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Air filaments and cavities in plunging breaking waves, generically cylinders, produce
bubbles through an interface instability. The effects of gravity, surface tension and
surface curvature on cylinder breakup are explored. A generalized dispersion relation is
obtained that spans the Rayleigh–Taylor and Plateau–Rayleigh instabilities as cylinder
radius varies. The analysis provides insight into the role of surface tension in the formation
of bubbles from filaments and cavities. Small filaments break up into bubbles through a
Plateau–Rayleigh instability driven through the action of surface tension. Large air cavities
produce bubbles through a Rayleigh–Taylor instability driven by gravity and moderated
by surface tension, which has a stabilizing effect. Surface tension, interface curvature and
gravity are all important for cases between these two extremes. Predicted unstable mode
wavenumber and bubble size show good agreement with direct numerical simulations of
plunging breaking waves and air cylinders.
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1. Introduction

Bubbles generated by breaking waves play important roles in many air–sea exchange
processes, including sea spray aerosol generation (Modini et al. 2013; Veron 2015; DeMott
et al. 2016; Erinin et al. 2019), gas transfer (Banner & Peregrine 1993; Farmer, McNeil &
Johnson 1993; Keeling 1993; Melville 1996; Liang et al. 2013; Derakhti & Kirby 2014) and
the exchange of moisture and heat (Bortkovskii 1987), all of which have significant impacts
on weather and global climate. For these and other reasons, quantifying the size-resolved
creation rate and understanding the production mechanisms of bubbles in breaking waves
are important subjects of ongoing research.
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Prior work has shown connections between hydrodynamic turbulence and air
entrainment in the transient, two-phase flow generated by a breaking wave crest. Garrett,
Li & Farmer (2000) argued that relatively large bubbles are entrained initially and are
subsequently prone to fragmentation driven by turbulent pressure fluctuations. They
showed that the bubble size spectrum resulting from a fragmentation cascade follows
a −10/3 power-law scaling with bubble radius, a result that has been demonstrated in
laboratory and field observations (Deane & Stokes 2002; Leifer & De Leeuw 2006;
Rojas & Loewen 2007; Blenkinsopp & Chaplin 2010) and numerical simulations (Deike,
Melville & Popinet 2016; Wang, Yang & Stern 2016; Yu et al. 2019; Yu, Hendrickson
& Yue 2020; Chan, Johnson & Moin 2021a; Chan et al. 2021b; Mostert, Popinet &
Deike 2021). Other power-law scalings for the large bubbles are also observed. Gaylo,
Hendrickson & Yue (2021) studied the evolution of the bubble size distribution of
large bubbles taking into account the bubble fragmentation and entrainment, and found
two regimes of equilibrium local power-law scaling, which are called weak and strong
injection regimes, respectively. The weak regime has the −10/3 power-law scaling, which
is independent of the entrainment size distribution and consistent with the previous
observations, whereas the power-law scaling for the strong injection regime shows
dependence on the entrainment power-law slope. The fragmentation cascade framework
(Garrett et al. 2000) has provided an explanation for the formation of bubbles larger than
the bubble Hinze scale, which is the bubble radius at which disruptive pressure fluctuations
are balanced by the stabilizing force of surface tension.

Breaking waves are known to entrain large numbers of bubbles smaller than the
bubble Hinze scale (Deane & Stokes 2002; Leifer & De Leeuw 2006; Blenkinsopp &
Chaplin 2010; Wang et al. 2016; Mostert et al. 2021). Rivière et al. (2021) studied bubble
breakup in homogeneous and isotropic turbulence and reported that a large number of
sub-Hinze-scale bubbles are produced by a non-local breakup cascade process. The wave
noise spectrogram in Deane & Stokes (2002) shows that sub-Hinze-scale bubbles are
created at the start of the acoustically active phase, before the main cavity fragments,
suggesting that there are bubble formation mechanisms operating within breaking waves
beyond the turbulent fragmentation cascade (Garrett et al. 2000) and that at least some of
these mechanisms must generate bubbles smaller than the Hinze scale. For example, the
impact of a drop on the water surface can result in the production of a swarm of small
bubbles through the process of Mesler entrainment, for which some work has been done
both experimentally and numerically (Carroll & Mesler 1981; Esmailizadeh & Mesler
1986; Oguz & Prosperetti 1989, 1990; Pumphrey & Elmore 1990; Thoroddsen, Etoh &
Takehara 2003).

This work is motivated by the formation of bubbles due to the breakup of air cavities and
spanwise filaments observed in the numerical simulations of breaking waves (see figure 1).
Cavities and filaments, generically referred to as cylinders, are a ubiquitous feature of
breaking waves, occurring in both spanwise and streamwise directions (Kiger & Duncan
2012; Lubin & Glockner 2015; Wang et al. 2016; Lubin et al. 2019). The breakup of air
cavities produces large bubbles, which are subsequently subject to further breakup through
the Garrett et al. (2000) fragmentation cascade. The stability of liquid and air jets is a
classical problem that has been studied previously (see Chandrasekhar 2013). The unstable
growth of interface waves on their boundaries, ultimately resulting in their breakup, is well
known.

This paper presents a three-component study of the breakup of spanwise air cylinders:
(1) the direct numerical simulation (DNS) of filament and cavity breakup in breaking
waves, (2) a stability analysis of air cylinder breakup and (3) a grid convergence study of
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(a)

5 cm

(b)

Figure 1. Breakup of (a) spanwise air filaments at t = 0.84T and (b) an air cavity in a simulated breaking wave
crest at t = 1.24T . Wave-like perturbations appear on the interface of both structures and grow until bubbles
are formed. See supplementary movie 1, available at https://doi.org/10.1017/jfm.2021.890, for an animation.

air cylinder breakup in a static flow field. In (1), DNS of breaking waves are performed
by solving the incompressible Navier–Stokes equations on a fixed Eulerian grid using the
coupled level set and volume of fluid (CLSVOF) method to capture the air–water interface.
Air cylinders are identified and isolated from the breaking wave simulation domain and
the most unstable mode of the unstable interface waves on the cylinders are then obtained.
In (2), a theoretical analysis for the breakup of spanwise air cylinders is presented through
a development of the Rayleigh–Taylor instability in cylindrical coordinates assuming that
the fluid flow is stationary, incompressible and inviscid. This can also be thought of
as a generalization of the Plateau–Rayleigh instability because it includes the effects of
both gravity and surface tension on the stability of a fluid cylinder. A generalization
is required because both these forces can be important for air cylinders in wave crests,
depending on the scale of the cylinder in question. The result of the stability analysis is
a generalized dispersion relation describing the relationship between the unstable modes
and the cylinder radius. A comparison of the wavenumber of the most unstable modes of
the interface waves on the air cylinders obtained from the DNS data with the theoretical
predictions shows good agreement. In (3), the limitation of the grid resolution of the
breaking wave simulations motivated us to study grid resolution effects on idealized,
isolated air cylinders. The three grid resolutions chosen for the isolated air cylinders have
grid sizes respectively equivalent to the same as, half of and a quarter of the breaking
wave simulation grid size. The isolated cavity analysis demonstrates that there is not a
grid resolution problem with the breakup of cylinders in the breaking wave simulations.

The remainder of this paper is organized as follows. We begin with the problem set-up,
numerical simulation configurations and theoretical background in § 2. A generalized
dispersion relation bridging the Plateau–Rayleigh instability and two-dimensional (2-D)
Rayleigh–Taylor instability is also presented in § 2. The results, including data processing
procedures, a comparison between the simulation results and the theoretical dispersion
relation and grid convergence studies, are described in § 3. Finally, discussions and
conclusions are presented in § 4 and § 5, respectively.

2. Problem set-up and theoretical background

2.1. Problem set-up
The analysis is motivated by the formation and breakup (figure 1) of an air cavity and
spanwise filaments in breaking wave crests. These structures are observed in laboratory
experiments (Kiger & Duncan 2012) and can be identified and studied in DNS of breaking
waves. The simulations are performed by solving the incompressible Navier–Stokes
equations on a fixed Eulerian grid, where the air–water system is treated as a coherent
system with varying physical properties. The in-house code used here implements the
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R̃ = R0 + εeωt + ikz

ρa

ρw

θ

Figure 2. Geometry for the analysis in the cylindrical coordinates (r, θ, z).

CLSVOF method (Sussman & Puckett 2000) in capturing the air–water interface and is
described in detail in Hu et al. (2012), Liu (2013), Yang et al. (2017), Tang et al. (2017),
Yang, Deng & Shen (2018) and Gao et al. (2021). A third-order Stokes wave with a large
initial steepness in a periodic domain (Chen et al. 1999; Iafrati 2009; Deike et al. 2016;
Wang et al. 2016; Tang et al. 2017; Yang et al. 2017, 2018) is adopted here. The wavelength
L is 25 cm, which is close to that chosen by Iafrati (2009), Deike et al. (2016) and Wang
et al. (2016). The density ratio ρa/ρw and viscosity ratio μa/μw are set to 0.0012 and
0.0154, respectively, where ρ is density, μ is dynamic viscosity and the subscripts a and
w, respectively, denote air and water.

A typical computational domain size is Lx × Ly × Lz = L × L × 0.5L and the largest
domain size is Lx × Ly × Lz = L × L × L. Here x, y and z denote the streamwise, vertical
and spanwise directions, respectively. The mean water depth is d = 0.5L. The grid size is
isotropic and uniform in the simulation domain and set to Δ = L/512. The computational
time for a typical breaking wave case is approximately 100 h using 2048 cores on
the supercomputer Onyx at the US Army Engineer Research and Development Center
(ERDC), which uses 2.8 GHz Intel Xeon E5-2699v4 Broadwell processors, each with 22
cores, on its standard compute nodes.

The breakup of air filaments and that of an air cavity captured by the simulation are
shown in figure 1. In both cases, initially small perturbations on the interface grow, forming
bulges, necks and finally bubbles. The relative importance of interface curvature, gravity
and surface tension to the growth of unstable interface waves depends on cylinder radius
and spans what is usually referred to as the Rayleigh–Taylor instability for the largest
structures, which tend to behave like a 2-D interface, to the Plateau–Rayleigh instability
for the smallest structures. A new dispersion relation is required to handle cases between
these two extremes and this is developed below.

2.2. The generalized dispersion relation
The filament or cavity is modelled as an infinitely long cylinder of air of radius R0
surrounded by water, with initially small wave-like perturbations growing on its boundary,
as shown in figure 2. The perturbations are expressed as ε exp(ωt + ikz), where ε is the
perturbing wave amplitude, ω is the wave growth rate, k is the wavenumber, t is time
and i is the imaginary unit. The fluid is assumed to be incompressible and inviscid in
the stability analysis. Our study of effects of viscosity show that they are negligible
for the air–water system at the scales studied here. The analysis is performed using the
cylindrical coordinates (r, θ, z). The horizontal plane has θ = 0 or θ = π. Gravity is
pointing downwards, corresponding to θ = 3π/2.
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The continuity equation is

1
r

∂(rur)

∂r
+ ∂uz

∂z
= 0. (2.1)

The Euler equations are

ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

)
= −∂p

∂r
− ρg sin θ + σκδ̂ (2.2)

and

ρ

(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

)
= −∂p

∂z
, (2.3)

where ur and uz are the velocities along the r and z directions, respectively, p is pressure,
g is gravity, σ is the surface tension coefficient, κ is the surface curvature and δ̂ is the
Dirac delta function, which ensures that the surface tension force is imposed only on the
interface. The density equation is

∂ρ

∂t
+ 1

r
∂

∂r
(rρur) + ∂

∂z
(ρuz) = 0. (2.4)

Each of the variables ur, uz, ρ, p and κ can be expanded as a small perturbation about an
initial value:

A = Ā(r) + A′(r, z, t), (2.5)

where A is ur, uz, ρ, p or κ , and Ā and A′ denote the initial value and small perturbation of
the variable A, respectively. We further assume that the undisturbed fluid is stationary.

Substituting (2.5) into (2.1)–(2.4) and neglecting terms of second order and higher yields
the linearized equations:

1
r

∂(ru′
r)

∂r
+ ∂u′

z

∂z
= 0, (2.6)

ρ̄
∂u′

r

∂t
= −∂p′

∂r
− ρ′g sin θ + σκ ′δ̂, (2.7)

ρ̄
∂u′

z

∂t
= −∂p′

∂z
(2.8)

and

∂ρ′

∂t
+ u′

r
∂ρ̄

∂r
= 0. (2.9)

The perturbation variables u′
r, u′

z, ρ′ and p′ are assumed to have the form of waves:

B(r, z, t) = Bk(r) exp(ikz + ωt), (2.10)

where B is u′
r, u′

z, ρ′ or p′, and Bk is the k component of B.
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Substituting (2.10) into (2.6)–(2.9) and eliminating u′
z, p′ and ρ′, we obtain

ρ̄k2u′
r = ∂

∂r

(
ρ̄

r
∂(ru′

r)

∂r

)
+ k2

ω2 u′
rg sin θ

∂ρ̄

∂r
+ k2

ω
σκ ′δ̂. (2.11)

Away from the interface, ρ̄ is a constant, δ̂ = 0 and (2.11) simplifies to

∂

∂r

(
1
r

∂(ru′
r)

∂r

)
− k2u′

r = 0, (2.12)

with solution

u′
r =

⎧⎪⎪⎨
⎪⎪⎩

u′
r0

I1(kr)
I1(kR0)

r ≤ R0,

u′
r0

K1(kr)
K1(kR0)

r > R0,

(2.13)

where Iν and Kν (ν = 1) are the first and second kinds of the modified Bessel functions,
respectively, and u′

r0 is the perturbed velocity at the interface. The perturbed surface
curvature is given by (Chandrasekhar 2013):

κ ′ = − u′
r

R2
0ω

(1 − k2R2
0). (2.14)

Substituting (2.14) into (2.11) and integrating across the interface with an infinitesimal
distance yields

Δ

(
ρ̄

r
∂(ru′

r)

∂r

)
+ k2

ω2 u′
r0g sin θ Δρ̄ + k2

ω2
σ ūr0

R2
0

(1 − k2R2
0) = 0, (2.15)

where Δ(·) = (·)w − (·)a, and the subscripts w and a denote water and air, respectively.
Substituting (2.13) into (2.15) and further simplification leads to the final result for the
dispersion relation:

ω2
(

ρa
I0(kR0)

I1(kR0)
+ ρw

K0(kR0)

K1(kR0)

)
= k

(
g(ρw − ρa) sin θ + σ

R2
0
(1 − k2R2

0)

)
. (2.16)

Equation (2.16) permits solutions that grow exponentially in time. The length scale of the
cylinder breakup processes is determined by the wavenumber of the mode that has the
largest growth rate, which occurs on the top surface of the cylinder where θ = π/2.

2.3. The effect of viscosity in the stability analysis
The two limiting cases, the Plateau–Rayleigh and 2-D Rayleigh–Taylor instabilities for
both viscous and inviscid fluids, are discussed here for assessing the viscous effect in the
stability analysis. If viscosity is present, based on Plesset & Whipple (1974) and Youngs
(1984), the dispersion relation for the 2-D Rayleigh–Taylor instability is approximated as

ω2 + 2
μw + μa

ρw + ρa
k2ω − ρw − ρa

ρw + ρa
gk + σk3

ρw + ρa
= 0. (2.17)

The dispersion relation and its derivation of the Plateau–Rayleigh instability for a viscous
water cylinder can be found in Chandrasekhar (2013) and Pekker (2017). Similarly, the
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4.0

Inviscid 2-D Rayleigh–Taylor

Viscous 2-D Rayleigh–Taylor

Inviscid Plateau–Rayleigh

Viscous Plateau–Rayleigh

3.5

3.0

2.5

2.0kλc

R0 /λc

1.5

1.0

0.5

0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 3. Most unstable mode wavenumber versus cylinder radius of Plateau–Rayleigh instability and 2-D
Rayleigh–Taylor instability for both inviscid and viscous fluids.

dispersion relation of the Plateau–Rayleigh instability for a viscous air cylinder is written
as

(1 − (kR0)
2)kR0

K1(kR0)

K0(kR0)
= ω2ρwR3

0
σ

+ 2
μwωR0

σ
(kR0)

2

+ μw√
σρwR0

(kR0)
2

⎛
⎝ω

√
ρwR3

0
σ

+ 2
μw√
σρwR0

(kR0)
2

⎞
⎠(1 + K2(kR0)

K0(kR0)

− ξ

1 + ωρw/(2μwk2)

K1(kR0)

K1(kR0ξ)

(
K0(kR0ξ)

K0(kR0)
+ K2(kR0ξ)

K0(kR0)

))
, (2.18)

where ξ =
√

1 + ωρw/(μwk2).
The wavenumbers for the most unstable mode of the 2-D Rayleigh–Taylor and

Plateau–Rayleigh instabilities with viscous force in the air–water system are obtained by
solving numerically (2.17) and (2.18), respectively, and are plotted in figure 3 together with
the results for inviscid fluids. As shown, the viscous effect is negligible in the stability
analysis for air–water system at the scales studied here.

3. Results

3.1. Data processing for unstable cylinders in simulated breaking waves
The unstable growth of interface waves can be seen on air cylinders found in DNS
of breaking waves. As a check against the theory, discussed in the sections below,
the wavenumber of the most unstable mode is found through computer analysis in the
following way. Cylinders with actively growing interface waves are identified through an
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10

3

2

1

0 20 30 40 50

z /λc
R

/λ
c

R0 /λc

60 70 80 90

(a) (b)

(c) (d )

Figure 4. Procedure for data processing. (a) An air cylinder is highlighted by a yellow box in a breaking wave
simulation. (b) The air cylinder extracted from the simulation along with surrounding small bubbles, which
need to be removed. (c) Small bubbles are removed leaving only the air cylinder using a bubble identification
algorithm (Herrmann 2010; Gao et al. 2021). (d) Equivalent cross-sectional radius as a function of spanwise
direction R(z) (solid line) and a characteristic radius R0 (dashed line).

inspection of the simulation, such as the one shown in the yellow box in figure 4(a).
The extracted cylinder, shown in figure 4(b), contains small bubbles that affect the data
analysis, which are identified and removed using the bubble identification algorithm
developed by Herrmann (2010) and recently employed by Gao et al. (2021). The result
is shown in figure 4(c), which contains only the cylinder of interest. The cylinder
cross-sectional area is variable along its axis, but a characteristic radius, R0, is taken
to be the radius of a cylinder with the same length and volume as that under analysis.
The equivalent cross-sectional area radius, R(z), at each location along the axis is also
calculated and used to study the wavenumbers of interface waves. The R0 and R(z), both
normalized by the capillary length, are plotted in figure 4(d) by dashed and solid lines,
respectively. The most unstable mode in the DNS result is then obtained using Fourier
analysis of R(z) and is taken to be the wavenumber corresponding to the largest power.

3.2. Most unstable mode
The dependence of growth rate on wavenumber is obtained by solving (2.16) numerically.
The real component of the growth rate Re(ω) is plotted in figure 5(a) for various values
of cylinder radius normalized by the capillary length, λc = √

σ/((ρw − ρa)g). The dot
on each curve indicates the largest theoretical growth rate, corresponding to the mode
of maximum instability. For this mode, the wavenumber increases as the cylinder radius
decreases, indicating that the wavelength of the most unstable mode increases with
increasing cylinder radius. Conversely, the real part of the wave growth rate of the most
unstable mode increases with decreasing cylinder radius, indicating that cylinder breakup
time decreases as the cylinder radius decreases.
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4.0(a) (b)

3.5

3.0

2.5

2.0

R
e(

ω
)τ

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

4.0
Generalized dispersion

Simulation results

Plateau–Rayleigh

2-D Rayleigh–Taylor

3.5

3.0

2.5

kλc

kλc

0.5

Grid size

1.0 1.5 2.0 2.5 3.0 3.5 4.0

R0 /λc

R0 /λc = 0.5

R0 /λc = 1.0

R0 /λc = 1.5
R0 /λc = 2.0

2.0

1.5

1.0

0.5

0

Figure 5. (a) Real component of growth rate ω versus wavenumber k from (2.16). (b) Wavenumber of
the most unstable mode k versus cylinder radius R0. Wavenumber is normalized by the capillary length,
λc = √

σ/((ρw − ρa)g) = 2.73 mm for air and water. Growth rate is normalized by the characteristic time scale
τ = √

λc/g = 16.68 ms. In (a), the dots on the curves correspond to the largest Re(ω) and are referred to as
the most unstable modes. In (b), the red solid line is the solution to (2.16) and the black circles are derived from
the numerical simulations (see the text of § 3.1 for details). The most unstable modes of the Plateau–Rayleigh
instability (3.3) and the 2-D interface Rayleigh–Taylor instability (3.8) are shown by the purple dashed and
blue dashed lines, respectively.

The theoretical predictions are compared with breaking wave simulation results in
figure 5(b), which shows the scaled wavenumber of the most unstable mode as a function
of the scaled cylinder radius. The unstable mode wavenumber was quantified using the
procedure described in § 3.1 for 68 spanwise cylinders found in breaking wave simulations
with varying initial wave steepness. The lack of data points for R0/λc � 2 is because
cylinders of this scale persist on longer time scales and tend to interact with other air–water
structures in the breaking wave, such as other cylinders, bubbles and the water surface,
before they break up through unstable interface wave growth. These interactions make the
estimation of the most unstable wave for large cylinders difficult. A single data point for
R0/λc ≈ 3 was obtainable because the air cylinder was sufficiently isolated from other
structures that its most unstable mode could be identified.

Equation (2.16) describes interface waves that lie between the two limiting cases of
the Plateau–Rayleigh and 2-D interface Rayleigh–Taylor instabilities. As a check, these
classical results can be recovered from the generalized dispersion relation. For air filaments
with small radii, we have

σ

R2
0
(1 − k2R2

0) � g(ρw − ρa) sin θ. (3.1)

Moreover, as ρa � ρw, the dispersion relation is reduced to

ω2ρw
K0(kR0)

K1(kR0)
= σk

R2
0
(1 − k2R2

0), (3.2)

which is identical to the Plateau–Rayleigh instability dispersion relation for an air cylinder.
The most unstable mode of the Plateau–Rayleigh instability satisfies (Chandrasekhar 2013)

kR0 = 0.484, (3.3)
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which is shown as a dashed purple line in figure 5(b). For an air cavity with large radius,
we have

σ

R2
0
(1 − k2R2

0) ≈ −k2σ. (3.4)

Asymptotic approximations of the modified Bessel functions are

Iν(x) ∼ ex
√

2πx
and Kν(x) ∼ e−x

√
2x/π

for x � ν, (3.5a,b)

which are independent of the function order ν for large x. Consequently, for a large air
cavity, we have

I0(kR0)

I1(kR0)
≈ 1 and

K0(kR0)

K1(kR0)
≈ 1. (3.6a,b)

Restricting attention to the most unstable region of the interface (where sin θ = 1), the
dispersion relation (2.16) is reduced to

ω2 = gk
(

ρw − ρa

ρa + ρw
− k2σ

g(ρa + ρw)

)
, (3.7)

which is identical to the 2-D Rayleigh–Taylor instability dispersion relation with the
inclusion of surface tension. The wavenumber of the most unstable mode of the 2-D
Rayleigh–Taylor instability is given by

k =
√

g(ρw − ρa)

3σ
, (3.8)

which is shown as a blue dashed line in figure 5(b). The solution of (2.16) spans the
Plateau–Rayleigh and 2-D interface Rayleigh–Taylor instabilities as the cylinder radius
varies.

The breakup of small air filaments into bubbles is driven by surface tension effects,
which tend to minimize the total surface energy as described by the Plateau–Rayleigh
instability. The main air cavity, which has the largest radius, collapses due to the
Rayleigh–Taylor instability, which includes the effects of both surface tension and gravity.
The breakup of cylinders between these two extremes is controlled by interface waves
with a growth rate dependent on gravity, surface tension and interface curvature, which is
described by the full dispersion relation (2.16).

3.3. Distribution of bubble sizes
A theoretical expression for an estimate of bubble radius is derived by assuming that the
bubbles produced by cylinder breakup have the same volume as the cylinder fragments,
which is set by the wavelength of the most unstable mode, so that

4
3
πr3 = πR2

0λp = πR2
0

2π

k
, (3.9)

where r is bubble radius and λp is the wavelength of the fastest-growing mode. This
estimation can be compared with measured bubble radii from the DNS. In figure 6, the
red curve denotes the bubble radius calculated by inserting the wavelength of the most
unstable mode determined from (2.16) into (3.9). The black and grey circles denote the
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101

101

100r /λc

100

Grid size

Generalized dispersion

Simulation results

R0 /λc

10–1

Figure 6. Normalized bubble radius versus normalized cylinder radius. The red curve is the solution of (3.9)
based on (2.16). The black (R0/λc >= 0.5) and grey (R0/λc < 0.5) circles are the results from DNS.

volume-equivalent radius of bubbles observed to be produced by the unstable breakup of
cylinders in the breaking wave simulation. Fewer cylinders were analysed for bubble size
distribution than for mode wavenumbers (compare figure 6 and figure 5b) because some air
cylinders undergo other processes that complicate the analysis, such as coalescence with
bubbles or the water surface, while they are breaking up. Moreover, the data do not include
some very small bubbles observed between the bubbles associated with the most unstable
interface mode. Small bubbles, known as satellite bubbles, can be formed as a bubble or
cylinder breaks up (e.g. Thoroddsen, Etoh & Takehara 2008). Although the DNS does
produce some satellite bubbles, they have not been included in the results because the
fluid dynamical processes leading to their formation lie well below the resolution of the
simulations, and the number and size distributions of simulated satellite bubbles are not
expected to be accurate.

Figure 6 shows that the sizes of bubbles in the DNS are distributed around the prediction
by (3.9). The acceptable agreement between the simulated and predicted wavelengths
(figure 5b) and bubble radii (figure 6) provides some confidence in the theoretical analysis
because the two-phase flows internal to a breaking wave crest are complex, including both
fluid turbulence and vortex motions, for example, and it is not obvious apriori that these
characteristics of the flow can be neglected.

3.4. Surface tension effects
The stability analysis provides insight into the effects of surface tension on the generation
of bubbles in breaking waves. The role of surface tension in the breakup of air cylinders
can be to suppress the growth of interface waves or increase their growth rate, depending
on the sign of the surface tension term in (2.16). This is illustrated in figure 7, which shows
the scaled wavenumber of the most unstable mode plotted against the scaled cylinder
radius (red line) and the equation kR0 = 1 (blue line). The intersection of the two curves
defines a critical cylinder radius at R0/λc = 1.65. On the left of the critical radius, the most
unstable mode curve satisfies kR0 < 1, resulting in positive values of the surface tension
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4.0

Generalized dispersion

kR0 = 13.5

3.0

2.5

2.0

Surface tension

is destabilizing

Surface tension

is stabilizing

kλc

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R0 /λc

R0 /λc = 1.65

Figure 7. Surface tension effects in cylinder breakup. The intersection of the kR0 = 1 line (blue) and the
most unstable mode curve (red) defines a critical point: R0/λc = 1.65. Surface tension has destabilizing and
stabilizing effects on the left and right of the critical point, respectively.

term in the general dispersion relation (2.16) and, as a result, the surface tension forces add
to the unstable mode growth. In contrast, the unstable modes on the right of the critical
radius have a negative surface tension term, and thus the surface tension forces reduce the
unstable mode growth.

3.5. Grid convergence of simulation results
Available computational resources limit the grid resolution of the breaking wave
simulations for a wave of length 25 cm, which is typically considered in simulation studies,
to approximately 0.3 mm, which is not small enough to accurately capture surface tension
physics of the smallest bubbles of interest (e.g. Deike et al. 2016; Wang et al. 2016;
Gao et al. 2021). Three convergence studies were conducted to ensure that the simulated
breaking wave bubble size spectrum and the wavenumbers of the most unstable mode of
simulated air cylinders were not impacted by grid resolution. These include a breaking
wave study at various grid resolutions, a small air cylinder study and a 2-D interface study
described below.

Figure 8 shows simulated bubble size distributions from the breaking wave of initial
wave steepness of 0.55 using grid resolutions of L/256, L/512 and L/768, respectively,
where L is the wavelength. The results indicate that the bubble spectra are largely
consistent among the runs, especially between the two simulations with higher resolutions
and, as expected, a finer grid resolution extends the bubble size spectrum to smaller
scales. The dash-dotted line in figure 8 shows the −10/3 power-law scaling expected
from a turbulence-induced fragmentation cascade, predicted in Garrett et al. (2000) and
later verified in experiments by Deane & Stokes (2002). The dotted line shows the −3/2
power-law scaling explained by dimensional analysis in Deane & Stokes (2002). The
consistency of the bubble size spectra among simulations with different grid resolutions
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Figure 8. Bubble size spectra for cases with 256, 512 and 768 grid points per wavelength, respectively. The
dotted and dash-dotted lines show power-law scalings of −3/2 and −10/3, respectively.

and the reproduction of the expected power-law scalings both suggest that there is not a
grid resolution problem with the present breaking wave simulations.

The limited resolution allowable for the breaking wave simulation motivated a finer
grid resolution study of isolated air cylinders to further investigate the convergence
of the numerical results. Cylinders of varying sizes were simulated using three
domain classes of increasing resolution. The domains are all the same size, which is
24 mm × 24 mm × 125 mm, where 125 mm is the cylinder axial length. The number
of grid points for the coarsest domain approximately matches the grid resolution of the
breaking wave simulation. The other two domains refine this grid by a factor of 2 and 4,
respectively, in each dimension. The resulting numbers of grid points are 48 × 48 × 256
(resolution 1), 96 × 96 × 512 (resolution 2) and 192 × 192 × 1024 (resolution 3). The
chosen cylinder radii lie in the range 0.5 mm to 1.5 mm, which is comparable to the scales
of the smallest cylinders seen in the breaking wave simulation. Small cylinders are chosen
because these are the cylinders that will be most impacted by grid resolution limitations.
Gravity has been neglected in the simulations because it does not play an important role in
the growth of Plateau–Rayleigh waves, which drive the breakup of these small cylinders.

The behaviour of unstable interface waves was analysed using the same procedure
employed for the cylinders isolated in the breaking wave simulations. The results of this
analysis are shown by the coloured circles in figure 9, which indicate the wavenumber
of the fastest-growing unstable wave as a function of cylinder radius. The results are in
good agreement with both the theoretical predictions and the breaking wave simulations.
The consistent agreement between the cylinder simulations of various grid resolutions
with both theory and the breaking wave results supports the idea that the resolution of the
breaking wave simulations appears to be sufficient to capture the behaviour of interface
waves down to the smallest cylinders studied.

Moreover, 2-D interface simulations with water over air provide a check of the
theoretical predictions in the asymptotic limit of large cylinder radius, which is controlled
by the 2-D Rayleigh–Taylor instability (see dotted black line in figure 9). The simulation
domain for the 2-D Rayleigh–Taylor instability is set to 250 mm × 250 mm with grid
numbers 512 × 512, 1024 × 1024 and 2048 × 2048, having the grid sizes, respectively,
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4.0

3.5

3.0

2.5

2.0kλc

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R0 /λc

Generalized dispersion

Cylinder simulation (resolution 1)

Plateau–Rayleigh

2-D Rayleigh–Taylor

2-D Rayleigh–Taylor simulation

Grid size

Breaking wave simulation

Cylinder simulation (resolution 2)

Cylinder simulation (resolution 3)

Figure 9. Grid convergence of cylinder and 2-D Rayleigh–Taylor simulations. The solid, dashed and dotted
lines represent the theoretical formula for the generalized dispersion relation, Plateau–Rayleigh instability
and 2-D Rayleigh–Taylor instability, respectively. The black circles show the scaled wavenumbers of the
fastest-growing interface waves on cylinders identified in the breaking wave simulations. Coloured circles show
scaled wavenumbers of the fastest-growing interface waves on simulated cylinders (see text, legend and vertical
arrows along the horizontal axis for grid resolutions). The black arrow shows the grid size for the breaking wave
simulations and the red arrow shows the grid size for the finest resolution cylinder simulation. The results of the
2-D Rayleigh–Taylor simulations with various grid resolutions all lie within the purple band on the right-hand
side.

equivalent to the same as, half of and a quarter of the breaking wave simulation. All the
results were found to lie within the purple band in figure 9.

4. Discussions

We remark on some limitations of this work. The breaking waves simulated here are
steep Stokes waves in periodic domains. It would be an improvement to study the
bubbles generated by more realistic breaking waves, such as those induced by focused
wave packets. However, the wave focusing method is significantly more computationally
expensive because it requires a larger computational domain to allow for the evolution
of waves and to avoid reflected wave energy. For this reason, existing simulations of
focused, breaking wave packets with bubbles either are 2-D simulations (Deike, Pizzo
& Melville 2017) or are done on a grid that is too coarse to directly capture the small
scales of bubbles (Derakhti & Kirby 2014). Fully three-dimensional simulations of bubbles
produced by more realistic breaking waves are desirable but will have to be conducted
when the required computer resources become available.

Only spanwise filaments are considered here. Streamwise filaments are also known to
lie within fluid vortex structures (e.g. Lubin & Glockner 2015), and equation (2.16), which
assumes an initially stationary fluid, may not be suitable for an analysis of their stability.
We did not test the generalized stability analysis on streamwise filaments because the
grid resolution in our breaking wave simulations (0.5 mm) is too large to capture these
structures (Lubin & Glockner 2015). This topic can be addressed in future work.
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Figure 10. Examples of air cylinders with radii varying from approximately 0.30λc to 1.84λc. Panels (a,c,e,g)
show the identified air cylinders, which are visualized using the zeroth isosurface of the level set function, and
panels (b,d, f,h) show the corresponding equivalent cross-sectional radii as a function of spanwise direction
R(z) (solid line) and characteristic radius R0 (dashed line).

The generalized dispersion relation was derived under the assumptions that the cylinder
is isolated, that the initial flow is stationary, and that both viscous effects and disturbances
along the θ direction induced by gravity can be neglected. The current formula for the
generalized dispersion relation is concise and simple, with a clear physical meaning. The
agreement of simulation results with the theoretical predictions provides some confidence
that these assumptions are reasonable and the model is accurate enough for the spanwise
cylinders studied here. This may not be true for all cylinders, such as the case of streamwise
filaments. The mechanism revealed in the analytical dispersion relation obtained from the
generalized Rayleigh–Taylor stability analysis and the agreement with DNS results show
promise. A more complex model, for example, adding θ effects, and follow-up studies to
overcome the above limitations can be subjects for future research.

Predictions from the generalized dispersion relation are validated with simulations of
breaking waves with wavelength 25 cm. Will the theory work for breaking waves with
larger wavelengths (e.g. metre-scale and larger breaking waves)? There is no inherent
limitation on the scale over which the theory holds, and both small and large air cylinders
(in units of capillary length) have been examined with numerical simulations. Moreover,
breaking waves produce air cylinders over a range of scales, and we anticipate that metre
wavelength and larger breaking waves will also produce cylinders of a scale for which the
theory works. There may be some evidence for this in the breakup of the primary air cavity
through interface instability, observed in a breaking wave experiment with wavelength
1.2 m (see figures 11, 12 and supplemental video 9 in Kiger & Duncan (2012)). However,
direct numerical evidence for the extrapolation of the results presented here to larger-scale
breaking waves must wait until simulations with large wavelength are conducted.

To show that the unstable wavelength can be identified for different scales of the air
cylinders in the breaking wave simulations with limited grid resolution, the air cylinders
with various radii and their equivalent cross-sectional radii as functions of spanwise
direction are plotted in figure 10. The characteristic radii of these examples are 0.30λc,
0.55λc, 1.20λc and 1.84λc, which correspond to 3.4, 6.2, 13.4 and 20.6 grids across
the cylinder diameters, respectively. These examples show a similar pattern as seen in
figure 4, especially for R0/λc > 0.5, indicating that the data processing procedure is
applicable to these scales. Nevertheless, calculations for small radii with R0/λc < 0.5
must be interpreted cautiously because the grid resolution is inadequate to resolve the
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subsequent bubble dynamics accurately. The reasonable agreement in figure 5(b) can be
attributed to the fact that the wavelength in the spanwise direction is much larger than the
grid length. For example, for R0/λc = 0.30 and 0.55, the most unstable interface waves in
the spanwise direction have wavelengths λ = 2π/k = 10.6 mm and 19.5 mm, respectively,
which correspond to 22 and 40 grid points. As a result, it is relatively easier for the
numerical scheme to capture the spanwise interface wave initial undulations in terms of
the wavelength, which is the focus of the present study. For the subsequent dynamics of
the bubbles, higher-resolution simulations with the increase in computing power in the
coming years and the advancement in numerical algorithms (e.g. Zeng et al. 2022) are
called for.

This work does not address the fluid dynamical processes leading to the formation
of filaments and cavities or the fraction of bubbles created through cylinder breakup
in breaking waves because it is difficult to distinguish the bubbles created by different
mechanisms due to the complexity of the breaking wave process. Consequently, the
contribution of unstable air cylinders to the final bubble size distribution remains
unknown. These are topics of interest but are currently beyond the scope of this work.

5. Conclusions

This study investigates the breakup of air filaments and air cavities into bubbles through
the unstable growth of interface waves. The dispersion equation for the waves is
derived by generalizing the Rayleigh–Taylor instability to cylindrical coordinates with
surface tension, surface curvature and gravity force simultaneously accommodated. The
dispersion relation obtained from the stability analysis can accurately predict the breakup
of spanwise air filaments and cavities through their most unstable mode, as confirmed by
the comparison with the results of DNS of breaking waves and air cylinders. Cylinders
with radii much less than the capillary length are broken up through the Plateau–Rayleigh
instability with the action of surface tension, which acts to minimize surface energy.
Those with radii much greater than the capillary length collapse through the growth of
the Rayleigh–Taylor instability. In this case, surface tension acts to reduce the growth rate
of the instability. Surface tension, boundary curvature and gravity are all important for
cylinders with radii lying between the two extremes.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2021.890.
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