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PSEUDO-MONOTONICITY AND
DEGENERATED OR SINGULAR ELLIPTIC OPERATORS

P. DRABEK, A. KUFNER AND V. MUSTONEN

Using the compactness of an imbedding for weighted Sobolev spaces (that is, a
Hardy-type inequality), it is shown how the assumption of monotonicity can be
weakened still guaranteeing the pseudo-monotonicity of certain nonlinear degen-
erated or singular elliptic differential operators. The result extends analogous
assertions for elliptic operators.

1. INTRODUCTION

Let us consider the second order differential operator

N „

(1.1) t i n - 2__, 75—di(x,u(x), Vu(x)) + ao(x,u(x), Vu(i))

where the functions aj(z, J?, £) and an(x, T),£), defined o n f i x l x RN with fi an open
subset of RN, satisfy suitable regularity and growth assumptions.

One of the conditions which allow us to apply the theory of monotone mappings is
the so-called Leray-Lions condition:

N

e» - Ci > o

for almost all x £ Q., all 77 G K and all f, f 6 R^ with f ^ f.

As was shown recently (see [2, 3]), if the mapping T from W0
1>p(fi) to W~1>p (0.)

generated by the operator (1.1) satisfies a slightly weaker condition than (1.2), namely

N
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for almost all x G Q, all r\ e K and all £,£ 6 K^ , then its pseudo-monotonicity for
certain lower order parts ao can be ensured, and thus, existence results for boundary
value problems can be appropriately extended.

These results are concerned with elliptic operators where the Sobolev spaces
W1>p(f2) with 1 < p < oo play an essential role. Recently, the theory of monotone
mappings was extended also to degenerate and/or singular elliptic operators where the
weighted Sobolev space W1>p(fi; w) plays the role of the classical Sobolev space WliP(fi)
(for details, see, for example, [1]). The aim of this note is to show that also in this case
the weaker condition (1.3) can be applied.

For simplicity, we shall deal with the operator (1.1) with no lower order part, that
is, u t—» Au, where

N Q

(1.4) Au=-Y,-~-ai(x,u,Vu)
i=i *

and we shall follow the ideas developed in [2]. Of course, the theory can be extended to
the operator (1.1) and even to higher order operators (in divergence form). This will be
done in a forthcoming paper where also the necessity of (1.3) and other monotonicity
properties will be discussed.

2. BASIC ASSUMPTIONS

Our basic space will be the weighted Sobolev space

(2.1) Wl*(Sl;w)

with Cl an open set in HtN, 1 < p < oo, and w a collection of weight functions on
ft : w — {wi(x); i = 0 , 1 , . . . , N}, Wi measurable and positive almost everywhere in
Ci and satisfying the conditions

Wi e Lloc(Cl), w\-* 6 Lloc(n), p' =
p - 1

The space W1>p(Sl;w) will be normed by

(2.2) \\u\\ptw =' '

Since we shall deal with the Dirichlet problem, we shall use the space

(2 3) X :=W1'p(fl-w)
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defined as the closure of the set Co°(fi) with respect to the norm (2.2), and we shall
suppose that the expression

is a norm on X equivalent to the norm (2.2). The reader can find conditions on the
weight w which guarantee this fact in [1]. Notice that (X, ||| • | | |x) is a uniformly
convex (and thus reflexive) Banach space.

The following assumption will play an important role in our considerations:

(Ai) There exist a weight function u o n f ] and a parameter q, 1 < q < oo,
such that the (Hardy) inequality

(2.5) ( J j \ ) (

holds for every u S X with a constant C > 0 independent of u and,
moreover, the imbedding

(2.6) X -4 L"(Q,;UJ)

expressed by the inequality (2.5) is compact.

As usual, we introduce the semilinear Dirichlet form

(2.7) a(u,v) = V* / a,i(x,u,Vu)-^dx
~[ Jn dxi

and suppose that the "coefficients" ai(x,T],£) satisfy the following (growth) conditions:

(A2) Each a.i(x,r),£) is a Caratheodory function, that is, measurable in x for

any fixed C = (v^) S R "̂*"1 and continuous in £ for almost all fixed
x € fl- There exist a constant C\ > 0 and a function g € Lp (fi) such
that

N

(2.8) \ \ y p [ l / \ ' / p '

for almost all x e f2, all C = (v, 0 € RN+1 and i = 1,2,... , N. (Here w
and q are the weight function and the parameter from (2.5), respectively.)
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Under these conditions, the Dirichlet form a(u, v) is well-defined and bounded on
X, which can be easily seen by Holder's inequality.

Hence, the mapping T from the space X into its dual X*, induced by the operator
A via formula

(2.9) (Tu,v) = a(u,v) for u,v € X

(where the brackets (•, •) denote the duality between X* and X) is a bounded mapping
(that is T maps bounded sets in X onto bounded sets in X*).

Let us recall the definition of pseudo-monotonicity:
J A mapping T : X —> X* is called pseudomonotone if for any sequence {un} in X

with un —*• u, that is weakly, and limsup(Tun,un - u) < 0, it follows that

Tun ->• Tu and (Tun, un) ->• (Tu,u).

3. T H E MAIN RESULT

The main result of this note which allows us to extend the existence results derived,
for example, in [1], is given in the following assertion.

PROPOSITION 1 . Let (Ai) be satisfied. Let the functions a,: flxKxRw->R
satisfy (A2) and (1.3). Then the mapping T defined by (2.9) is pseudomonotone.

P R O O F : Let un —*• u in X and

(2.10) l imsup(Tun,un - u) ^ 0.

Then -r-2- -*• 7— in Lp(£l;wi) and un -»• u in Lp(^l;w0), that is
OXi OXi

}">-> pLv,1.* and unw^'^-uw^ in

Since T is bounded we have

(2.11) Tun^h in X*

and due to (2.8) also

(2.12) ai(;un,Vun) ^ hi in

(i = 1,2,. . . , N) for some subsequence, where the action of h is given by

N

(h
N C ft

, v) = Y " / h~dx for all » e l
~(Jil OXi
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It follows from (2.10) and (2.11) that

(2.13) l imsup(Tun ,un) ^ (h,u).

On the other hand, by (1.3)

N r Ft
Y^ / \ai(x,un,v) - ai(x,un,Vun)\(vi - —^-) dx ^ 0

N
for all v = (vi) £ n LP{£1\ Wi). Hence

N . „ N

(2.14) y, / ai{x,un,vun)——dx ^ 2_. I ai(x,un,vun)Vidx
t=l *^n * i=l "*n

N r Ft N

It follows from (2.12) that

N „ N

(2.15)

as n -^ co. The compactness of the imbedding (2.6) implies

(2.16) un->u in Lq{fl;ui).

Hence (2.16) together with (2.8) yield

ai(x,un,v) —> a,i{x,u, v) m L y [il;wi

and so
N t F) N

(2.17) ^ ^ / n.-(T. »t_ ill -ifa-tV

(2.18) Y" / oi(x,un,t;)t;idx-^ V / ^(x.u.^Kdx,

AT

as n -^ co for aU v = («<) 6 J l I^(n;t(;i). It follows from (2.13), (2.14), (2.15), (2.17)

and (2.18) that

> / hi-—dx ^ h m s u p ^ / o,i(x,un, vun)——dx

N . N . _ AT

^ ^ / /iifidx + ^ ^ / ai(x,u, u)-^—dx — y . / atlaJiWi^j^tai-
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Consequently,
iV jV

Y] [ai(x,u,v)-hi](vi--^-)dx^O for all v = (v^ e t \ Lp(Ct;Wi).
i=iJn V dXi> ,=i

AT

Setting v = Vu + tz with t > 0 and 1 = (zi) G Yl -^p(^; ^i) i w e have
t=i

N . N

VJ / [OJ(X, u, Vu + t~z) — hi] Zi dx ^ 0 for any z = (z<) G TT LP{Q.; Wi).

By letting t —> 0+, we conclude that

a,i(x, u(x), Vti(i)) = fti(x) almost everywhere in fi, i = 1,2,... , N.

Hence Tu = h in X* and Tun —>• Tu has been proved.
It remains to show that

Since we already have by (2.13),

limsup(Tun,un) ^ (h,u) = (Tu,u),

it suffices to show that
liminf(Tun,un) ^ (Tu,u).

Indeed, as in (2.14) with v = Vu,

N

un,un) = liminf V^ / a,i(x,un, Vun)-^-^ dx

N r a N /• Q N

= (Tu, u) + (Tu, u) - (Tu, u) = (Tu,«),

and the assertion follows. D

Using the proposition just derived, we get the following general existence result
which is a modification of the corresponding existence theorems in [1, Chapter 2]:

THEOREM 1. Suppose that the operator A from (1.4) satisfies (1.3), (2.8) and
the ellipticity condition

N N

t=l i=l

for almost all x £ Q and all (77, £) e RN+1. Let f G X*. Then there exists at least one
weak solution u G X of the (homogeneous) Dirichlet problem:

a(u, v) — (/, v) for every, v G X.
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4. EXAMPLES AND REMARKS

EXAMPLE 1. Let us consider the following special case

(4.1) a.i{x,ri,t) = wi(x)\£i\p~lsgn & +wo{x)Ao{r)),

i=l,2,...,N, with W{(x) given weight functions (i = 0 , 1 , . . . , N).

(i) For simplicity, we shall suppose that the weight functions wi(x),... ,wN(x)
coincide:

(4.2) Wi(x) = w(x), i e ! l , i = 1,2,... , N.

Then we can consider the Hardy inequality (2.5) in the form

(4.3) \ \ y (
and the growth conditions (2.8) will be satisfied if we suppose that

x e Cl, i = 1,.. . , N. For a< from (4.1), it means that we suppose

(4.4) \wo(x)Ao(v)\ < Civ>1'*(x)u1/'f(x) \v\g/p' •

This condition together with the compactness of the imbedding expressed by (4.3) allows
us to use the results mentioned in Section 3.

Let us point out that the condition (4.4) shows the mutual behaviour of the growth
of the term •wo(x)Ao(ri) (expressed in terms of |r?| ) and the degeneration and/or
singularity (expressed in terms of the weight functions wo,w,w). Also, the role of the
parameters p,q and weights w,w appearing in (4.3) becomes more transparent.

(ii) In particular, let us use the special weight functions w0, w, w expressed in terms
of the distance to the boundary dQ.: denote d(x) = dist (x,dfl) and set

w{x) = dx(x), wo(x) = dx°(x), w{x) = dli(x).

Condition (4.4) then reads as

(4.5) \A0(V)\ ^ dx'"+"f"'-xo(x) \r,\q/p>.

In this case, the Hardy inequality

(4.6) ( I |u(sc)| V(a:) di) ^ ^ C( [ |Vu(i)|pdA(x) dxj
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holds and the corresponding imbedding is compact provided ft is a bounded domain
satisfying the cone condition and

(a) for 1 ^ p ^ q < oo,

(4.7) A # p - l , £ - £ + l > 0 , £ - : * + £ - 2 + l > 0 >
q p q p q p

(b) for 1 ^ q < p < oo,

(4.8) XeR, ^ - - + - - i + l > 0 .
q p q p

Moreover, the conditions (4.7) or (4.8) are necessary and sufficient for the compactness
(see [4,Theorems 19.17 and 19.22]).

For example, a comparison of (4.8) and (4.5) shows that in the case (b) above, we
can have

Ac < /x(l + 1/9 - I/P)-

EXAMPLE 2. We consider again the functions a* from (4.1), but now we choose

(4.9) Wi(x)=w(x) for i = 1,2,... , TV - 1, wN(x) = Q.

To prove that T is pseudomonotone, we can work with the same space as in Example 1
and consider the Hardy inequality (4.3). The difference between this case and the case
considered in Example 1 is in the monotonicity condition (1.2) and/or (1.3). While in
the case of Example 1 we have

N

N

= w(x) J2 ( l̂ il""1 sgn ft - £ ) (& - fc) >0sgn

for almost all x G ft (since the weight function w is positive almost everywhere in Q,)

and for all ^ g R " with £ ^ f, in the case (4.9) we have

N

N~l / -1 \

= w(x) Y, ( l&r1 sgn ft - Ift I sgn ft ) (ft - ft)

and the last inequality cannot be strict since for £ ^ £ with £w ^ £N but ft =
z = l , 2 , . . . ,N — 1, the corresponding expression is zero.
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