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AMPLE VECTOR BUNDLES ON A RATIONAL SURFACE
TOSHIO HOSOH

Introduction.

On a complete non-singular curve defined over the complex number
field C, a stable vector bundle is ample if and only if its degree is
positive [3]. On a surface, the notion of the H-stability was introduced
by F. Takemoto [8] (see §1). We have a simple numerical sufficient
condition for an H-stable vector bundle on a surface S defined over C
to be ample; let £ be an H-stable vector bundle of rank 2 on S with
A(E) = ¢,(E)* — 4c,(E) = 0, then E is ample if and only if ¢,(E) > 0 and
¢,(F) > 0, provided S is an abelian surface, a ruled surface or a hyper-
elliptic surface [9]. But the assumption above concerning 4(E) evidently
seems too strong. In this paper, we restrict ourselves to the projective
plane P? and a rational ruled surface X, defined over an algebraically
closed field ¥ of arbitrary characteristic. We shall prove a finer as-
sertion than that of [9] for an H-stable vector bundle of rank 2 to be
ample (Theorem 1 and Theorem 3). Examples show that our result is
best possible though it is not a necessary condition (see Remark (1) § 2).

In §1, we shall recall the definition of H-stable vector bundles and
their elementary properties proved by F. Takemoto [&].

In §2, we shall prove the following;

THEOREM 1. If E is an H-stable vector bundle of rank 2 on P?
with ¢,(E) = (—1/2)4(F), then E is ample.

In §3, we shall prove a similar sufficient condition for an H-stable
vector bundle of rank 2 on Y, to be ample (Theorem 3).

The author wishes to thank H. Umemura who called his attention
to this problem and gave him many suggestions.

§1. Preliminaries

Let k& be an algebraically closed field of arbitrary characteristic.
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Throughout this paper, the ground field ¥ will be fixed. Let E be a
vector bundle (i.e. a locally free sheaf) on a non-singular irreducible
projective algebraic variety X defined over k. We shall use the follow-
ing notation;

h(X,E): = dim, H(X,E); the dimension of HX, E).
E*: = Hom, (¥, Ox); the dual vector bundle of E.
(&) : = 25 (—1)'h%(X, E) ; the Euler-Poincaré characteristic of E.
¢,(E); the i-th Chern class of FE.

Let H be an ample line bundle (i.e. invertible sheaf) on X and s =
dim X. We recall the deflnition of H-stable vector bundles [8].

DEFINITION. A vector bundle £ on X is H-gstable if for every non-
trivial, non-torsion, quotient sheaf F of FE,d(E,H)/r)E) < d(F,H)/r(F),
where d(F, H) = (¢,(F), H*™') with the intersection pairing (, ) and where
r(F) is the rank of F.

The following lemma is an immediate consequence of the definition.

LEMMA (1.1). (1) A wvector bundle is H-stable if and only if it is
H®_gtable for any natural number n.

@) If L is a line bundle, then E is H-stable if and only if F QL
1s H-stable.

(8) If E is H-stable and d(E,H) < 0, then HY(X,E) = (0).

We say that a vector bundle E is simple if any global endomorphism
of F is constant, i.e. H'X,End (F)) = k. We know that an H-stable
vector bundle is simple ([8] Corollary (1.8)). In the case of rank 2
vector bundles on P?, also the converse is true ([8] Proposition (4.1)), i.e.;

LEMMA (1.2). Let E be a vector bundle of rank 2 on P?, then the
following conditions are equivalent
Q). E is simple. (). E is OP*(1)-stable.

There is a very usefull criterion for a rank 2 vector bundle to be
not simple ([7] Theorem 1.);

LEMMA (1.8). Let E be a vector bundle of rank 2 on X, then the
following conditions are equivalent.

1). E is not simple.

(2). There exists o line bundle L on X such that for E' = EQL,
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X,E") #= 0 and (X, E"™*) # 0.

Let E be a vector bundle on X, P(F) the projective bundle on X
associated to E and Op (1) the tautological line bundle on P(E) i.e.
74(Opi,(1)) = E,n being the natural projection of P(E) onto X. If L
is a line bundle on X, then the line bundle Op gz (1) ® z*(L) is also the
tautological line bundle on P(F ® L) = P(F). If M is a line bundle on
P(E),M is isomorphic to a line bundle Op41)®" @ z+(N) for some
integer n and some line bundle N on X (see EGA II. 4.1). A rational
ruled surface is isomorphic to X, = P(Op.(—n) ® Op,) for some non-
negative integer n. We denote the projection from X, to P' by =x,.

The following lemma plays an important role in the sequel.

LEMMA (1.4) Let s be a section of the projection n,: 2, — P!, then;

(1) If the self-intersection number (s,s) is non-positive, then (s,s)
= —n and the direct image n,{(O; (s)) s isomorphic to the the wvector
bundle Op(—n) @D Op,.

(2) If the self-intersection number (s,s) is non-negative, then (s,s)
= n and the direct image r,.(O0;,(s)) is generated by its global sections.

Proof. We have an exact sequence on 2, ;
0— 0;, —> 0;,(8) —> 04,(9)];, —> 0

Since R'mu(0y,) = (0), 7,(05,) = Opi, 1,4(05,(8)]s) = P((s, 8)) and 7,.(05,(s)
= (Op:(—1) D Opy) ® Op,(a) for some integer a, we have the following
exact sequence;

0—> O0py —> (Op:(—1) @ Op) Q Opi(a) —> Opi((s,9) —> 0 (%)

1) If (s,8) < 0, then the exact sequence (x) is split because (P!, Opi(t))
=0 for ¢t = 0. Hence we have;

(Opi(—n) @ Op;) ® Opi(a) = Opi((8,8) D Op: .

This is possible if and only if @ =0 and Op.((s,s)) = Op(—mn), hence
(8,8 = —n and 7,{(0;,(8) = Op,(—n) @ Op..

@) If (s,8) = 0, then Op((s,s)) is generated by its global sections.
Hence we have that z,.0; (s)) is generated by its global sections by virtue
of the exact sequence (x). This is possible if and only if ¢« —n = 0.
On the other hand, Op((s, s)) is isomorphic to Op,(2a — n) by (x), which
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implies (s,8) = 20 — n = 2(¢ — n) + n = n.
The section on X, corresponding to the exact sequence;

0—> 01’1 I OPI('—n) @® OPI — Opl(_n) — 0

is called a minimal section of 3, and denoted by M. Let N be a fibre
of #,, then every divisor D on 2, is linearly equivalent to aM + HN
where @ = (D,N) and b = (D,M) + an. A canonical divisor on 2%, is
linearly equivalent to —2M — (n + 2)N.

§ 2. Simple vector bundles on P*

Let E be a vector bundle of rank » on P? and 4 be a line on P?,
then the restriction E|, of E to ¢ is isomorphic to a direct sum of line
bundles L;’s (1 <1 < 7) [2]; we set;

ap(4) =min{deg (L);1 <t < 1}

Evidently the number az(¢) is bounded above and below when ¢ runs
through lines on P?.. Hence we set;

M(E): = max {agz(£); ¢ is a line on P%}
m(E): = min {az(4); ¢ is a line on P?}

If F is a vector bundle on P?, we put E(n) = EF ® Op(1)®",

LEMMA (2.1) Let E be a vector bundle on P?, then;

Q) If M(E) =z —1, then h'(P*, EQ)) < hW(P%L, E).

@) If M(F) = —1 > m(E), then h'(P:, EQ)) < W (P% E).

@ If M(E) =z —1 and h'(P%, EQ)) = h'(P%, E), then EQ) is generated
by its global sections.

Proof. (1) Let ¢ be a line with az(4) = M(F), then there is the
following short exact sequence;

O‘H OPQ(_l) OP2 02 \0 (*)

Tensoring E(1) with (%), we get the short exact sequence;

0

0 —> E —> E()) —> EQ)|,
and the long exact sequence of cohomologies;
. —> HY(P*,E) —> H' (P, EQ)) —> H'(4,EQ)) —> - --
Since @y, (4 = agz(4) + 1 = 0, we have h'(¢, E1)|) = 0, whence r'(P? E(1))
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< (P4, E).

(2) By (1), we have A'(P*, EQ1)) < WP, E). Let ¢ be a line on P?
with «az(4) = M(E), then as above we obtain the following long exact
sequence of cohomologies;

- —> H(P?, E(1)) —> H'(¢, EQ1)|) —> H'(P’, E)
—> HY(P*, EQ1)) —> H'(4, EQD)|) = (0) .

If r'(P? E(1)) = h'(P%, E), then H'(P?, E) = H'(P*, E(1)). Thus ¢: H(P? E(1))
— H°(4,E()|,) is surjective. By the way, let ¢’ be a line on P? with
az(4) = m(E) and x be the closed point of the intersection of ¢ and ¢/,
then : H'(¢,EQ)|) — E(1) ® k(x) is surjective since apu,(4) = az(f) + 1
= 0. On the other hand /: H'(4’, E(1)|,) — EQ) @ k(x) is not surjective
because apy,(4) = ax(¢) + 1 £ —1. Furthermore we have the following
commutative diagram;

H'(P, EQ1)) > H'(4, E(1)],)

¢ ¢

(¢, EQ)],) > EQ) ® kz)

On the one hand, yo¢ is surjective because so are ¢ and . On the
other hand, y’o¢’ is not surjective because not so is v’. This is a con-
tradiction.

(8) Let x be any closed point of P? and ¢ be a line passing through
x. The assumptions az(4) = m(E) = —1 and h'(P%4 EQ)) = h'(P%L E) im-
ply that H°(P?, E(1)) — H'(4,E(1)|) is surjective and H'(4,EQ)|) »>EQ)
® k(x) is surjective for any closed point z. By this and Nakayama’s
lemma E(1) is generated by its global sections.

Let X be a scheme defined over k£ and E |, E, vector bundles on X.
If E, is ample and FE, is generated by its global sections, then E,® F,
is ample ([4] Corollary 1.9.). We get therefore the following proposition
as a corollary to the above lemma.

PROPOSITION (2.2) Let E be a vector bundle on P> with M(F) = —1,
then E(a) is ample for any integer a = h'(P* E) + 2.

Proof. Put b = h'(P% E), then by Lemma (2.1) we have;

b=HrP,E)z VP,EQ) z -+ = K(P,EDb) 20.
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Hence there must be an integer ¢ (0 < ¢ < b) such that R'(PY, E(c)) =
hY(P?% E(c + 1)). By Lemma (2.1), E(c + 1) is generated by its global
sections. Hence E(a) is ample for any integer ¢ = b + 2 because Op.(n)
is ample for any integer n = 1.

For a vector bundle E' of rank 2 on a scheme we know that E* = F
® (det E)* ([6] Lemma 3.7). We shall use this fact in the next lemma.

If EF is a vector bundle on P?, we identify the Chern class ¢,(F) of
E with an integer by its degree.

LEMMA (2.3) Let E be a simple vector bundle of rank 2 on P?, then;
Q1) If c(E) <0, then H(P*, E) = (0).
@) If c¢(E)= —6, then HY(P*, E) = (0).

Proof. We have E* = E ® (det E)* = E(¢), where ¢ = —c,(&). If
¢(F) <0, then E can be regarded as a subsheaf of E*. Hence H'(P% E)
c HY(P?, E*). If HY(P* E) #+ (0), then H'(P% E*) # (0). This contradicts
to Lemma (1.8) and proves (1). The second assertion follows from (1)
by the Serre duality.

Let E be a vector bundle of rank 2 on a non-singular projective
surface S. Define an integer 4(E) to be c(E)* — 4c(F). It is easy to
see that —A(F) is the second Chern class of End (E). Hence, if L is
a line bundle on S, then 4(F ® L) = A(FE). For given two integers c,
and ¢, let F(c,c,) be the set of all simple vector bundles of rank 2 on
P? with i-th Chern class ¢; (¢ = 1,2). Then F(c, ¢,) is not empty if and
only if ¢ = ¢ — 4c¢, is negative and is not equal to —4([6] Theorem 4.6).
For a line bundle L on P? we put F(c,c)(L) ={E®L;FEeF(, c,)}
If ¢, is odd (resp. even), then for L = Op(—(c, + 1)/2)(resp. Op.(—c,/2)),
F(c, c,)(L) = F(—1,n) (resp. F'(0,m)) where 1 — 4n = ¢! — 4c, (resp. —4m
= ¢} — 4¢). F(—1,n)(resp. F(0,m)) is not empty if and only if n>1
(resp. m = 2).

Now we can compute a lower bound of m( ) for simple vector
bundles of rank 2 on P? with fixed Chern classes.

PROPOSITION (2.4) If E is in F(—1,n) (resp. F(0,m)), then;
—n<mE)ME) S -1 (resp. —m+1=mE)<ME)<0).

Proof. M(E) < —1 (resp. M(E) < 0) is obvious, because ¢,(F) = —1
(resp. ¢(E) = 0). The Riemann-Roch theorem asserts that for a vector
bundle E’ of rank 2 on P?
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3e(B) | (B — 2¢(E")

E) =2
x(E") -+ 5 5

Applying this to £ we have y(F) =1 — n (resp. 2 — m). On the other
hand, by Lemma (2.3) H(P} E) = H*(P* FE) = (0). Thus we obtain
(P, E) =n — 1 (resp. m — 2). Let £ be any line on P? then we have
the following short exact sequence;

0—> E(—1) E E|, 0

and the long exact sequence of cohomologies;
++« —> HY(P*, E) —> H'(4, B|) —> HP*, B(~1) —> -

Since H¥P* E(—1)) = (0) by Lemma (2.3), we obtain F'(/,E|) <n —1
(resp. m — 2). Hence az(¥) = —n (resp. —m + 1) for any line 4.

LEMMA (2.5) Let E be in F(—1,n) (resp. F(0,m)). We put b =
min {z ; HY(P? E(x)) + (0)} (b is positive because c,(E(D)) must be positive
by Lemma (2.3)). Then E(a) is ample for any integer o =n — b* + b
4 1 (resp. m — b* 4+ 1).

Proof. First we shall prove that M(E (b)) = 0. Let L be the tauto-
logical line bundle on P(E(b)), then H°(P(E (b)), L) = H'(P%, E(b)) + (0).
Take a member D of the linear system |L|, then Supp (D) contains only
a finite number of fibres of the projection x: P(E(d)) — P>. For if
otherwise, there is an effective divisor C on P? such that D — z7!(C)
>0, i.e. H(P(E(D)), L Q@ n*(0p(—C))) # (0). Meanwhile this is isomor-
phic to H'(P?, E(b) ® Op(—C)). Thus by the definition of b,C must be
linearly equivalent to zero, which is not the case. Hence for a generic
line ¢ on P% D|,_,, is a section of the rational ruled surface =~'(4) =
P(E()|). Onthe otherhand, the self-intersection number (D, _; ¢, Dl.-16)z-100)
= ¢,(E(b)) > 0. Hence by Lemma (1.4), (#])x(0, 1(Dl.-1»)) = E()|, is
generated by its global sections. This shows that M(E(b)) = 0.

The Chern classes of E(b — 1) are;

o(Eb —1) =20 -3 (resp. 2b — 2)
GEDL —-1)=0—-3b+2+n (resp. > —2b +1 + m)

By the Riemann-Roch theorem, we obtain;

yEOBO—-1) =0b—n (resp. b+ b — m)
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On the other hand H(P%, E(b — 1)) = H (P>, E(b — 1)) = (0). Hence we
have AP, E(b — 1)) = n — b? (resp. m — b? — b).

Combining these results, by Proposition (2.2) E(b — 1)(a’) is ample
for any integer a' = n — b* + 2 (resp. m — b — b + 2), i.e. E(a) is ample
for any integer a = n — b* + b + 1 (resp. m — b® + 1).

COROLLARY (2.6) If m(E) = —n (resp. —m + 1), then;

1) ME) = —-1.

@2 rMPLE@)=n—1—a (resp. m —2—a) for 0<a<n—1
(resp. 0 < a < m — 2).

B) For an integer o the following conditions are equivalent to each
other;

i) FE(a) is ample.

il) a=n+1 (resp. m).

i) aE @) = —(1/2)4(E ().

Proof. (3) ii) &iii). c(F@) =22 —1 (resp. 2a) and A(F(a)) =
1 —4n (resp. —4m). Hence c¢(F(a)) = —(1/2)4(E(a)) if and only if
a=n+ 1 (resp. m).

=1, n+1=n—50"4+b+1 (resp. m=m —b*+ 1) for any
b=1. Hence E(a) is ample by Lemma (2.5).

i) =ii). If E(e) is ample, then m(F(a)) = m(E) + a=1. Hence
az= —mE) +1=n+ 1 (resp. m).

(1) In the proof of (3), b must be equal to 1. Hence M(EQ)) =0
as we have shown in the proof of Lemma (2.5), i.e. M(E) = —1.

(2) By the assumption m(F) = —n (resp. —m + 1) and (1), we have
ME@) = -1 > m(E@) for 0<a=<n— 2 (resp. 0 <a <m — 3). Hence
by Lemma (2.1), we obtain;

P, E) > hWPLEQ) > --- > hMPL,EMn — 1))
(resp. W'(P%L E) > W(PLEQ)) > --- > WP, E(m — 2))) .
Since W'(PL, E) =n — 1 (resp. m — 2), this shows the assertion.

In the proof of Corollary (2.6) (8), we did not use the assumption
m(E) = —n (resp. m(E) = —m + 1) to show iii) = i). Thus, we have
proved the following;

THEOREM 1. If FE is a sitmple vector bundle of rank 2 on P? with
¢(F) = —(1/2)4(E), then E is ample.

Remark (1) Theorem 1. is best possible in the following senses;
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i) For any integer n = 1, there exists a simple vector bundle E in
F(—1,7n) such that m(F) = —n, i.e. E(a) is ample if and only if ¢,(E(a))
= —(1/2)4(E(a)) (see Corollary (2.6) (3)).

ii) For any integers ¢, and ¢, let F’(c,c,) be the set of all vector
bundles of rank 2 on P? with its ¢-th Chern class being ¢;, then inf {m(F);

E in F'(¢c;, ¢,)} = —oo i.e. for any integer a, there exists a vector bundle
E in F'(¢c,, ¢,) such that m(E) < a. Hence we can not drop the hypothesis
“simple”.

For the construction of examples satisfying i) or ii), see [6] Theo-
rem 4.6, Theorem 3.13.

Remark (2) If F is a simple vector bundle of rank 2 on P? with
¢(F) = —(1/2)4(E), then E can be written in the form E’® L where E’
is generated by its global sections and L is a very ample line bundle,
hence if k is the complex number field C, E is positive in the sense of
Griffiths [1].

§3. H, ;-stable vector bundles on a rational ruled surface.

For a non-negative integer n, let Y, be the rational ruled surface
P(Op.(—n) ® Op), M a minimal section on ¥, and N a fibre of the pro-
jection r,:23, — P. Then every line bundle on XY, is isomorphic to
O;, (@M + bN) for some integers a¢ and b. We denote the line bundle
O;,(@M + DN) by L.

LEMMA 3.1) (1) L,, is ample if and only if a is positive and b
— na 18 positive.

(2) L,,; is generated by its glebal sections if and only if a is non-
negative and b — na is non-negative.

Proof. If L,, is ample, then the intersection numbers (L, ;, N) =
o and (Lg,, M) = b — na are positive by the Nakai criterion. Conversely
if @ is positive and b — na is positive, then the self-intersection number
(Layy Lap) = —a™n + 2ab > —a™n + 2a°n = a*n = 0. Any curve C on %,
is linearly equivalent to a’M + b’N for some non-negative integers o’ and
b’ such that (a/,b’) # (0,0). Hence the intersection number (L, ;,C) =
0'(Lg,p, M) + 0'(Ly 3, M) = a/(—na + b) + b’a is positive. Therefore L, ,
is ample by the Nakai criterion.

2) If L,, is generated by its global sections then the tensor pro-
duct Ly, ® Ly, sy = Lyy1,4041 18 ample since L, ,,, is ample by (1). Hence
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a + 1 is positive and —n(a@ + 1) + b + n + 1 is positive i.e. ¢ and b — na
are non-negative. Conversely if ¢ and b — na are non-negative, then
L,,, is generated by its global sections. In fact, L,, is generated by
its global sections and L,, is so. Hence L, , = L& ® L’ is generated
by its global sections.

We denote the divisor (M + nN) + BN by H,, Then the intersec-
tion numbers (H, ;, N) and (H, ,, M) are « and j respectively and Lemma
(3.1) ) is restated as follows; H, , is ample if and only if « >0 and
B> 0. We also denote H,;, = M + (n + 1)N by H, then H is very ample
and any irreducible member of the linear system |H| is isomorphic to
the projective line P!. Let E be a vector bundle of rank r on XY, and
£ be an irreducible member of the linear system [H|, then the restriction
E|, of F to ¢ is isomorphic to direct sum L, @ -.- @ L, of line bundles
Ls on 4. We set;

ag(f): =min{deg L;;1 < i =< 7}
and

M(E) = max {az(¥); ¢ is an irreducible member of |H]}
m(E) = min {az(4); £ is an irreducible member of |H|}

If F is a vector bundle on X, and D is a divisor on %,, we put
ED) = E® 0, (D).

LEMMA (B.2) Let E be a vector bundle on 2, then;

Q) If M(E) = —n — 2, then h'(Z,, E) = h'(2,, E(H)).

@ If M(F) = —n — 2 > m(E), then h'(2,, E) > h'(2,, E(H)).

® If mE)=—n—2 and W2, E) = h'(,, EH)), then EH) is
generated by its global sections.

Proof. The self-intersection number (H,H) is n 4+ 2, so the proof
is similar to that of Lemma (2.1). Hence we omit it.

The following proposition can be proved as a corollary to Lemma
(3.2) and the proof is similar to that of Proposition (2.2).

PROPOSITION (3.3) If E is a vector bundle on X, with M(E) = —n
— 2, then E(aH) is ample for any integer a = h'(2,, E) + 2.

For any integers a,b and ¢, we set;
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F,a,b;0): ={F; E is a simple vector bundle of rank 2 on
2, with ¢,(F) = aM + bN and c¢(E) = ¢}

If L is a line bundle on 2,, we also set;
Fua,b;0l): ={EQL;E is in F,(a,b; c)}

Then for any integers a,b and ¢ there exists a line bundle L on ¥, such
that;

(1) If a is even and b is even

F.(a,b; c)(L) = F,(0,0; r) where —4r = —a’n + 2ab — 4e.

@) If a is even and b is odd

F.(a,b;c)L) = F,0,—1;r) where —4r = —a’n + 2ab — 4c.

B If a is odd and b is even

F.a,b;c)L) = F,(—1,0;7r) where —n — 4r = —a*n + 2ab — 4c.
@ If o is odd and b is odd

F.(a,b; c)(L)=F, (-1, —1; ) where —n + 2 —4r = —a’n + 2ab — 4ec.

M. Maruyama ([6] Theorem 4.15) proved that;

1) F,0,0;7) is not empty if and only if » = 2.

2 F,0,—1;7) is not empty if and only if » = 1.

B F.(—1,0;7) is not empty if and only if » = 1.

@ F,(—1,—1;7) is not empty if and only if r =1 when n +# 0,
r = 2 when n = 0.

LEMMA (3.4) Let E be a simple vector bundle of rank 2 on X,
with ¢ (E) = aM + bN, then

@1 Ifa<0and b <0, then H(X,, E) = (0).

@ If az —4 and b = —2(n + 2), then H*(S,,E) = (0).

Proof. The canonical line bundle on %, is isomorphic to the line
bundle L_, _,_,, so the proof is similar to that of Lemma (2.3).

We say that a set S of vector bundles on a k-scheme X is bounded
if there exists an algebraic k-scheme T and a vector bundle V on T X X
such that each E in S is isomorphic to V, = V|,xx for some closed point
tin T.

THEOREM 2. For any integers a,b and ¢, F,(a,b; c) is bounded.

Proof. It is sufficient to prove the theorem for —1=a, D <0.
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We shall prove the theorem for F,(0,0;r) only, since the other cases
are similar. By a theorem of Kleiman ([5] Theorem 1.13), it is sufficient
to show that there are integers m, and m, such that for any E in
F.0,0;m), i) R°(C,, E) £ m, and ii) k4, E|) < m, for a generic member
£ of the linear system |[H|. By Lemma (3.4), h'(Z,,E) = 0 for any E in
F,0,0;7). We now show ii). The Riemann-Roch theorem asserts that
for a vector bundle E’ of rank 2 on %,

L @M+ (n + N, ) | aE) — 2e(E)

EN =2
x(E") 2 5

Applying this to £ in F,(0,0;7), we have y(EF) =2 — . On the
other hand, by Lemma (3.4), h’(%,, E) = h*(S,,E) = 0. Thus we obtain
h (2, E) =r — 2. Let ¢ be a generic member of the linear system |H|,
then we have the following short exact sequence;

0——>E(—H) —>E—>E|,—>0

and the long exact sequence of cohomologies;
«—— H'Qy, B) — H'(¢,E|) —> H2,, E(—H)) —> - --
Since ¢,(E(—H)) = —2M — 2(n + 1)N, h*(%,, E(—H)) = 0 by Lemma (3.4).
Hence we obtain;
MG E)<sr—2.

On the other hand, by the Riemann-Roch theorem for a vector bundle
of rank 2 on the projective line, we have;

(¢, El) — W4, El) =2 4 deg (e(E|)) = 2.
Hence we obtain A4, E|) < 7.

LEMMA (8.5) Let E be a simple vector bundle of rank 2 on X,
with ¢ (F) = aM + bN such that —1 < a,b <0. Put d=min{z; h"(2,, E(xH))
#+ 0} (d is positive by Lemma (3.4)). If there exist integers « and j
with a=21,8=1 and 1/2<B/la<n+3 if n+0, 1/3<Bla<3 if
n = 0 such that E is H, ;-stable, then M(E(dH)) = 0.

Proof. We shall prove the theorem for ¢ = 0 and b = 0 only since
the other cases are similar. Let X be the projective bundle P(E(dH))
on X,,7: X — 2, the projection and L the tautological line bundle on X.
Let D’ be a member of the linear system |L| on X, then D’ can be
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written in the form D/ = D 4 z~%(C) where D is an irreducible divisor
on X and C is an effective divisor on 2%, i.e. C is linearly equivalent
to M + yN (x =0, y=0). Put E' = n,(0x(D)) = E(dH — xM — yN).
Let 4 be a generic member of the linear system [H| on X,, then D|,_,,
is a section of the rational ruled surface z~!(4) and the self-intersection
number (Dl,-1s Dle-100) a1y = (¢, (E(@H — 2M — yN)), H) = 2d(n + 2) —
2 + ). If 2d(n + 2) — 2(x + ) = 0, then az(¢) = 0 by Lemma (1.4).
Hence apqn(4) = ap.(d) + z+y = 0, therefore M(E(dH)) = 0. If 2d(n + 2)
—2(x + ) <0, then az(¥) =2dn +2)—2(x + 1y by Lemma (1.4).
Hence agymy(4) = 2d(n + 2) — (¢ + y). We shall show that 2d(n + 2) =
x + y. Now assume that 2d(n 4+ 2) < z 4+ y, then we shall show a con-
tradiction. Since h°(Y;,E’) =0 and E’ is H, ,-stable, (¢(E"),H, ;) =
28(d — ) + 2a(d(n + 1) — y) > 0 by Lemma (1.1), hence pd + ad(n + 1)
> Bx + ay. We shall consider two cases i) § < « and ii) B = « separately.

i) Assume that g <a. If n =0, then pd + ad(n + 1) < ad(n + 2)
and gz + ay = B(x + ¥), hence ad(n + 2) > p(x + y) > 28d(n + 2). This
contradicts to 1/2 < B/a. If n =0, then 38 = a. Hence Bd + ad < 48d

and gz + ay = p(x + y) > 45d, therefore 48d > 48d. This is a contradic-
tion.

ii) Assume that = «. Then gd + ad(n + 1) £ ad(n + 3) + ad(n + 1)

= 2ad(n + 2), and px + ay = a(@ + ¥) > 2ad(n + 2). Hence 2ad(n + 2)
> 2ad(n + 2), this is a contradiction.

For any integers a,b and ¢, we set;

F(a,b;¢): ={E in F,(a,b;c); E is H, ;-stable for some « and g with
1/2<B/la<n+3if n+0, 1/3<p/a <3 if n=0}.

COROLLARY (3.6) (1) If E is in F%0,0;r) then E(rH) is ample.

@) If E is in F%0, —1;r) then E((r + 1)H) is ample.

@) If E is in F(—1,0;7) then E((r + 1)H) is ample.

@) If E is in F)(—1, —1;7) then E((r + 1)H) is ample.

Proof. The proof is similar to that of Corollary (2.6), so we omit it.

THEOREM 3. Let E be a simple vector bundle of rank 2 on X, with
c(E) =aM + DN. Assume that E is H,,stable for some a =1 and
B=1 such that 1/2<B/la<n+3 if n+#0, 1/3ZB/la<8 if n=0,
then the intersection numbers (¢,(E), N) = a, (¢,(E),M) = b — na and;

(1) If a is even, b is even and a = 2r,b — na = 2r where —4r =
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A(E), then E is ample.

@) If a is even, b is odd and a =20 + 1),b —na =2(r +1) — 1
where —4r = A(E), then E is ampe.

B) If ais odd, b is even and o =2(r +1) —1,b —na = 2(r + 1)
+ n where —n — 4r = A(E), then E is ample.

4) If a is odd, b is odd and a=2(r +1) —1,b —na =2(r + 1)
+n —1 where —n + 2 — 4r = A(K), then E is ample.

Proof. We shall prove the case (1) only since the other cases are
similar. Let E be an H, ;-stable vector bundle of rank 2 which satisfies
the conditions of (1), then F is written in the form E’'(rH) ® L,. , where
E’ is in FY0,0;7) and ¢’ =a/2 —r,b' =b/2 —r(n +1). E'(rH) is
ample by Corollary (8.6) and L,. , is generated by its global sections by
Lemma (3.1) because ¢’ =a/2 —r=0 and b’ —na’ =b/2 —r(n + 1) —
/2 —7r) =1/2(b — na — 2r) = 0, therefore £ = E'(rH) ® L,. ; is ample.
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