n+\frac{2 k+1}{2^{r+1}}
\end{array}\right\} \begin{gathered}
k=0,1,2, \ldots, 2^{r}-1, \\
\text { or } \\
2 k+1=1,3,5, \ldots, 2^{r+1}-1 .
\end{gathered}
$$

But, from (14'),

$$
\left.\begin{array}{l}
\alpha_{p+2 k+1}=\frac{1}{2} m+\frac{1}{2} n+\frac{2 k}{2^{r+1}} \\
\alpha_{p+2 k+2}=\frac{1}{2} m-\frac{1}{2} n+\frac{2 k}{2^{r+1}}
\end{array}\right\} \begin{gathered}
k=0,1,2, \ldots, 2^{r}-1, \\
\text { or } \\
2 k=0,2,4, \ldots, 2^{r+1}-2 .
\end{gathered}
$$

Therefore

$$
\left.\begin{array}{l}
\alpha_{p+2 k+1}=\frac{1}{2} m+\frac{1}{2} n+\frac{k}{2^{r+1}} \\
\alpha_{p+2 k+2}=\frac{1}{2} m-\frac{1}{2} n+\frac{k}{2^{r+1}}
\end{array}\right\} k=0,1,2, \ldots, 2^{r+1}-1 .
$$

Now, from (2), the last integral is equal to

$$
\frac{1}{2^{r+1}} \pi K_{2^{r+1}}\left(2^{r+2} \sqrt{ } \mu\right)
$$

Hence, on replacing μ.by λ^{2}, we have

$$
\begin{aligned}
& E\left(p+2^{r+2} ; \alpha_{s}: q ; \rho_{t}: x\right)=2^{2^{r+1}+r+2} \pi^{2^{r+1}-1} \\
& \quad \times \int_{0}^{\infty} \lambda^{2^{r+1} m-1} K_{2^{r+1}}\left(2^{r+2} \lambda\right) E\left(p ; \alpha_{s}: q ; \rho_{t}: x \lambda^{-2^{r+2}}\right) d \lambda
\end{aligned}
$$

which is (14) with $r+1$ in place of r.
But the formula holds when $r=0$: hence it holds for all positive integral values of r. If in (14) amp λ is decreased by $\frac{1}{2} \pi$ and amp x by $2^{r} \pi$, it becomes, by (6),

$$
\begin{array}{r}
2^{2^{r}+r+1} \pi^{2^{r}-1} i^{2^{r}(n-m)} \int_{0}^{\infty} \lambda^{2^{r} m-1} G_{2^{r}}\left(2^{r+1} \lambda\right) E\left(p ; \alpha_{s}: q ; \rho_{t}: x \lambda^{-2^{r+1}}\right) d \lambda \\
=E\left(p+2^{r+1} ; \alpha_{s}: q ; \rho_{t}: x e^{-i \pi 2^{r}}\right), \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \tag{15}
\end{array}
$$

where $R(m \pm n)>0, R\left(\frac{3}{2}-2^{r} m+2^{r+1} \alpha_{s}\right)>0, \varepsilon=1,2, \ldots, p$, and x is real and positive.
Similarly, and subject to the same conditions,

$$
\begin{array}{r}
2^{2^{r+r+1}} \pi^{2 r-1} i^{2^{r}(n+m)} \int_{0}^{\infty} \lambda^{2^{r} m-1} G_{2^{r} n}\left(2^{r+1} \lambda e^{i \pi}\right) E\left(p ; \alpha_{s}: q ; \rho_{t}: x \lambda^{-2^{r+1}}\right) d \lambda \\
=E\left(p+2^{r+1} ; \alpha_{s}: q ; \rho_{t}: x e^{i \pi 2^{r}}\right), \ldots \tag{16}
\end{array}
$$

and, from (9),

$$
\begin{align*}
& 2^{2^{r}+r+1} \pi^{2^{r} r} i \int_{0}^{\infty} \lambda^{2^{r} r_{m-1}} J_{2^{r} n}\left(2^{r+1} \lambda\right) E\left(p ; \alpha_{s}: q ; \rho_{t}: x \lambda^{-2^{r+1}}\right) d \lambda \\
& \quad=i^{2^{r}(m-n)} E\left(p+2^{r+1} ; \alpha_{s}: q ; \rho_{t}: x e^{-i \pi 2^{2}}\right) \\
& \quad-i^{-2^{r(m-n)}} E\left(p+2^{r+1} ; \alpha_{s}: q ; \rho_{t}: x e^{i \pi 2^{r} r}\right) \ldots \ldots \ldots \ldots . \tag{17}
\end{align*}
$$

where $R(m+n)>0, R\left(\frac{3}{2}-2^{r} m+2^{r+1} \alpha_{s}\right)>0, s=1,2, \ldots, p$, and x is real and positive. The case in which $r=0$ was given in a previous paper (see page 7).

University of Glasgow

