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Section I.—A Class of Linear Substitutions with Common
Invariants.

1. The determinant

D = «n a2, ... an^lt an

an, as, ... a,,_.;, a,,_i

a.,, a3, ... an, a1

each row of wliich contains the same n elements in the same cyclic
order, with 'a: always in the leading diagonal, is the product of u
linear factors,* which we shall write as follows :

lc — v n n- .= 1, 2, ... n),

where p»is any primitive ?ith root of unity. That k is a factor of

D is at once evident on multiplying the respective columns after
the first by p'"-, p-'2a, ... />-(»-Da, and the respective rows after the
first by the same quantities in reversed order, and then adding all
the rows (or columns) together.

Consider the linear substitution of which D is the determinant:
h... + anxn \
V-+a->*"\ ( 1 ) .x'2 = anxi

' See Scott, Determinants, p. 81.
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Form its characteristic equation

by putting

and eliminating the a; . The roots of f(k) are clearly the above k ;

and on substituting k x for x in equations (1) we find that they

are satisfied, provided

p-o p-ia p-(n-l)a 1

These values of xlt ... xn define an invariant point* or pole P of

the substitution. By varying a we obtain n poles P^ P2, ... Pn,
forming a complete set of poles, with their coordinates entirely
independent of the coefficients ar. With the one restriction that D
must not vanish, the ar may have any real or complex values, and
every substitution of the form (1) possesses the common system of
invariant points Plt ... Pn.

The corresponding linear invariants, or invariant (n - 2) planes,
also possessed in common, are easily seen to be

§ 2. The result of successive applications of substitutions of the
class (1), whether alike or different, is always another substitution
of the class, the multipliers (or roots of the characteristic equation)
for the resultant being the products of corresponding multipliers
for the components. The substitution inverse to (1) is also of the
same class.

There will be differences of type t within the class, according
to the system of equalities among the multipliers. The minimum
system of invariant points and (n - 2)-planes, viz. the Pa and the £a ,

belongs to all : but these will not exhaust the invariant points and
(n - 2)-planes of a substitution having one or more equalities among

* Linear Substitutions and their Invariants, §2. Proc. Edin. Math. Soc,
Vol. XXX.

+ Ibid. §9.
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its multipliers. Such a substitution will have at least one line of
poles, and at least one pencil of invariant (n - 2)-planes.

Given the P (or the £ ) and the corresponding multipliers, we

can build up the substitution uniquely. If the mutual ratios of the
multipliers are rth roots of unity, the substitution will be of order r.
(Ibid. §5.) We can thus construct substitutions of the class (1)
of any order we please.

Section II.—The Associated Substitution of Order Four S(p).

§ 3. Consider the substitution which transforms the frame of
reference into the invariant frame of (1). Writing x in place £ in
(2), and introducing the numerical factor n~i, taken always with
the positive sign, we express it in the form

x' =n-* 2 'paPx , (o = l, 2, ... n) (3)

The introduction of the factor n~l reduces the modulus of the
determinant of (3) to unity, as will appear shortly. We shall
denote this substitution by S(p), the left-hand member of its
characteristic equation by An(o, k), and its determinant by £n(p, 0)
or simply An(p).

Thus, with k = n~lK,

p-K, p* , p-i, , 1
p , p*-K Pnn-D , 1

p"-1, p'̂ -D-K, p(n-»"-K, 1

1 , 1 , 1 , 1-K

To obtain the substitution inverse to S(p) multiply both sides

of (3) by p7", and add for the n values of a. The coefficient of Xg
on the right is

n a(j3 + v)
« " * 2 P >

a = l

which differs from zero only in the case of fi = n - y, and then takes
the value w . Hence

S-'W- Xn-i = n~h - P*"*',.' (T = 1 » 2' •••W)' (*)
a = 1

where x0 is regarded as equivalent to xn.
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The only difference between (4) and (3) is that on the left of
(4) the order of the first (n - 1) variables xlt .. x^_^ is reversed.

Now let x" (y = 1, 2, ... n) be the result of two applications of

S(p). Then

S*(P). x =»-* i / V by (3),
T /3=1 P

the original variables being restored, but, with the exception of
the last, which remains unchanged, reversed in order. I t follows
that S4(/>) is equivalent to the identical substitution, and that
S(p) is of order four. Further, since the multiplier with which the
variables are restored is unity, we have

(5),

p having one of the values 0, 1, 2, 3.

§4.. S(p) being of order four, the roots of its characteristic
equation must be fourth roots of unity (Ibid, § 5), whence

An(P, *) = ( - )"(* - 1)»(* + 1)'(* - »)•(* + i)',

where q + r + s + t = n .(6)
In finding the indices, we shall confine ourselves to a specific

value of p,
p — exp(1irijn).

The more general case need not detain us, for other values of p
lead to the same quantities x' in (3), only in a different order.

a
By multiplication of determinants we find for

» = 2m+l, An(P,k)An(p, -* ) - - (*»- l )«+ ' (* '+ l ) "
= 2m, = (&? - l)m+1(k2'- I ) " - 1

By a theorem of Gauss (see Mathews, Theory of Numbers, §184),
writing

S= "l" ex/>(2«Vt/n),

we have for
n = 0

= 1
= 2

o

(mod 4), S = (l
=
—

=

+ i) Jn
Jn

0
* Jn.
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Now the coefficient of k"*1 in An(p, k) is

and with n — 2m + 1, An(/a, k) must by (7) have the form

X(P, *)=-(*-1f(k +1)m+1 - \ k - if(k+i)m'p-
Picking out the coefficient of the second-highest power of k, we
have for

n= 1 (mod 4), (2a-m - 1) +t(2/? - m) = 1, a =

Again with n = 2m, An(p, A) is of form

An(p, * ) - ( * - lf(k + 1)M+1-
whence for

n = 0 (mod 4), a

The following table summarises these results, and also gives the
values of p in (5):

n

1 4s

4s+ 1

4*+ 2

4s+ 3

(*- l ) ' + I

-(/fc-l)'41

- ( * - ! ) -

A

(k +

(* +

(* +

(* +

„(» *)

l)'(A-i)'(A + i)'-1

l)'(A-t)'(A + i)''

jt> = (mod 4)

2s+1

2s

2s+ 2

2s+ 3

§5. Taking q, r, s, t as in (6), the canonical form of S(/D) is
clearly the following:

£ . = *.. (—1.2, q),

a s l, n),

the £ being a set, not in general unique, of linear invariants ot
<$(p). It remains to express the £ in terms of the original co-
ordinates x.
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A separation can be made between the £ with real and those
with imaginary multipliers ; the former appearing as the invariants
of a new substitution in (q + r) variables, and the latter in the
same relation to another substitution in (s + t) variables. The
reduction shows that the £ are in all cases real linear functions of
the x; thus the linear invariants, and therefore also the poles of
S(p) are all real.

An invariant of S(p) with real multiplier (± 1) is an invariant
of S2(p) with multiplier + 1, and therefore by (4) is unaltered by
interchange throughout of xa, xna, ( a = l , 2, ..., « - l ) . An

invariant of S(/>) with imaginary multiplier (+i) is an invariant
of S\p) with multiplier — 1, and therefore simply changes sign on
interchange throughout of x^, x _ . »

Write xa + xn-a = ya>

where a takes all integral values from 1 to m or m - 1 according as
n = 2»i+l or 2m. In the latter case write xm = ym, and in both
cases xn = ym+v Then the invariants with real multipliers are
linear functions of the y, those with imaginary multipliers of the z.

But putting

p +P =.cos(.™/n) = <rol

— i(p - p ) = 2sin(27ra/n).= T J

and taking
(i) n= 2m + 1, we have from (3),

Jn • y'a = i; ""aa^s + -y,,+i. (« = 1, 2
( 3 = 1

...m)\

(9)

and

n.z'= v ir x ( a= l , 2, ... m) (10)
3=1

The former is a substitution of order 2 in the (m+1) variables
2/i---ym+» °f which the invariants, when expressed in terms of the
x, are those of (3) with real multipliers, and have real coefficients
throughout. The invariants of (10) are likewise identical with
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those of (3) which have imaginary multipliers; and since, if we
omit the i on the right-hand side of (10), the only adjustment
required is to alter the multipliers from + i to ±1 respectively, the
invariants themselves remaining unchanged, it is clear that they
are real functions of the z, and hence also of the x.

(ii) Similarly for n = 2m. Equations (9) are replaced by

Jn.y'a= 2 <r
0=1

Jn.y'm= 2 (~
0=1

and (10) by

Vm+l

(11)

= 2 i
0=1

- 1 ) (12)

On comparing the forms assumed by the characteristic equation
in (9) to (12) with those of the table of §4, identities are obtained,
of which the following may be noted :

With n = 2m + 1 = 4«+ 1, the <T, T having the values defined
in (8),

O-m2 - ",

= - (K - - n)',

T l -

T 2

Tm

)

)

To

T 4 -

T 2 m

) ' ' *

K, . . .

,

• • • T m

• • • T o m

. . . T m 2 — K

The invariants £ obtained by the help of (9)—(12) as far as
n = S, are tabulated below. Only those with multipliers +1, +i
are written down ; those with multipliers - 1, - i are deduced
therefrom by changing the sign of Jn wherever it occurs
explicitly. In the cases of two or more invariants with the same
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multiplier, those given are not unique, and any linear functions of
them would serve equally well. The form

which appears first in each set, is at once seen to be invariant
from (3). It is to be remembered that the <r, T depend on the
value of n.

Since the determinant of (3) is symmetrical, the pole
corresponding to any invariant

2 p x
o = l a a

can be immediately deduced: it is in fact the point with co-
ordinates (plt p2...jt>n). The extension to the case of equal
multipliers is easily made.

Relations come to light in the process of finding the forms,
which are exemplified in the case of n = l. For this case the
substitution (9) will have as an invariant with multiplier + 1 the
function

provided

Since there are two invariants of this kind, only two of these
four equations can be independent; in other words, each first
minor of the determinant of the coefficients is zero. This can be
verified in virtue of the relations

o-2o-3 + o y r , + (TJCTJ = - 2 ;

and the statement remains true when the sign of the radical is
changed.

Similarly the conditions that
3

2 p z

be an invariant of (10) for this case, with multiplier +1, are
S *
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- ( N/7 - r\)P\ + T*Pi + T#>i = 0
r&\ ~ ( V 7 + T3)?>2 - TlP3 = 0

T J P I - T,p3 - ( ^/7 - T2) p s = 0,

only one of which can be independent. This is evident on
remembering that

Tl + T2-T3= J7,
T2T3 + T3T, - T^ = 0,

but is no longer true when the sign of the radical in the three
conditions is changed.

§ 6. The application of the substitution (3) to the transformation
of algebraic equations may be indicated. The equations

*,(*)= n (z-a )-o,
o = l

*.(*)- n (x-x'a) = o
a = l

are reciprocally related, the roots of each being derived from those
of the other by the same linear substitution.

Consider the effect of increasing the roots of <f)n(x) by the
constant quantity X. It is clear that all the roots of \j/n(x) will
remain unchanged, except x'M which will be increased by Jn. A.

If therefore we choose A.= - n~l 2 *a , two things will happen :
a=l

(i) the term in xn~l will drop out from <j>n(x) ;
(ii) the new x'n will vanish, and ^n(x) be replaced by the function

of degree one lower

*- i (*)= "5 (x-x'a).
a = l

Were it possible to obtain the x' in terms of the coefficients of

<t>n(x), <f>n(x) could be solved. In the case of the cubic

<f>t(x) =x* + 3px + q = 0,

(3) reduces, after the change indicated, to the equations
* / = S-^oix-t + <o2a;2 + x3),

x2' = 3-*(<ua )
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whence
»= -3p,

leading to the usual solution. In the case of the biquadratic also
the method leads to Euler's reducing cubic.

Section III.—Triangles in Multiple Perspective. Geometrical
Interpretation of Substitution (1) for w = 3.

§ 7. The triangle X^oXj is said to be in perspective with
YaY«Y , the order of the vertices being significant, when

XjY , X._>Y™ X3Y meet in a point. Thus X1X2XJ may be in
P i

perspective with another triangle in either of six different ways,
according to the order of the vertices. Let the vertices, referred
to XJXOXJ as triangle of reference in any system of homogeneous
point-coordinates, be

Y (r a- x ) (r — 1 2 3"> •
then the six cases, with their conditions, fall into two sets of three
as follows : X,X2X3 is in perspective with

(i) Y ; Y 2 Y 3 provided xV!x23x3i = xl3x2ix3.2\

( V ) Y 3 Y 2 ^ 1 , , *̂ :fc)**'12*̂ l1l — •*'n%23X32 [ \^f

( ' \ "V "V "V • I

/ 2 1 3 JJ "^11*^23 32 — 2"*^31 13

The>poles of perspective will be called Zr(r— 1, 2, ... 6). Sets
(A), (B) are distinguished by the cyclic order of the vertices
YjYaY,. In each set any two of the conditions involve the third.
It is thus clear that

(a) triple perspective will occur when two conditions of one set
are fulfilled, and therefore two of the vertices (say Y,Y3)
may be taken at random. The three poles of perspective
are clearly the vertices of a third triangle in triple per-
spective with each of the other two, the poles for each
pair being the vertices of the remaining one;

(fi) quadruple perspective occurs when three conditions, not all
of one set, are fulfilled. The construction of such a case
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is a simple and instructive exercise in homogeneous co-
ordinates.

One vertex (say Y3) may be taken at random, and the
system of coordinates so chosen that it becomes the
point (1, 1, 1). Thus if cases (i)-(iv) hold, we have for the
coordinates of the other vertices

whence — = — = — = — = a, say,

and Y,, Y2 are given by Y / l , a.2, a), Y2(<x, a.2, 1), a. being
arbitrary.

Triangles X^^Xj, Y1Y2Y3 in quadruple perspective.

[The figure is given for an arbitrary position of Y3, and <x = - 2.
The coUinearity of ZJZOZJ is a coincidence, due to the value of «.
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chosen. For it is easily found that the coordinates of the poles
are

Z,(a, a, 1), Z,(l, a-2, 1), Z3(l, a, a), Z4(l, a, 1) ;
and the determinant of the coordinates of the first three
= OL(OL - l)2(a. + 2), vanishing for <x = -2.]

(y) Sextuple perspective occurs on the fulfilment of all six
conditions, but, there being only four independent, one
vertex Y3 can still be taken at random. The conditions
yield

= (clearly) 1, w, or w2.

Unity is rejected as reducing YiY2Y.. to a point. We take the
value co, and obtain the triangle Y^or, w, 1), Y2(w, io2, 1), Y3(l, 1, 1) ;
the value or would simply interchange Yj, Y2. Thus there is only
one triangle in sextuple perspective with the triangle of reference, and
with a vertex at an arbitrary point. Ij thai point is the real point
(1, 1, 1), the other two vertices are imaginary jjoints on the real line

x, + x, + x3 = 0.

§8. Consider the substitution (1) for n = 3, applied to the
system of coordinates here in use. It is evident that Y,Y2Y3 is
coincident with the invariant triangle of the substitution. We
shall therefore revert to our previous notation and call it the
triangle P]P2P3. The six poles, in the order of § 7, are

, (i) Q3(l, 1, <-2), (iv) R3(l, 1, u,),
(ii) Q2(l, «.2, 1), (v) R2(l, w, 1),

(iii) Q . K 1, 1), (vi) 11,(0,, 1, 1).

To pass from one system of homogeneous coordinates to another,
with the same triangle of reference, we simply alter the co-
ordinates of each point in definite ratios, so that, e.g. the old
coordinates of a point having been xlt x«, xs, its new ones are
(out,, fix.,, yx.t), a., f3, y being constant for all points. Thus the
triangle Ti((u2a., wfl, y) T2(iu«., m-ji, y) T3(«-, fi, y), whatever the
system of coordinates, is in sextuple perspective with the triangle
of reference, and can be made to coincide with any triangle in this
relation, by giving suitable values to «.: f3 :y. Now the two sets

https://doi.org/10.1017/S0013091500034167 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034167


67

of multipliers a.: fi : y = a>2: 1 : 1 and <D : 1 :1 respectively change
the points

P A P , Q1Q2Q3 R1R2R3

into QAQi RiR3R2 P3PA
and R,R,Ri P ^ P , 0 ,0 ,0 ,

Hence each of the triangles PiP2P3, QiQ2Q3, RiR2R3 is in sextuple
perspective with the triangle of reference, and the poles of per-
spective in each case are the vertices of the remaining two.

§9. The relation of PJP.JP.] to X J X . X J may be expressed by

another geometrical analogy. A point and a line are called
harmonic pole and polar with respect to a triangle in their
plane when the line, and the joins of the point to the vertices,
divide the three sides harmonically. If each vertex and opposite
side of one triangle are harmonic pole and polar with respect to
another, the former may be called self-polar with respect to the
latter; and, as it easily follows from the conditions obtained below
that the relation is reciprocal, the two triangles may be called
conjugate.

To find the conditions that the three points

(xal, za2, xa3), ( o = l , 2, 3),

form a triangle self-polar with respect to the triangle of reference.
Denoting by X „ the cofactor of xag in the determinant A of

the coefficients, and expressing that each point is the harmonic pole
of the line joining the other two, we obtain the nine relations

*a/SXa/3 = COnSt- = i A • («•' Z8 = l> 2> 3)-
The two relations

"'-liXu = x12A12, XJJX^J = a^X^j

may be written respectively

whence, and by symmetry,
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These conditions, which satisfy all the nine relations, are exactly
those for sextuple perspective (§7). Thus triangles in sextuple
perspective are conjugate, and vice versa.

The triangle P1P.2P3, being uniquely determined as soon as the
system of coordinates is specified, might be fitly called the principal
related triangle for the system.

§ 10. The substitution (1) becomes for n = 3,

xi = axxx + a^ic.2 + a-ix3 1
x2' = a3xx + a,a;2 + a^x3 Y (13)
x3' — a^cl + a3x2 + a,x31

Taking xu x2, x3 as homogeneous point-coordinates, we must
distinguish two possible interpretations. First, it might mean
that the point whose coordinates are xu .r2, x3 has to be shifted to
(a:/, x2, x:l); thus (1, 0, 0) would be shifted to (a,, a3, a2), etc.
Secondly, it might mean that the line whose equation is

llxi + Lx2 + l3x3 = 0

is to be shifted into the position of the line

lxx^ + hxz + l3x3

= (a^, + aJL,. + aJ3)x, + (o2?, + axL + a3l3)x2 + (ajx + a.,L_ + alL)x3 = 0 ;

so that Xj = 0 would become

axxx + a.^c2 + a3x3 = 0,
and so on.

If in" (13) we replace alt av a3 respectively by A,, A3, A2 the
cofactors of alt a3, a., in the determinant of the coefficients, the first
interpretation of the new substitution is geometrically equivalent
to the second interpretation of (13). We can therefore afford to
ignore the second interpretation as virtually involved in the first.
I t is also easy to see that the geometrical effects of (13) in its two
interpretations are mutually inverse.

§ 11. With the first interpretation, then, (13) shifts X j X ^ into
Yi(«u asi "2)) Y3(a.i, Oj, a3), Y.2(a3, a.,, a^. These coordinates satisfy
equations (A) of §7 ; hence every triangle into which XjXoX ,̂ is
changed by (13) is in triple perspective with XJX-JX., itself.
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The poles are found to be

Z.K1, a.7\ a,"1), Zfa1, of1, of1), Z3(a^\ a^, af1),
satisfying equations (B) of § 7, and therefore forming a triangle in
triple perspective with XJX..X3, but in reversed cyclic order.

The condition that Y,, Y2, Y3 should satisfy (iv) in addition to
(i)-(iii) is

a2
3 = a3*;

thus the equality of two coefficients in the substitution involves
quadruple perspective between X ^ j X , and every triangle obtained
from it by the substitution; and the same holds if two co-
efficients have the ratio a> or a>2, though the triangle is then
imaginary. Whatever the system of point-coordinates and the
value of a., the triangle (a., 1, 1), (1, 1, a.), (1, a., 1) is in quadruple
perspective in ways (i) to (iv) with X,X2X3.

§12. The invariant points and lines of (13), forming the
invariant triangle, are

P^or, to, 1), ^3 . £, = uXi + w-x2 + xs\

P2(<o, u>\ 1), V3 • & = «"»**i+ «•*• + *! [ (14)
P3(l, 1, 1), J&.&= as, + x2 + z j

This triangle is what we have called (§9) the principal related
triangle for the particular system of point-coordinate§ in use. I t is
in sextuple perspective with, and conjugate to, the triangle of
reference (§§ 8, 9); and not only so, but, as perspective and
harmonic properties are unaltered by a linear transformation, it
stands in the same relations to every triangle obtainable by (13) from
the triangle of reference. When we say "by (13)," we mean by
every substitution of theybrm (13), the result being independent of
the coefficients of (13).

§13. The geometrical interpretation of S(p) for n = 3, or of
S(<o), is plain : it changes the triangle of reference X!X2X3 into
the principal related triangle P^P™ for the coordinates in use, the
order of the vertices being significant. S(ar) will change X J X ^ J

into P2PiP3, and substitutions of like form will change XJXJX3
into each of the other four ways in which P1P2P3 may be named.
Each pair of substitutions, such as S(<o) and S(u>2), gives one
invariant triangle, and the nine vertices are as follows, the three
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last deduced from the table of §5, the others by cyclic inter-
change :—

Sn(0, 1, - 1), S12( J3 + 1, 1, 1), S13( - 73 + I, 1, 1) ;

Sn(l, - 7 3 + 1 , 1), S a ( - 1 , 0, 1), S23(l, ^ 3 + 1 , 1);
s ^ i . i . v a + i), 8 3 , ( 1 , 1 , - 7 3 + 1), s:J3((i, - 1 , 0).

They are all real, the three diagonal ones lying in a straight line,
and the others, in two sets of three, forming triangles in triple
perspective with X,X2X3.

Under repetitions of S(w), XiX2X3 passes through the successive
stages PiP.Pj, X,X1X3, P,P,P3, and so back to X,X,X3, the points
S3i, S32, S33 remaining fixed ; and similarly in the other cases.*

* Since writing the above, I have found the following references to
triangles in multiple perspective : —

Homologous Triangles, by Thomas Muir, M.A. [Mean. Math. 1 (1873)].
" Triply homologous" triangles are discussed, the vertices being taken in the
same cyclic order throughout.

Perspective Dreiecke und Tetraeder, by Edmund Hess [Math. Annalen 28
(1887)]. Here sextuply perspective triangles are introduced, the standpoint
being g-ometrical, and the application different from that of the present
paper.
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