
J. Functional Programming 7 (1): 73–101, January 1997 c© 1997 Cambridge University Press 73

First-order functional languages

and intensional logic

P. RONDOGIANNIS and W. W. WADGE
Department of Computer Science, University of Victoria,

P.O. Box 3055, Victoria, BC, Canada V8W 3P6

(e-mail: {prondo,wwadge}@lucy.uvic.ca)

Abstract

The purpose of this paper is to demonstrate that first-order functional programs can be

transformed into intensional programs of nullary variables, in a semantics preserving way. On

the foundational side, the goal of our study is to bring new insights and a better understanding

of the nature of functional languages. From a practical point of view, our investigation

provides a formal basis for the tagging mechanism that is used in the implementation of

first-order functional languages on dataflow machines.

Capsule Review

Intensional programming languages such as Lucid treat certain parameters – such as time

– implicitly. An intensional interpretation called eduction is then given to programs which

introduces the implicit parameters more explicitly. Although intensional languages are clearly

declarative, their precise connection to functional languages is worth investigating. This paper

describes a translation from first-order functional programs into intensional programs in which

the formal parameters to functions are eliminated, leaving them with ‘nullary variables’. This

approach is interesting as an implementation method for first-order functional languages, and

also demonstrates some useful connections to dataflow architectures.

1 Introduction

In 1984 A. Yaghi, in his PhD dissertation (Yaghi, 1984), presented for the first time

a transformation algorithm from functional to intensional programs. Motivated by

Montague’s intensional logic (Thomason, 1974; Dowty et al., 1981), Yaghi first

defined a simple intensional programming language whose syntax only allowed

nullary variable definitions. He then proposed an algorithm for transforming first-

order functional programs into programs of this language.

The practical significance of his work is that the resulting intensional programs

can be implemented (in fact, evaluated) using eduction, a simple tagged (dynamic)

demand-driven dataflow model which does not require closures, pointers or heaps.

In fact, since its inception the algorithm has been used as the core implementation

technique for a number of first-order languages (Du and Wadge, 1990a, 1990b;

Faustini et al., 1991). Moreover, the algorithm is closely related to the colouring

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


74 P. Rondogiannis and W. W. Wadge

technique that has been extensively used for implementing first-order functional

programs on dataflow architectures (Kirkham et al., 1985; Arvind and Nikhil,

1990).

Yaghi’s work, although ground-breaking, was incomplete in the sense that it

lacked a precise formulation, did not include a correctness proof, and applied only

to first-order programs. In this paper we resolve the above first two issues, and

lay the basis for the extension to higher-order programs, the subject of a separate

forthcoming paper (Rondogiannis and Wadge, 1996).

The first sections of the paper concentrate on giving a self-contained, intuitive

introduction to the research area under consideration and to its main underlying

concepts. The overall structure of the rest of the paper has as follows: section

2 introduces intensional logic and intensional programming languages. The com-

putational model of eduction that can be used in order to interpret intensional

languages, is presented in section 3. Section 4 introduces Yaghi’s transformation

algorithm. Sections 5, 6 and 7 present mathematical preliminaries, and introduce the

functional language FOFL and the intensional language NVIL that are the source

and target languages of the transformation algorithm. In sections 8 and 9 we give a

precise formulation of the transformation algorithm, and illustrate it by examples.

The correctness proof for the transformation is given in section 10, and the paper

concludes by discussing the connections and implications of our work in the area of

dataflow computation as well as implementation issues.

2 Intensional logic and intensional languages

Intensional logic (Thomason, 1974; Dowty et al., 1981; van Benthem, 1988) is

a mathematical formal system for describing entities whose values depend upon

implicit contexts. The need for such a logic became apparent when the study of

natural languages was undertaken by linguists and logicians. Consider for example

the following natural language expression (Thomason, 1974):

Iceland is covered with a glacier

The truth value of this expression varies according to an implicit time context: at

the present time the above expression is false; however, there are times in the past

when the expression was true. Therefore, the semantic value of the expression is

really a function from time-points to truth values.

One can easily think of other expressions whose truth value depends on more

than one coordinates, such as spatial position, speaker, or audience. In general, the

semantic value of an expression is a function from a set of contexts (also called

possible worlds) to a set of values. This function is called the intension of the

expression. The value of the intension at a particular context is called the extension

of the expression at that particular context.

Consider now the following two expressions:

The exchange rate of the Canadian dollar per US dollar

Yesterday’s exchange rate of the Canadian dollar per US dollar

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 75

Table 1. The intension of the first expression

Date · · · 8/2/94 8/3/94 8/4/94 · · ·
Rate · · · 1.378 1.379 1.380 · · ·

Table 2. The intension of the second expression

Date · · · 8/3/94 8/4/94 8/5/94 · · ·
Rate · · · 1.378 1.379 1.380 · · ·

The intension of the first expression is a function which, given a date, returns the

exchange rate on that day. This intension can be visualized as shown in Table 1.

On the other hand, the intension of the second expression is a function which,

given a date, returns the exchange rate on the previous day. This intension is

represented in Table 2.

Obviously, there exists a relationship between the two intensions. In fact, the word

‘Yesterday’s’ in the second expression above can be thought of as an operator that

transforms the intension of the first expression into the intension of the second; it

simply increases all the dates by one day.

The above examples illustrate how the meaning of some natural language ex-

pressions can be captured using intensions and context switching operators (like

‘Yesterday’s’). Notice that these operators allow information from different contexts

to be compared and combined without explicit context manipulation. This is the

main reason that intensional logic has proved to be an effective tool in the study of

the semantics of natural languages.

Intensional programming is a programming paradigm that is based on intensional

logic. The distinguishing characteristic of intensional languages is that they have

context switching operators. One such intensional language is Lucid (Wadge and

Ashcroft, 1985), in which the value of an expression depends on a hidden time

parameter. The Lucid context-switching operators are first, next and fby.

The time domain is the set of natural numbers; therefore, the value of a Lucid

expression is a stream (infinite sequence) of ordinary data values. In particular, the

value of a Lucid constant is a constant stream.

The statements of a Lucid program are equations defining individual and function

variables, required to be true at every context (time point). Ordinary data operations

(such as +, * and if-then-else) are referentially transparent. This means, for example,

that the value of x + y at timepoint t is the sum of the values of x and y at the

same timepoint t.

The basic context-switching operators are first, next and fby. The operator first

switches us to time point 0, next takes us from t to t + 1. The operator fby takes

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


76 P. Rondogiannis and W. W. Wadge

us back from t+ 1 to t (giving us the value of its second operand at that point) or

from 0 to 0, giving us the value of its first operand.

Let x and y be streams. Then, the above ideas are formalized by the following

equations:

(x+ y)t = xt + yt
first(x)t = x0

next(x)t = xt+1

(x fby y)t =

{
x0 if t = 0

yt−1 if t > 0

These equations constitute what we call the indexical semantics of the operations;

they define the extensions of the result of an operation in terms of the extensions of

the operands.

A Lucid intension x can be thought of as a value which is varying over time, for

example, a loop variable in an iterative computation. Thus x0 is the initial value of

x, x1 is the value after the first iteration step, and x2, x3, x4 etc are the values after

subsequent steps. (It is also possible to think of intensions as streams in a pipeline

dataflow model.)

The fby operator allows us to express many iterative algorithms concisely; the first

operand of the fby gives the initial value, and the second operand specifies the way

in which each succeeding value is determined by the current value. For example, the

following program computes the stream 〈1, 1, 2, 3, 5, . . .〉 of all Fibonacci numbers:

result
.

= fib

fib
.

= 1 fby (fib+g)

g
.

= 0 fby fib

Notice that the above Lucid program is simply a set of nullary variable definitions

(that is, it does not use any user-defined functions). In the next section we present a

very simple technique for interpreting Lucid programs such as the above.

3 The computational model of eduction

Lucid programs (such as those given in the last section) are usually implemented

using a computational model known as eduction (Wadge and Ashcroft, 1985; Faus-

tini and Wadge, 1987). An eductive computation proceeds by propagating demands

for the extensions (values) of specific variables at specific contexts. Demands for a

variable are converted into demands for its defining expression, and these generate

demands for subexpressions and, eventually, for the variables occurring in these

expressions – not necessarily at the same contexts.

We illustrate the main idea of eduction with an example. Suppose we want to

calculate the second Fibonacci number, as defined by the program given above. To

do so, we demand the value of result at time 2. This generates a demand for

fib at time 2, which creates a demand for (1 fby (fib+g)) at time 2. But now,

according to the semantics of fby, this will generate a demand for (fib+g) at time

1. The overall execution by an eductive evaluator EVAL, is given in Figure 1. The

ways in which these demands are propagated through the operators, and the ways

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 77

EVAL(result, 2) =

= EVAL(fib, 2)

= EVAL((1 fby (fib+g)), 2)

= EVAL((fib+g), 1)

= EVAL(fib, 1) + EVAL(g, 1)

= EVAL((1 fby (fib+g)), 1) + EVAL((0 fby fib), 1)

= EVAL((fib+g), 0) + EVAL(fib, 0)

= EVAL(fib, 0) + EVAL(g, 0) + EVAL((1 fby (fib+g)), 0)

= EVAL((1 fby (fib+g)), 0) + EVAL((0 fby fib), 0) + 1

= 1 + 0 + 1

= 2

Fig. 1. Execution of intensional code.

in which the resulting values are combined by the operators, are determined by the

intensional semantics of these operators.

The eductive approach can clearly be extended to any family of data structures

whose members are (or can be seen as) collections of simple data objects indexed

by simple values. For example, we could add arrays to the language by introducing

an extra space dimension. We could then write programs with streams of arrays and

evaluate them using essentially the same procedure. The only difference is that the

EVAL function has an extra parameter, and the tags on items in the warehouse

have an extra field. Also, we might need to perform a dimensionality analysis on

the program to identify variables that are time or space invariant (so as to avoid

duplication of computations).

The defining characteristic of eduction is that it computes the value of expressions

with respect to contexts. The dataflow class of machine architectures (Kirkham et

al., 1985; Arvind and Nikhil, 1990) is based on exactly this idea – tagged tokens

are really extensions, labelled (tagged) with their contexts. In other words, dataflow

machines should make ideal platforms on which eduction is implemented (this point

is further elaborated in section 11). This suggests the triangle given in Figure 2, in

which:

• Intensional logic provides the language framework in which programs are

written or compiled to.

• Eduction provides the conceptual execution model for implementing the in-

tensional programs.

• Dataflow architectures provide the appropriate hardware on which eduction

can be executed in an efficient way.

The above description suggests that we can implement a programming language

on a dataflow architecture by first compiling source programs into semantically

equivalent intensional ones (that contain only nullary variable definitions). The

next section discusses how this can be done for the case of first-order functional

languages. In other words, it describes how first-order functional programs can be

transformed into equivalent, eductible Lucid-like programs without any user-defined

functions.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


78 P. Rondogiannis and W. W. Wadge

Intensional Logic
(Language)

Eduction Dataflow
(Hardware)(Execution Model)

Fig. 2. Intensional logic, eduction and dataflow.

4 Intensional logic and functional languages

Yaghi’s PhD dissertation (Yaghi, 1994) was the first work to establish a relation-

ship between intensional and functional languages. In this dissertation, Yaghi used

intensional logic to formalize an implementation technique for first-order functional

languages that was originally invented by C. Ostrum at the University of Waterloo.

Yaghi first defined a simple intensional programming language that only supported

nullary variable definitions. He then showed that Ostrum’s implementation could

be understood as involving an implicit translation of the source functional program

into a function-free program of this intensional language.

The main idea behind Yaghi’s work is that functions (and their formal parameters)

can be understood as intensions, varying over the space of calls or invocations. The

extension of a formal parameter at one of these contexts is (the value of) the

appropriate actual parameter, and the value of the function itself at a context is the

value returned by the call in question.

We can illustrate his ideas with an example. Consider the following first-order

functional program that computes the fourth Fibonacci number:

result
.

= fib(4)

fib(n)
.

= if (n<2) then 1 else fib(n-1)+fib(n-2)

To compute fib(4), we need to know fib(3) and fib(2). Similarly, fib(3)

requires fib(2) and fib(1), and so on. Therefore, one can actually think of the

formal parameter n as being a labelled tree of the form shown in Figure 3(a).

Similarly, the function fib can be thought of as a labelled tree that has been

created by ‘consulting’ the tree for n. Figure 3(b) illustrates the corresponding tree.

The bottom labels of the tree for fib are all equal to 1, because this is the value

that fib takes when the corresponding value of n is less than 2. As we move up the

tree for fib, the label on each node is formed by adding the values of the right and

left children of the node. The initial program can be transformed into a new one

that reflects the above ideas:

result
.

= call0(fib)

fib
.

= if (n<2) then 1 else call1(fib)+call2(fib)

n
.

= actuals(4,n-1,n-2)

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 79

4

3 2

2

1 0

1 1 0

3 2

2

1

1 1

5

1

1

(a)

(b)

fib(4) =

Fig. 3. (a) Tree for the parameter n; (b) Tree for the function fib.

Notice that the above program is a Lucid-like one, the only difference being that

it is manipulating tree intensions and not just stream ones. The definition of n in

terms of actuals expresses the fact that n is a tree with root labelled 4; the root of

the left subtree is equal to the current root minus one, and the root of the right

subtree is equal to the current root minus two. Clearly, one can proceed in this way

and create the whole tree for n as given in Figure 3(a). The operators calli are used

to create the tree for fib. The definition for fib can be read as follows:

“The value of a node of the tree for fib is equal to 1 if the value of the corresponding

node of the tree for n is less than 2; otherwise, it is equal to the sum of the values found at

the roots of the left and right subtrees of the node.”

Informally speaking, call1 selects the root of the left subtree of the current node

of fib, while call2 the root of the right subtree. The operator call0 returns the root

of the tree for fib.

The above description presents at an intuitive level the relationship between first-

order functional programs and intensional ones. Yaghi’s algorithm for performing

the transformation in a systematic way can be summarized as follows:

1. Let f be a function defined in the source functional program. Number the

textual occurrences of calls to f in the program, starting at 0 (including calls

in the body of the definition of f ).

2. Replace the ith call of f in the program by calli(f ). Remove the formal

parameters from the definition of f , so that f is defined as an ordinary

individual variable.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


80 P. Rondogiannis and W. W. Wadge

3. Introduce a new definition for each formal parameter of f . The right-hand

side of the definition is the operator actuals applied to a list of the actual

parameters corresponding to the formal parameter in question, listed in the

order in which the calls are numbered.

To illustrate the algorithm, consider the following simple first-order functional

program:

result
.

= f(4)+f(5)

f(x)
.

= g(x+1)

g(y)
.

= y

Yaghi’s translation algorithm produces the following intensional program:

result
.

= call0(f)+call1(f)

f
.

= call0(g)

g
.

= y

x
.

= actuals(4,5)

y
.

= actuals(x+1)

The eductive interpretation of the latter program can be understood in terms of

the trees described above. A node in a tree is determined by a finite list of natural

numbers, each number in the list specifying which child branch to follow as we

descend from the root. (By contrast, an element in a Lucid stream can be identified

by a single natural number.) In other words, the set of possible worlds (contexts)

for this intensional language is the set of lists of natural numbers. (If the source

program already has, say, temporal operators, then they are retained. The tree space

is added as an extra dimension, in much the same way that a linear space dimension

with its own operators could be added.)

An execution model is established by considering the calli and actuals as context

switching operators. Intuitively, calli augments a list w by prefixing it with i. On

the other hand, actuals takes the head i of a list, and uses it to select its ith

argument. More formally, given intensions a, a1, . . . , an, and letting ‘:’ denote the

consing operation on lists, the semantic equations as introduced in Yaghi (1984)

are:

(calli(a))(w) = a(i : w)

(actuals(a0, . . . , an−1))(i : w) = (ai)(w)

Following the above semantic rules, the intensional program obtained above can be

interpreted as shown in Figure 4.

It is the purpose of this paper to formalize the ideas presented in the previous

sections, precisely define Yaghi’s algorithm, and, most importantly, demonstrate its

correctness.

5 Mathematical notation

The set of natural numbers is denoted by ω. The set of functions from A to B

is denoted by A → B or BA. For simplicity, in certain cases we use the subscript

notation for function application, writing for example fa instead of f(a).

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 81

EVAL(call0(f)+call1(f), [ ])

= EVAL(call0(f), [ ]) + EVAL(call1(f), [ ])

= EVAL(f, [0]) + EVAL(f, [1])

= EVAL(call0(g), [0]) + EVAL(call0(g), [1])

= EVAL(g, [0, 0]) + EVAL(g, [0, 1])

= EVAL(y, [0, 0]) + EVAL(y, [0, 1])

= EVAL(actuals(x+1), [0, 0]) + EVAL(actuals(x+1), [0, 1])

= EVAL(x+1, [0]) + EVAL(x+1, [1])

= EVAL(x, [0]) + EVAL(1, [0]) + EVAL(x, [1]) + EVAL(1, [1])

= EVAL(x, [0]) + 1 + EVAL(x, [1]) + 1

= EVAL(actuals(4,5), [0]) + 1 + EVAL(actuals(4,5), [1]) + 1

= EVAL(4, [ ]) + 1 + EVAL(5, [ ]) + 1

= 4 + 1 + 5 + 1

= 11

Fig. 4. Execution of intensional code.

Given two sets I and S , an I-indexed sequence is any function s : I → S , and is

denoted by 〈si〉i∈I . The set I is called the index set of s. When I = {0, . . . , n− 1}, we

usually denote s by 〈s0, s1, . . . , sn−1〉. Notice that sequences are simply functions and

will therefore often be represented in the usual way (i.e. as sets of ordered pairs).

We adopt the following general notion of set product: if I is any set and Ai is a set

for every i ∈ I then∏
i∈I
Ai = {f : I →

⋃
i∈I
Ai | ∀i ∈ I, f(i) ∈ Ai}.

The perturbation of a function with respect to another function, is defined as follows:

Definition 5.1

Let f : A→ B and g : S → B, where S ⊆ A. Then, the perturbation f ⊕ g of f with

respect to g is defined as:

(f ⊕ g)(x) =

{
g(x) if x ∈ S
f(x) otherwise.

Given a function g = {〈x0, b0〉, . . . , 〈xn−1, bn−1〉}, we often write f[x0/b0, . . . , xn−1/

bn−1] instead of f ⊕ g.

Let L be a given set. We write List(L) for the set of lists of elements of L. The

usual list operations head, tail and cons are adopted. The infix notation ‘:’ will often

be used instead of cons.

In the rest of this paper, we assume familiarity with the basic notions of domain

theory and denotational semantics (Stoy, 1977; Tennent, 1991; Gunter, 1992). Given

a domain D, the partial order and the least element of D are represented by vD and

⊥D , respectively. The subscript D will often be omitted when it is obvious. If A, B

are domains, [A→ B] is the set of all continuous functions from A to B.

Finally, we adopt certain typographic conventions which are outlined below.

Elements of the object language, such as for example the code of programs or

function names in such programs, are represented using typewriter font (e.g. f, x, . . .).

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


82 P. Rondogiannis and W. W. Wadge

Elements of the meta-language are divided in two classes: those that are used to

represent usual mathematical objects such as functions, sets, and so on, and for

which we adopt the italics and the calligraphic fonts (e.g. f, x,E,A, . . .), and those

that are used to talk about the syntax of the object language, for which we adopt

the boldface font (e.g. f , x,P,E, . . .).

6 The First-Order Functional Language (FOFL)

In this section, we define the syntax and denotational semantics of the First-Order

Functional Language FOFL. In the following, FOFL will also be referred as an

extensional language, to distinguish it from the intensional language NVIL that will

be defined later on in this paper.

We assume the existence of a set Σ of constant symbols, whose elements are

denoted by c. We write Σn for the subset of Σ of constants of arity n. We also

assume the availability of a set Var of variable symbols of various arities. We will

use f and g to denote elements of Var. In particular, we often use x, y, x0, y0, and so

on, to denote nullary variables. We write Varn for the subset of Var of variables of

arity n.

Definition 6.1

The syntax of the first-order functional language FOFL is recursively defined by the

following rules, in which E,Ei denote expressions, F,Fi denote definitions and P de-

notes a program:

E ::= c(E0, . . . ,En−1), c ∈ Σn

| f (E0, . . . ,En−1), f ∈ Varn
F ::= (f (x0, . . . ,xn−1)

.
= E), f ∈ Varn, x0, . . . ,xn−1 ∈ Var0

P ::= {F0, . . . ,Fn−1}.

Given a definition f (x0, . . . ,xn−1)
.

= E, the variables x0, . . . ,xn−1 are the formal

parameters or formals of f, and E is the defining expression or the body of f. We often

use B instead of E to denote the body of a function. The set of variables defined in

a program P is denoted by func(P).

Definition 6.2

Let P = {F0, . . . ,Fn−1} be a program. Then the following assumptions are adopted:

1. Exactly one of the F0, . . . ,Fn−1 defines the nullary variable result, which does

not appear in the body of any of the definitions in P.

2. Every variable symbol in P is defined or appears as a formal parameter in a

function definition, at most once in the whole program.

3. The formal parameters of a function definition in P can only appear in the body

of that definition.

4. The only variables that can appear in P are the ones defined in P and their

formal parameters.

Let D be a domain. Then, the semantics of constant symbols of FOFL with

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 83

respect to D, are obtained by a given interpretation function C, which assigns to

every n-ary constant c a function in [Dn → D].

Let Env be the set of extensional environments defined by Env =
∏

n∈ω Varn →
[Dn → D]. Then, the semantics of FOFL are defined as follows:

Definition 6.3

The semantics of expressions of FOFL with respect to u ∈ Env, are recursively defined

as follows:

[[c(E0, . . . ,En−1)]](u) = C(c)([[E0]](u), . . . , [[En−1]](u))

[[f (E0, . . . ,En−1)]](u) = u(f )([[E0]](u), . . . , [[En−1]](u)).

Theorem 6.1

(Tennent, 1991, p. 97) For all expressions E, [[E]] is continuous and therefore

monotonic.

Definition 6.4

The semantics of the program P = {F0, . . . ,Fn−1} of FOFL with respect to u ∈ Env,
is defined as ũ(result), where ũ is the least environment such that:

1. For every f ∈ Var with f 6∈ func(P), ũ(f ) = u(f ).

2. For every f (x0, . . . ,xn−1)
.

= B in P, and for all d0 ∈ D, . . . , dn−1 ∈ D,

ũ(f )(d0, . . . , dn−1) = [[B]](ũ[x0/d0, . . . ,xn−1/dn−1]).

The above definition does not specify how the least environment ũ can be con-

structed. The following theorem suggests that ũ is the least upper bound of a chain

of environments:

Theorem 6.2

(Tennent, 1991, p. 96) Let P and ũ be as in Definition 6.4. Then, ũ is the least upper

bound of the environments ũk , k ∈ ω, which for every definition f (x0, . . . ,xn−1)
.

= B

in P, and for all d0 ∈ D, . . . , dn−1 ∈ D, are defined as follows:

ũ0(f )(d0, . . . , dn−1) = ⊥D
ũk+1(f )(d0, . . . , dn−1) = [[B]](ũk[x0/d0, . . . ,xn−1/dn−1]).

Moreover, for every k ∈ ω, ũk(f ) v ũk+1(f ), and if n ≥ 1 then ũk(f ) is a continuous

and therefore monotonic function.

The following lemma is a direct consequence of the above theorem:

Lemma 6.1

Let P and ũ be as in Definition 6.4. Then, for every f (x0, . . . ,xn−1)
.

= B in P, and for

all d0 ∈ D, . . . , dn−1 ∈ D

ũk(f )(d0, . . . , dn−1) v [[B]](ũk[x0/d0, . . . ,xn−1/dn−1]).

Notice that the semantics of programs of FOFL have been defined with respect

to an initial environment u. Recall now that the programs that we are considering

do not contain occurrences of ‘outside’ variables (Definition 6.2, assumption 4). For

this reason, in the following we will assume that the initial environment assigns the

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


84 P. Rondogiannis and W. W. Wadge

bottom value (of the appropriate type) to every variable in Var, and we will then

talk directly about the least environment that satisfies the definitions in a given

program.

7 The intensional language NVIL

In this section we define (with certain deviations from Yaghi (1984)) the syntax

of a simple intensional language of nullary variables. As it will be demonstrated

later in this paper, NVIL can serve as the target language for transforming FOFL

programs. In the following definition notice that the syntax of NVIL is defined with

respect to a given set L of labels. In Yaghi (1984), L is taken to be the set ω of

natural numbers, but in formalizing the algorithm a different choice for L proves

more convenient, as we shall see.

Definition 7.1

Let L be a set of labels. The syntax of the intensional language NVIL over L, is re-

cursively defined by the following rules, in which E,Ei denote expressions, F,Fi denote

definitions and P denotes a program:

E ::= x ∈ Var0
| c(E0, . . . ,En−1), c ∈ Σn

| calll(E0), l ∈ L
| actuals(〈El〉l∈I ), I ⊆ L

F ::= (x
.

= E), x ∈ Var0
P ::= {F0, . . . ,Fn−1}

Notice that the actuals operator takes as argument a sequence of expressions

indexed by a subset I of the set L of labels, and in this respect it is more general

than the one defined in Yaghi (1984). The need for this extension will become

apparent in the following sections. Similar restrictions as in FOFL are adopted for

the syntax of NVIL programs.

Notice that the syntax of NVIL only allows nullary variables to be defined and

used in a program. On the other hand, both nullary and first-order constants can

be used. Notice also the intensional operators that are adopted by the language; as

NVIL will be the target language for transforming FOFL programs, the operators

calll and actuals will play a very important role in the elimination of function calls

from the source programs.

As we have already explained, in intensional languages the meaning of an expres-

sion is a function from a set W of possible worlds to a set of data values. In the

case of NVIL, we define the set of possible worlds as follows:

Definition 7.2

The set W of possible worlds of NVIL is the set List(L) of lists of elements of L.

Let D be a given domain. Then, the semantics of constant symbols of NVIL

with respect to D, are given by an interpretation function C′, which assigns to every

n-ary constant a function in [(W → D)n → (W → D)]. As NVIL will be the target

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 85

language for transforming programs of FOFL, the function C′ is defined in terms

of the interpretation function C for FOFL. More specifically:

Definition 7.3

For every c ∈ Σn, for every w ∈W , and for all a0, . . . , an−1 ∈ (W → D),

C′(c)(a0, . . . , an−1)(w) = C(c)(a0(w), . . . , an−1(w))

Let IEnv be the set of intensional environments defined by IEnv = Var0 → (W →
D). Then, the semantics of NVIL are defined as follows:

Definition 7.4

The semantics of expressions of NVIL with respect to u ∈ IEnv is recursively defined

for every w ∈W , as follows:

[[x]](u)(w) = u(x)(w)

[[c(E0, . . . ,En−1)]](u)(w) = C′(c)([[E0]](u), . . . , [[En−1]](u))(w)

[[calll(E0)]](u)(w) = [[E0]](u)(l : w)

[[actuals(〈El〉l∈I )]](u)(w) = [[Ehead(w)]](u)(tail(w))

As in the case of FOFL, it can be easily shown that:

Theorem 7.1

For all expressions E, [[E]] is continuous and therefore monotonic.

Definition 7.5

The semantics of the program P = {F0, . . . ,Fn−1} of NVIL with respect to u ∈ IEnv,
is defined as ũ(result), where ũ is the least intensional environment such that:

1. For every x ∈ Var0 with x 6∈ func(P), ũ(x) = u(x).

2. For every definition (x
.

= B) in P, ũ(x) = [[B]](ũ).

Notice that the semantics given above for NVIL are standard, and their only

difference from the ones given for FOFL is that the former is defined on the richer

domain (W → D) while the latter is defined on the domain D. Therefore, Theorem

6.2 and Lemma 7.1, transfer directly to the language NVIL as well:

Theorem 7.2

Let P and ũ be as in Definition 7.5. Then, ũ is the least upper bound of the

environments ũk , k ∈ ω, which for every definition (x
.

= B) in P, are defined as

follows:

ũ0(x) = ⊥W→D
ũk+1(x) = [[B]](ũk)

Moreover, for every k ∈ ω, ũk(x) v ũk+1(x).

Lemma 7.1

Let P and ũ be as in Definition 7.5. Then, for every (x
.

= B) in P,

ũk(x) v [[B]](ũk)

In the following, we let calll and actuals be the functions that correspond to the

object language operators calll and actuals.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


86 P. Rondogiannis and W. W. Wadge

E(x) = x

E(c(E0, . . . ,En−1)) = c(E(E0), . . . ,E(En−1)) (n ≥ 0)

E(f (E0, . . . ,En−1)) = call〈E0 ,...,En−1〉
(f ) (n ≥ 1)

Fig. 5. Processing expressions of the source program.

8 Formal definition of the transformation algorithm

The main idea behind Yaghi’s approach is that every function call in the source

program will be translated into a unique intensional expression. This means that

even if two function calls in a program are syntactically identical, they will be given

different translations, as the following example illustrates:

Example 1

Consider the following first-order extensional program:

result
.

= f(10)+f(10)

f(x)
.

= x+1

The algorithm described in Yaghi (1984) would translate the above program as

follows:

result
.

= call0(f)+call1(f)

f
.

= x+1

x
.

= actuals(10,10)

However, there is no formal reason why the transformation should distinguish

between identical function calls. Moreover, as we show below, Yaghi’s algorithm can

be formalized in a natural way if identical function calls receive the same translation.

For simplicity in our presentation, the following assumption is adopted:

Assumption

Let P be a FOFL program. Then, the only nullary variable defined in P is the

distinguished variable result.

The following conventions are also adopted. Let P be a first-order FOFL program

and let Sub(P) be the set of subexpressions of P. Let f be a function defined in P.

Then:

Definition 8.1

The set of labels of calls to f in P is defined as:

labels(f ,P) = {〈E0, . . . ,En−1〉 | f (E0, . . . ,En−1) ∈ Sub(P)}

The transformation from extensional expressions to intensional ones is performed

by the recursively defined function E given in Figure 5. Notice in particular the

translation rule for function calls, and the fact that the subscript of the call operator

is a sequence of expressions. In other words, the set L of labels over which the

language NVIL is defined, is the set of sequences of expressions of the language

FOFL.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 87

A(P) =
⋃

F∈P

AF(P)

F = (f (x0, . . . ,xn−1)
.

= B), I = labels(f ,P)

AF(P) =
⋃n−1

j=0
{xj

.
= actuals(〈E(lj)〉l∈I )}

Fig. 6. Creating a new definition for each formal parameter in the source program.

D(P) =
⋃

F∈P

D(F)

F = (f (x0, . . . ,xn−1)
.

= B)

D(F) = (f
.

= E(B))

Fig. 7. Removing formal parameters from functions of the source program.

Trans(P) =A(P) ∪D(P)

Fig. 8. The overall translation.

Given a program P, the function A creates a new definition for each formal

parameter of every function defined in P. Notice that A is defined in terms of

AF, which is a function that creates a set of new definitions, one for every formal

parameter of the function defined by F. The definitions of A and AF are given in

Figure 6.

The function D is used to remove the formal parameters from the function

definitions in P, as shown in Figure 7.

The overall translation is performed by the function Trans, as shown in Figure 8.

This completes the presentation of the transformation algorithm. In the following

section, example transformations that illustrate the above definitions, are given.

9 Example transformations

In this section we give two examples of the transformation algorithm. The first one

is a simple non-recursive function, while the second one is a recursively defined

factorial function.

Example 9.1

Consider the following simple first-order extensional program P:

result
.

= f(f(10))

f(x)
.

= x+1

There exist two function calls in P, namely f(f(10)) and f(10), and therefore the

set labels(f,P) is equal to {〈f(10)〉, 〈10〉}. In order to compute Trans(P) it suffices to

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


88 P. Rondogiannis and W. W. Wadge

[[result]](̂u)([ ]) =

= [[calll0(f)]](̂u)([ ])

= [[f]](̂u)([l0])

= [[x+1]](̂u)([l0])

= [[x]](̂u)([l0]) + 1

= [[actuals({〈l0, calll1(f)〉, 〈l1, 10〉})]](̂u)([l0]) + 1

= [[calll1(f)]](̂u)([ ]) + 1

= [[f]](̂u)([l1]) + 1

= [[x+1]](̂u)([l1]) + 1

= [[x]](̂u)([l1]) + 1 + 1

= [[actuals({〈l0, calll1(f)〉, 〈l1, 10〉})]](̂u)([l1]) + 1 + 1

= [[10]](̂u)([ ]) + 1 + 1

= 12

Fig. 9. Execution of the intensional program.

compute the sets D(F) and A(P). The first set can be computed using the definition

of E, and contains the following two definitions:

result
.

= call〈f(10)〉(f)

f
.

= x+1

The set A(P) contains only one definition, corresponding to the formal parameter

x of f.

A(P) = {x .
= actuals({〈〈f(10)〉,E(〈f(10)〉0)〉, 〈〈10〉,E(〈10〉0)〉})}

= {x .
= actuals({〈〈f(10)〉,E(f(10))〉, 〈〈10〉,E(10)〉})}

= {x .
= actuals({〈〈f(10)〉, call〈10〉(f)〉, 〈〈10〉, 10〉})}

Therefore, the resulting intensional program of nullary variable definitions, is the

following:

result
.

= call〈f(10)〉(f)

f
.

= x+1

x
.

= actuals({〈〈f(10)〉, call〈10〉(f)〉, 〈〈10〉, 10〉})

The notation used above is cumbersome; we can simplify it by letting l0 and l1 stand

for the two labels 〈f(10)〉 and 〈10〉, respectively. Then, the program can be written

as:

result
.

= calll0(f)

f
.

= x+1

x
.

= actuals({〈l0, calll1(f)〉, 〈l1, 10〉})
Let û be the least environment that satisfies the definitions of the above NVIL

program. Then, following the denotational semantics, we can compute the semantic

value of the program, as shown in Figure 9.

Example 9.2

Consider the following recursive first-order extensional program P:

result
.

= fact(2)

fact(n)
.

= if (n<=1) then 1 else n*fact(n-1)

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 89

[[result]](̂u)([ ]) =

= [[calll0(fact)]](̂u)([ ])

= [[fact]](̂u)([l0])

= [[if (n<=1) then 1 else n*calll1(fact)]](̂u)([l0])

= if ([[n<=1]](̂u)([l0])) then 1 else ([[n*calll1(fact)]](̂u)([l0]))

= if (̂u(n)([l0]) <= 1) then 1 else ([[n*calll1(fact)]](̂u)([l0]))

= if ([[actuals({〈l0, 2〉, 〈l1, n-1〉})]](̂u)([l0]) <= 1) then 1

else ([[n*calll1(fact)]](̂u)([l0]))

= if (2 <= 1) then 1 else ([[n*calll1(fact)]](̂u)([l0]))

= [[n*calll1(fact)]](̂u)([l0])

= û(n)([l0]) ∗ [[calll1(fact)]](̂u)([l0])

= 2 ∗ [[calll1(fact)]](̂u)([l0])

= 2 ∗ [[fact]](̂u)([l1, l0])

= 2 ∗ [[if (n<=1) then 1 else n*calll1(fact)]](̂u)([l1, l0])

= 2 ∗ (if ([[n<=1]](̂u)([l1, l0])) then 1 else ([[n*calll1(fact)]](̂u)([l1, l0])))

= 2 ∗ (if ([[actuals({〈l0, 2〉, 〈l1, n-1〉})]](̂u)([l1, l0]) <= 1) then 1

else ([[n*calll1(fact)]](̂u)([l1, l0])))

= 2 ∗ (if ([[n-1]](̂u)([l0]) <= 1) then 1 else ([[n*calll1(fact)]](̂u)([l1, l0])))

= 2 ∗ (if (1 <= 1) then 1 else ([[n*calll1(fact)]](̂u)([l1, l0])))

= 2 ∗ 1

= 2

Fig. 10. Execution of the intensional program that results from fact.

Since there exist only two function calls in P, namely fact(2) and fact(n-1), the

set labels(f,P) is equal to {〈2〉, 〈n-1〉}. We let l0 = 〈2〉 and l1 = 〈n-1〉. Then, the two

definitions of the initial first-order program become after they are processed by D:

result
.

= calll0(fact)

fact
.

= if (n<=1) then 1 else n*calll1(fact)

The set A(P) contains only one definition corresponding to the formal parameter n

of fact:

A(P) = {n .
= actuals({〈l0, 2〉, 〈l1, n-1〉})}

Therefore, the final intensional program consists of the following set of definitions:

result
.

= calll0(fact)

fact
.

= if (n<=1) then 1 else n*calll1(fact)

n
.

= actuals({〈l0, 2〉, 〈l1, n-1〉})

The above program can be executed following the same principles as in example 9.1

(see Figure 10). Notice that during the calculations the value of û(n) under the

context [l0] is demanded three times. In practical terms, this means that if the value

together with the context were appropriately saved when first encountered, then they

could be reused when demanded again. This is a very important efficiency issue,

and standard implementations of eduction use a ‘warehouse’ scheme for saving such

intermediate results (see, for example, Faustini et al. (1991) and Du and Wadge

(1990a), or the discussion in section 12).

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


90 P. Rondogiannis and W. W. Wadge

10 Correctness proof

The correctness proof of the transformation algorithm is established by Theorems

10.1, 10.2 and 10.3 that follow. The main idea of the proof is to relate semantically

a function call in the source first-order extensional program with the corresponding

intensional expression that results from its translation. For example, given a first-

order extensional program P, we would like to give a semantic statement concerning

a call f (E0, . . . ,En−1) in P, and its translation call〈E0 ,...,En−1〉(f ) in Trans(P).

This equality appears, at first sight, to be obvious. It seems to relate two notations

for the same function call. Appearances, however, are deceptive; the actual param-

eters Ei in the second expression are employed as syntactic objects only, as markers

or labels; they are mentioned rather than used, in logical terminology. In our proof

we show that, in the context in which they appear, the call operators work as if

they were alternate notations for function application, a fact which is by no means

obvious.

Our proof uses fixed point induction to establish a more complicated statement.

Let u and û be the least environments satisfying the definitions in P and Trans(P),

respectively, and let w ∈W . We first prove the following statement:

(call〈E0 ,...,En−1〉û(f ))(w) = u(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w)).

This looks like a weaker result than what we are actually looking for, because the

right-hand side does not correspond exactly to the expression f (E0, . . . ,En−1) of the

extensional program. However, a stronger result can be shown afterwards using

an inductive argument, as we are going to see. It seems that the above statement

can not itself be shown in one step. Instead, we need to show that the right-

hand side approximates the left, and vice versa. The details of the proof are given

below:

Theorem 10.1

Let P be a FOFL program and let u be the least environment satisfying the definitions

in P. Let û be the least environment satisfying the definitions in the translated

program Trans(P). Then, for every function definition (f (x0, . . . ,xn−1)
.

= B) in P, for

every function call f (E0, . . . ,En−1) of f in P and for every w ∈W

(call〈E0 ,...,En−1〉û(f ))(w) v u(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w)).

Proof

It suffices to show that for all k ∈ ω, for every function definition f (x0, . . . ,xn−1)
.

= B

in P, for every call f (E0, . . . ,En−1) of f in P, and for every w ∈W :

(call〈E0 ,...,En−1〉ûk(f ))(w) v u(f )([[E(E0)]](ûk)(w), . . . , [[E(En−1)]](ûk)(w)).

This can be established by induction on k. Notice that we only use the approxima-

tions of û but not the approximations of u. Intuitively, this gives to the right-hand

side of the above statement an ‘advantage’, which allows the v relation to be

established.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 91

Induction basis

It suffices to show that for every function definition f (x0, . . . ,xn−1)
.

= B in P, for

every call f (E0, . . . ,En−1) of f in P, and for every w ∈W :

(call〈E0 ,...,En−1〉û0(f ))(w) v u(f )([[E(E0)]](ûk)(w), . . . , [[E(En−1)]](ûk)(w)).

The above holds trivially because the left hand side is equal to the bottom value.

Induction hypothesis

We assume that for every function definition f (x0, . . . ,xn−1)
.

= B in P, for every call

f (E0, . . . ,En−1) of f in P, and for every w ∈W :

(call〈E0 ,...,En−1〉ûk(f ))(w) v u(f )([[E(E0)]](ûk)(w), . . . , [[E(En−1)]](ûk)(w)).

Induction step

We show that for every f (x0, . . . ,xn−1)
.

= B in P, for every call f (E0, . . . ,En−1) of f in

P, and for every w ∈W :

(call〈E0 ,...,En−1〉ûk+1(f ))(w) v u(f )([[E(E0)]](ûk+1)(w), . . . , [[E(En−1)]](ûk+1)(w)).

Using the semantics of call, the above statement can be equivalently written as

follows:

ûk+1(f )(〈E0, . . . ,En−1〉 : w) v u(f )([[E(E0)]](ûk+1)(w), . . . , [[E(En−1)]](ûk+1)(w)).

Recalling that f (x0, . . . ,xn−1)
.

= B in P and f
.

= E(B) in Trans(P), and using

Definition 6.4 and Theorem 7.2, the above is equivalent to the following:

[[E(B)]](ûk)(〈E0, . . . ,En−1〉 : w) v [[B]](u⊕ ρk+1),

where ρk+1(xj) = [[E(Ei)]](ûk+1)(w), j = 0, . . . , n− 1. The above can be established by

showing that for every subexpression S of B, we have:

[[E(S)]](ûk)(〈E0, . . . ,En−1〉 : w) v [[S]](u⊕ ρk+1).

We therefore perform an inner structural induction on S.

Structural induction basis

Case S = xj ∈ {x0, . . . ,xn−1}. Then, according to the transformation algorithm, in

the intensional program Trans(P) a definition of the form xj
.

= actuals(〈E(lj)〉l∈I )
has been created, where I = labels(f ,P). We have:

[[E(S)]](ûk)(〈E0, . . . ,En−1〉 : w) =

= [[E(xj)]](ûk)(〈E0, . . . ,En−1〉 : w)

(Because S = xj)

= [[xj]](ûk)(〈E0, . . . ,En−1〉 : w)

(Definition of E)

lll

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


92 P. Rondogiannis and W. W. Wadge

= ûk(xj)(〈E0, . . . ,En−1〉 : w)

(Semantics)

v [[actuals(〈E(lj)〉l∈I )]](ûk)(〈E0, . . . ,En−1〉 : w)

(Definition of xj and Lemma 7.1)

= [[E(〈E0, . . . ,En−1〉j)]](ûk)(w)

(Semantics of actuals)

= [[E(Ej)]](ûk)(w)

(Selection of the j’th element of the sequence)

v [[E(Ej)]](ûk+1)(w)

(Because ûk v ûk+1 by Theorem 7.2 and

because [[E(Ej)]] is monotonic by Theorem 7.1)

= ρk+1(xj)

(Because ρk+1(xj) = [[E(Ej)]](ûk+1)(w))

= [[xj]](u⊕ ρk+1)

(Definition of ⊕)

= [[S]](u⊕ ρk+1)

(Because S = xj)

Case S = c, where c is a nullary constant symbol. Then the proof is straightforward

because for all w ∈ W , C′(c)(w) = C(c), or in other words, C′(c) is a constant

intension.

Structural induction step

Case S = c(S0, . . . ,Sr−1). Recall that the semantics of constants in the intensional

program are defined in a pointwise way in terms of the semantics of the constants

in the extensional program. We have:

[[E(S)]](ûk)(〈E0, . . . ,En−1〉 : w) =

= [[E(c(S0, . . . ,Sr−1))]](ûk)(〈E0, . . . ,En−1〉 : w)

(Assumption for S)

= [[c(E(S0), . . . ,E(Sr−1))]](ûk)(〈E0, . . . ,En−1〉 : w)

(Definition of E)

= C′(c)([[E(S0)]](ûk), . . . , [[E(Sr−1)]](ûk))(〈E0, . . . ,En−1〉 : w)

(Semantics of constant symbols)

= C(c)([[E(S0)]](ûk)(〈E0, . . . ,En−1〉 : w), . . . , [[E(S0)]](ûk)(〈E0, . . . ,En−1〉 : w))

(Definition 7.3)

v C(c)([[S0]](u⊕ ρk+1), . . . , [[Sr−1]](u⊕ ρk+1))

(Structural induction hypothesis and

monotonicity of C(c))

= [[c(S0, . . . ,Sr−1)]](u⊕ ρk+1)

(Semantics of constant symbols)

= [[S]](u⊕ ρk+1)

(Assumption for S)

Case S = g(S0, . . . ,Sr−1), where g ∈ func(P). Then, the left-hand side of the statement

we want to establish can be written as follows:

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 93

[[E(S)]](ûk)(〈E0, . . . ,En−1〉 : w) =

= [[E(g(S0, . . . ,Sr−1))]](ûk)(〈E0, . . . ,En−1〉 : w)

(Assumption about S)

= [[call〈S0 ,...,Sr−1〉(g)]](ûk)(〈E0, . . . ,En−1〉 : w)

(Definition of E)

= (call〈S0 ,...,Sr−1〉ûk(g))(〈E0, . . . ,En−1〉 : w)

(Semantics)

v u(g)([[E(S0)]](ûk)(〈E0, . . . ,En−1〉 : w), . . . , [[E(Sr−1)]](ûk)(〈E0, . . . ,En−1〉 : w))

(Outer induction hypothesis on k)

v u(g)([[S0]](u⊕ ρk+1), . . . , [[Sr−1]](u⊕ ρk+1))

(Structural induction hypothesis and

monotonicity of u(g) from Theorem 6.2)

= [[g(S0, . . . ,Sr−1)]](u⊕ ρk+1)

(Semantics of application)

= [[S]](u⊕ ρk+1)

(Because S = g(S0, . . . ,Sr−1))

This completes the proof of the theorem.

Theorem 10.2

Let P be a FOFL program and let u be the least environment satisfying the definitions

in P. Let û be the least environment satisfying the definitions in the translated

program Trans(P). Then, for every function definition (f (x0, . . . ,xn−1)
.

= B) in P, for

every function call f (E0, . . . ,En−1) of f in P, and for every w ∈W

u(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w)) v (call〈E0 ,...,En−1〉û(f ))(w).

Proof

It suffices to show that for all k ∈ ω, for every function definition f (x0, . . . ,xn−1)
.

= B

in P, for every call f (E0, . . . ,En−1) of f in P, and for every w ∈W :

uk(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w)) v (call〈E0 ,...,En−1〉û(f ))(w).

This can be established by induction on k. Notice that now we only use the

approximations of u but not the approximations of û. Again, this gives to the right-

hand side of the above statement an ‘advantage’, which allows the v relation to be

established.

Induction basis

It suffices to show that for every function definition f (x0, . . . ,xn−1)
.

= B in P, for

every call f (E0, . . . ,En−1) of f in P, and for every w ∈W :

u0(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w)) v (call〈E0 ,...,En−1〉û(f ))(w).

The above holds trivially because the left-hand side is equal to the bottom value.

Induction hypothesis

We assume that for every function definition f (x0, . . . ,xn−1)
.

= B in P, for every call

f (E0, . . . ,En−1) of f in P, and for every w ∈W :

uk(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w)) v (call〈E0 ,...,En−1〉û(f ))(w).

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


94 P. Rondogiannis and W. W. Wadge

Induction step

We show that for every function definition f (x0, . . . ,xn−1)
.

= B in P, for every call

f (E0, . . . ,En−1) of f in P, and for every w ∈W :

uk+1(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w)) v (call〈E0 ,...,En−1〉û(f ))(w).

Using the semantics of call, the above statement can be written as follows:

uk+1(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w)) v û(f )(〈E0, . . . ,En−1〉 : w).

Recalling that f (x0, . . . ,xn−1)
.

= B in P and that f
.

= E(B) in Trans(P), and using

Theorem 6.2 and Definition 7.5, the above is equivalent to the following:

[[B]](uk ⊕ ρ) v [[E(B)]](û)(〈E0, . . . ,En−1〉 : w).

where ρ(xi) = [[E(Ei)]](û)(w), i = 0, . . . , n − 1. The above can be established by

showing that for every subexpression S of B, it is:

[[S]](uk ⊕ ρ) v [[E(S)]](û)(〈E0, . . . ,En−1〉 : w).

We therefore perform a structural induction on S.

Structural induction basis

Case S = xj ∈ {x0, . . . ,xn−1}. In the transformed program Trans(P), a definition of

the form xj
.

= actuals(〈E(lj)〉l∈I ) has been created, where I = labels(f ,P). Consider

the right-hand side of the statement we would like to establish:

[[E(S)]](û)(〈E0, . . . ,En−1〉 : w) =

= [[E(xj)]](û)(〈E0, . . . ,En−1〉 : w)

(Because S = xj)

= [[xj]](û)(〈E0, . . . ,En−1〉 : w)

(Definition of E)

= û(xj)(〈E0, . . . ,En−1〉 : w)

(Semantics)

= [[actuals(〈E(lj)〉j∈I )]](û)(〈E0, . . . ,En−1〉 : w)

(Definition of xj and Definition 7.5 )

= [[E(〈E0, . . . ,En−1〉j)]](û)(w)

(Semantics of actuals)

= [[E(Ej)]](û)(w)

(Selection of the j’th element of the sequence)

= ρ(xj)

(Because ρ(xj) = [[E(Ej)]](û)(w))

= [[xj]](uk ⊕ ρ)

(Definition of ⊕)

= [[S]](uk ⊕ ρ)

(Because S = xj)

Notice that in this case we have established the equality of the right- and left-hand

sides of the statement under consideration.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 95

Case S = c, where c is a nullary constant symbol. Then the proof is straightforward

because for all w ∈ W , C′(c)(w) = C(c), or in other words, C′(c) is a constant

intension.

Structural induction step

Case S = c(S0, . . . ,Sr−1). Recall that the semantics of constants in the intensional

program are defined in a pointwise way in terms of the semantics of the constants

in the extensional program. We have:

[[S]](uk ⊕ ρ) =

= [[c(S0, . . . ,Sr−1)]](uk ⊕ ρ)

(Assumption for S)

= C(c)([[S0]](uk ⊕ ρ), . . . , [[Sr−1]](uk ⊕ ρ))

(Semantics of constant symbols)

v C(c)([[E(S0)]](û)(〈E0, . . . ,En−1〉 : w), . . . , [[E(Sr−1)]](û)(〈E0, . . . ,En−1〉 : w))

(Structural induction hypothesis and monotonicity of C(c))

= C′(c)([[E(S0)]](û), . . . , [[E(Sr−1)]](û))(〈E0, . . . ,En−1〉 : w)

(Definition 7.3)

= [[c(E(S0), . . . ,E(Sr−1))]](û)(〈E0, . . . ,En−1〉 : w)

(Semantics of constants)

= [[E(c(S0, . . . ,Sr−1))]](û)(〈E0, . . . ,En−1〉 : w)

(Definition of E)

= [[E(S)]](û)(〈E0, . . . ,En−1〉 : w)

(Assumption for S)

Case S = g(S0, . . . ,Sr−1), where g ∈ func(P). Then, the left-hand side of the statement

we want to establish can be written as follows:

[[S]](uk ⊕ ρ) =

= [[g(S0, . . . ,Sr−1)]](uk ⊕ ρ)

(Because S = g(S0, . . . ,Sr−1))

= uk(g)([[S0]](uk ⊕ ρ), . . . , [[Sr−1]](uk ⊕ ρ))

(Semantics of application)

v uk(g)([[E(S0)]](û)(〈E0, . . . ,En−1〉 : w), . . . , [[E(Sr−1)]](û)(〈E0, . . . ,En−1〉 : w))

(Structural induction hypothesis and

monotonicity of uk(g) from Theorem 6.2)

v (call〈S0 ,...,Sr−1〉(û(g)))(〈E0, . . . ,En−1〉 : w)

(Induction hypothesis on k)

= [[call〈S0 ,...,Sr−1〉(g)]](û)(〈E0, . . . ,En−1〉 : w)

(Semantics of call)

= [[E(g(S0, . . . ,Sr−1))]](û)(〈E0, . . . ,En−1〉 : w)

(Definition of E)

= [[E(S)]](û)(〈E0, . . . ,En−1〉 : w)

(Definition of S)

This completes the proof of the theorem.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


96 P. Rondogiannis and W. W. Wadge

Lemma 10.1

Let P be a first-order extensional program and let u be the least environment satisfying

the definitions in P. Let û be the least environment satisfying the definitions in the

translated program Trans(P). Then, for every function definition f (x0, . . . ,xn−1)
.

= B

in P, for every function call f (E0, . . . ,En−1) of f in P, and for every w ∈W

(call〈E0 ,...,En−1〉û(f ))(w) = u(f )([[E(E0)]](û)(w), . . . , [[E(En−1)]](û)(w))

Theorem 10.3

Let P be a first-order extensional program and let u be the least environment

satisfying the definitions in P. Let û be the least environment satisfying the definitions

in the translated program Trans(P). Then, for every w ∈W

u(result) = û(result)(w)

Proof

By a straightforward structural induction on the defining expression of the variable

result in P and using Lemma 10.1.

11 Relationship with tagged dataflow

Now that we have established the theoretical foundation of Yaghi’s (revised) trans-

formation algorithm, we present a brief discussion of its practical implications for

the eductive dataflow model.

The basic principle of the dataflow model of computation, is that data can be

processed while they are in motion, flowing through a dataflow network. A dataflow

network is a system of processing stations (or nodes), connected by a number of

communication channels (or arcs). Each node may have one or more input and

output arcs.

There exist two main paradigms of dataflow. In pipeline dataflow, data items flow

along the arcs of a network in a first-in first-out way. Therefore, the edges can be

thought as queues between the nodes. In tagged dataflow, data items are labelled

with tags, and edges can now be thought as sets of such items. The purpose of the

tags is to impose some conceptual ordering on the data items. A node can execute

if it finds in its input arcs data items that have identical tags. The tagged approach

eliminates the need to maintain first-in first-out queues on the arcs, and in this way

it offers more parallelism than the pipeline model.

Tags have been extensively used to implement first-order functions on dataflow

architectures (Kirkham et al., 1985; Arvind and Nikhil, 1990). The main idea is

that one would like to distinguish between data items that correspond to different

function invocations. This can be achieved by letting each tag determine a particular

invocation of a function. Intuitively, a tag can be thought of as a distinct colour

(Arvind and Culler, 1987) that is assigned to the data items of a function invocation,

so as that we can distinguish them from those data items that belong to other

invocations of the same function.

Consider now Yaghi’s transformation algorithm, and the intensional programs

that result from it. We showed in section 9 how these programs can be easily

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 97

interpreted with respect to a context. The method used to evaluate the intensional

code is actually demand-driven tagged dataflow: demand-driven because the evaluator

continuously asks for the value of identifiers under particular contexts, and tagged

because the contexts used can be considered as tags that accompany data items

during evaluation. Moreover, the call and actuals operators can be thought as

operations that change the context part of the data that flow through the dataflow

network. In other words, the notion of possible world of intensional logic is in direct

correspondence to the notion of tag in the dataflow model. In particular, the lists

of labels that are used as contexts by the intensional approach, correspond to the

‘colour’ idea of the dataflow community. Consequently, our work can also be viewed

as a formalization through the use of intensional logic of the ‘colouring’ technique.

It should also be noted at this point that although the ‘colouring’ technique

has been extensively used for implementing first-order programs on dataflow ar-

chitectures, it does not immediately generalize to higher-order programs. Current

treatments for higher-order functions on dataflow machines rely on introducing

in the implementation data structures (representing closures). Our recent research

(Rondogiannis and Wadge, 1994a, 1994b; Rondogiannis, 1994) has shown that a

significant class of higher-order functions can be implemented based on an extended

tagging scheme. It is our opinion that such an approach fits better to the tagged-

dataflow ideas, and could for this reason result in dataflow implementations of

higher-order languages which are simpler, more efficient, and more fault-tolerant.

The theoretical and practical aspects of the extended tagging scheme will be dis-

cussed in a forthcoming paper (Rondogiannis and Wadge, 1996).

Although a further discussion of higher-order functions would be outside the scope

of this paper, we should also cite at this point the work of Nelan on firstification

(Nelan, 1991), a technique for transforming many higher-order programs into first-

order ones. In general, we believe that higher-order functions is an intriguing area

of research which deserves further study.

12 Implementation issues

Since its inception, Yaghi’s transformation algorithm has been successfully used

as the core implementation technique for a number of first-order languages. Such

implementations include compilers for the Lucid language (Faustini et al., 1991),

the GLU language (Jagannathan and Dodd, 1994), as well as interpreters for

sophisticated 3D spreadsheets (Du and Wadge, 1990a, 1990b). In the following

we give a brief introduction to implementation issues regarding the technique. A

detailed presentation and analysis of such issues is outside the scope of this paper

and the interested reader is refered elsewhere (Rondogiannis and Wadge, 1994a;

Rondogiannis, 1994).

An implementation of the transformation algorithm should focus on two impor-

tant efficiency issues:

Efficient context operations

As we have already seen, the contexts (tags) required by the technique are lists of

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


98 P. Rondogiannis and W. W. Wadge

head tailcode

0 0 []

1 1 [1]

5 [5]

2 3 [2,5]

1 4 [1,2,5]

1

2

3

4

5

...

1

Fig. 11. The hash-consing technique.

natural numbers. In a real implementation however, it would be preferrable to have

contexts that are natural numbers and not lists. There exists a simple encoding trick

(known as ‘hash-consing’) for achieving this purpose. Hash-consing is a method of

implementing lists which ensures that every list (considered as a sequence of items)

has a unique representation. The main advantage of hash-consing is that two lists

can be tested for equality with a single operation, rather than with a loop which

scans the lists and compares corresponding elements. The only disadvantage is that

with each cons operation we must consult a hash table to check that the list we are

constructing does not already have a representation.

We store the list representatives in a table each row of which is a pair (head, index

of tail). The list is then represented (or encoded) by the index of the appropriate pair

in the table (see Figure 11). The following primitive functions are used to implement

hash-consing:

• hashcons(head, tail code): uses a hash function to check if the pair (head,

tail code) already exists in the hash table. If it does not, then it inserts it.

Finally, it returns the position of the pair in the table.

• hashhead(list code): returns the first element of the pair found in the list code

position of the hash table.

• hashtail(list code): returns the second element of the pair found in the list code

position of the hash table.

The above operations can be performed efficiently and the space occupied by

the hash table is reasonable. Using hash-consing and the above primitives, an

efficient implementation of the technique can be built that avoids expensive list

management. Moreover, in cases where the value of a context needs to be saved

during execution (this is further discussed below), the hash consing representation

proves indispensable.

Hash consing gives us a method to represent, with small integers, points in a tree-

shaped index space. The technique therefore has a broader practical significance:

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 99

it makes it possible to extend eduction to data structures whose components are

not necessarily indexed by copies of the integers. For example, Tao (1994) presents

a demand-driven attribute grammar system in which the attributes are intensions

indexed by the nodes in a parse tree.

Avoiding recomputations

The eductive evaluation of an intensional program typically generates multiple

demands for the same extension. In other words, the value v of an identifier x under

a specific context w may be demanded many times during program execution (see

Example 9.2). The ‘Warehouse’ is an associative store, usually implemented as a

hash table, whose purpose is to keep this kind of information. If the value of the

identifier x under the same context w is demanded again during program execution,

then a lookup of the Warehouse can potentially save significant time. (Notice that

contexts can now be easily saved in the Warehouse because they have been encoded

as integers using hash-consing.)

It is important to note that the Warehouse is not a required component of the

implementation. In fact, the only space that is actually essential for the technique

is the table used for implementing hash-consing. However, experience shows that

the use of the Warehouse gives an important benefit to the implementation by

drastically reducing the number of steps that have to be performed in order to

evaluate a program. The size of the Warehouse can be controlled either by using

heuristics or by appropriate analysis-based techniques (Bagai, 1986), which guess or

predict the length of time a given entry has to be retained.

In conclusion, it should be noted that the ideas discussed in this section have been

incorporated in all the implementations of Lucid, GLU, and other related first-order

languages and systems. In this paper, we present a formalization of, and correctness

proof for, a practical technique which has been in use already for many years.

13 Conclusions

The goal of this paper is two-fold. First, it provides an intuitive introduction to

the concepts of intensional logic and eduction, and describes their relationship to

the dataflow model of computation. Second, it establishes in a rigorous way the

connections between first-order functional languages and intensional languages of

nullary variables. In this way it provides a formal basis for a technique that has

successfully been used for implementing a variety of first-order functional systems.

More generally, we believe that many of the features of modern functional

languages can be ‘intensionalized’, and that dataflow computation still holds further

promise for the implementation of such languages. Our beliefs are strongly supported

by our recent work that generalizes the technique described in this paper to apply

to typed higher-order functional programs.

Acknowledgements

We would like to thank Arvind for usefull discussions during PACT94, and R.

Kieburtz for the insightful feedback he provided as the external PhD examiner of

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


100 P. Rondogiannis and W. W. Wadge

the first author. This work has benefited from discussions with many members of

the intensional programming group. The research was supported by the Natural

Sciences and Engineering Research Council of Canada and a University of Victoria

Graduate Fellowship.

References

Arvind and Culler, D. (1987) Dataflow architectures. In S. S. Thakkar (ed.), Selected Reprints

on Dataflow and Reduction Architectures, pp. 79–101. IEEE Press.

Arvind and Nikhil, R. S. (1990) Executing a program on the MIT tagged-token dataflow

architecture. IEEE Trans. Computers, 39(3):300–318.

Bagai, R. (1986) Compilation of the Dataflow Language Lucid. Master’s thesis, Department

of Computer Science, University of Victoria.

Du, W. and Wadge, W. W. (1990a) The eductive implementation of a three-dimensional

spreadsheet. Software–Practice and Experience, 20(11):1097–1114, November.

Du, W. and Wadge, W. W. (1990b) A 3D spreadsheet based on intensional logic. IEEE

Software: 78–89, July.

Dowty, D., Wall, R. and Peters, S. (1981) Introduction to Montague Semantics. Reidel.

Faustini, A. A., Ashcroft, E. A. and Jagannathan, R. (1991) An Intensional Language for

Parallel Applications Programming. In B. K.Szymanski (ed.), Parallel Functional Languages

and Compilers, pp. 11–49. ACM Press.

Faustini, A. A. and Wadge, W. W. (1987) An eductive interpreter for the language pLucid. Proc.

SIGPLAN 87 Conference on Interpreters and Interpretive techniques (SIGPLAN Notices

22(7)):86–91.

Gunter, C. (1992) Semantics of Programming Languages. MIT Press.

Jagannathan, R. and Dodd, C. (1994) GLU Programmer’s Guide. Technical Report SRI-

CSL-94-06, Computer Science Laboratory, SRI International, Menlo Park, CA, July.

Kirkham, C., Gurd, J. and Watson, I. (1985) The Manchester Prototype Dataflow Computer.

Commun. ACM: 34–52, January.

Nelan, G. (1994) Firstification. PhD thesis, Department of Computer Science, Arizona State

University.

Rondogiannis, P. (1994) Higher-Order Functional Languages and Intensional Logic. PhD

thesis, Department of Computer Science, University of Victoria, Canada, December.

Rondogiannis, P. and Wadge, W. W. (1994a) Higher-Order Dataflow and its Implementation

on Stock Hardware. Proc. ACM Symposium on Applied Computing, pp. 431–435. ACM

Press.

Rondogiannis, P. and Wadge, W. W. (1994b) Compiling Higher-Order Functions for Tagged-

Dataflow. In Proc. IFIP International Conference on Parallel Architectures and Compilation

Techniques. North-Holland.

Rondogiannis, P. and Wadge, W. W. (1996) Higher-Order Functional Languages and Inten-

sional Logic. (In preparation.)

Stoy, J. (1977) Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory. MIT Press.

Tao, S. (1994) Indexical Attribute Grammars. PhD thesis, Department of Computer Science,

University of Victoria, Canada, December.

Tennent, R. (1991) Semantics of Programming Languages. Prentice Hall.

Thomason, R. (ed.) (1974) Formal Philosophy, Selected Papers of R. Montague. Yale University

Press.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633


First-order functional languages and intensional logic 101

van Benthem, J. (1988) A Manual of Intensional Logic. CSLI Lecture Notes.

Wadge, W. W. and Ashcroft, E. A. (1985) Lucid, the Dataflow Programming Language.

Academic Press.

Yaghi, A. A. (1984) The Intensional Implementation Technique for Functional Languages. PhD

thesis, Department of Computer Science, University of Warwick, UK.

https://doi.org/10.1017/S0956796897002633 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002633

