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Introduction An element k of a unital Banach algebra A is said to be Hermitian if
its numerical range

is contained in U; equivalently, ||e"A'|| = \{t e U)—see Bonsall and Duncan [3] and [4].
Here we find the largest possible extent of V(k"), neN, given V(k)c[—l,l], and so
| | £ | | ^ 1 : previous knowledge is in Bollobas [2] and Crabb, Duncan and McGregor [7].
The largest possible sets all occur in a single example. Surprisingly, they all have straight
line segments in their boundaries. The example is in [2] and [7], but here we give A.
Browder's construction from [5], partly published in [6]. We are grateful to him for a copy
of [5], and for discussions which led to the present work. We are also grateful to J.
Duncan for useful discussions.

Let X be the Banach space of entire functions / such that

Il/H = sup{|/(cx + ir)|e-|fl: o, t real} < ».

For feX, we have ||/|| = sup{|/(a)| :crreal}—see [6] for proofs here. Define h by
h(f) = if. Then h e B(X), h is Hermitian and \\h\\ = 1. Denote {xeX: \\x\\ « 1} by Xx.

LEMMA 1. IffeXx and /(0) = 1, then for T e B(X) we have (T/)(0) e V(T).

Proof. Define the functional <p on the Banach algebra B(X) by 4>(T) = (T/)(0).
Then |0 ( r ) | s= ||r/| | *£ \\T\\, so \\<f>\\^l. Also, <£(/) = 1. Hence <j>(T) e V{T). q.e.d.

Let k be a Hermitian element of a unital Banach algebra A with ||fc|| =£ 1. Let rp e A'
with HvH = V(l) = 1. a n d let /00 = WUk)- Then / e X, and f(0) = 1. For 4> as in the
above proof, we have <f>(h") = i"fn)(0) = i/>(k") (n = 0 , 1 ,2 ). Hence V(p(k))c
V{p(h)) for any polynomial p. The same argument with the restrictions i/>(l) = cp(I) = 1
removed shows that ||p(A:)|| ̂  \\p(h)\\.

The next two theorems contain the main results of the paper. They are proved in the
sequel.

THEOREM 2 (even power case). Let £(6) be the 2n-th derivative at 0, with respect to x,
of e~'e(cos p + idp~l sin p), where p2 = x2 + 62. Then the boundary of V(h2") consists of
the curves t,{8) and t,{6), 0=£ 0 ^n, and the line segment [£(n), £(x)].

THEOREM 3 (odd power case). Let £(0) be the (In + \)-th derivative at 0, with respect
to z, of t2"+1e~M(cos<2+j'04+/r1a-z)£r'sin(2), where A = Vd2+a2 and
Q2 = (z + a)2 + 62, a being the first positive zero of (d2nldz2nr)(sin pip) with p2 = z2+ 62.
Let 80 be the first positive 8 for which A = n. Then the boundary of V(h2 ) consists of
the curves ±£(0) and ±t,{6), 0 s= 8 =£ 0O, and the line segments [±C(0O),
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38 M. J. CRABB AND C. M. McGREGOR

A

A = (1,0),
2

C = (0, )
D = ((1/3 + 4/^2)/V3,2/(V3n)).

Figure 1

Figure 1 illustrates Theorems 2 and 3 with n = \.

LEMMA 4. For any polynomialp, \\p(h)\\ = sup{|(p(/i)/)(0)| : / e Xx).

Proof. Write w for the sup. By considering f(s + u) for feXu we obtain
| . So ||p(/i)|| ̂  w, and the reverse inequality is clear, q.e.d.

For any a e B(X), we have V(a)c{£:|£|:s||a||}. Hence if£eV(a) and |£| = ||a||,
then % e dV(a). Also, V(a + y) = V(a) + y (y e C).

The even power case. Define, for 6, z e C, /8(z) = cos p = t (-l)"(z2 + 62)"l(2n)\,
n=0

where p = Vz2 + d2. We can take either square root and get the same value for fe.
Observe that fe(z) = -zge(z), where ge(z) = sin pip. For 0 3=0, fe and g0 are even
functions in Xx. To see this, apply Lemma 3.2 of [7] to the function <p{w, z) =fiw{iz). This
gives fB e Xx for 6 e U. Then sin pip = jl

0 cos(«p) dueX^
Let 0 ^ 6 < n, and put e=fe. Consider, for / in X, j r . F{z) dz, where
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Hz) =p(z)f(z)/(z2ne'(z)) = -P(z)f(z)/(z2"+lgg(z)).

Here Tj is the square with corners (j + i)n{±\, ±i), and

On Ty, |sinz| >^e1'1, where z = cr + /f. Hence |sin p| = |sin(z + w)\, where |w|—>0 as
|z|-»oo, >|sin z cos w| - |cosz sin w\ >\e^ for all large enough \z\, since |cosz|^e''L
Since |z /p | -»l as |z|—»°°, we get |e'(z)| >^e|(| for all large \z\. Hence J r .Fdz-»0 as
/—»°°, and the sum of the residues of F is 0. The function F is meromorphic with poles at
0 and at {ak} c R , the zeros of ge. Also, ge(z) =p(z) + z2"g(z), where g is entire. So

+
(2n)! "

Hence the residue of F at 0 is -(l/(2«)!)(/<2">(0) - T/(0)), where T =
Therefore, where we are defining <p eX',

0(/) = ((ih)2" - T)/(0) =p2»\0) - 1/(0) = (2/i)! £ ^r*"/"" . (i)
A: afe (ak)

At z = a-jt, sin p = 0, so e = cosp = ± l , and e, e" have opposite signs: note that
e(K) = [- l , l ] . Hence for all k, e(ak)/e"(ak)<0. Thus \<p(e)\ = max{\<p(f)\ : /eX,},
attaining the estimate (2n)\ £ ak

2" \p(ak)\/\e"(ak)\, if the p(ak) have constant sign. For

n = 1 this follows since /? is constant. For n > 1, it is proved later.
Thus by Lemma 4, |0(e)| = ||(-l)'7z2" - r|| = \\h2n - T'| |, where T' = ( - 1 ) " T . Define

ke(z) = k(z) = e~'e(cos p + id sin p/p) = e~'e(fe(z) +idge(z)). Then keX, and |&|=sl
on IR, so fc e *,. Since fc(0) = 1, £ = £(0) = ( - l ) "^ 2 "^ ) e V(h2"). By the definition of <f>
and r, <t>(ge) = O- Thus (~1)"(£ - T') = A:(2">(0) - r = 4>(k) = e-i04>(fe), and | £ - r ' | =
|0(/e)| = | | / i 2 n - r ' | | . Since £ - T' e V(h2" - %'), we get £ e 3F(/i2"). Also, V ( / I 2 " - T ' ) C
{z : |z| « |£ — r ' |} . Hence K(/j2") is contained in a circle with centre at r' and through £.

As 0—» JT, ge(0) = sin 6/6^0. We prove below that ^"'(O) ^ 0 for 0 « 0 « w. These
are continuous in 8, and so |r' | = |r|-»°° as 6-* n. Also, £(0)—» £(JT) = £0 say, which is
also in V{h2n) and Im(£0) = -jz(-l)ngVn\0) ^ 0 (below).

The function k{z) gives £ and £0 in 3V(/i2"). Hence the line segment [£0, £0J s K.
The discs with centre r' and through £ tend, as 8—>n, to a half-plane with edge through
£0 and £0, which also contains V. Thus [£(), £0] c 3V(/i2"). Since /e(z) and ge(z) are
continuous in 8 and z, £(0) for 0=£ 8 ^x is a continuous curve_C in 9V. For 8 = 0, we
have /t(z) = cos z, and £ = 1. So C runs from 1 to £0. The curve C is continuous from 1 to
£o, so with C and [£0, £0], we have a closed curve which must be all of dV(h2"), since
V(h2") is a convex set.

From above, £ — T' = (—\)"e~l0(p(fg), and 0(/s) is real. For 8 = — we get £ = T' + try,

with rj real. V(/i2") is contained in the circle with centre r ' and through £. Hence
max{|lmz|:z e V(/i2")} = \rj\, and occurs at £. Also, if a is real and =£T', then since
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40 M. J. CRABB AND C. M. McGREGOR

Z-oeV(h2n-o), we get \\h2n - o\\ s* | £ - o\ > |£ - r'| = \\h2" - r'\\. Thus
min{| | / i 2 n - o\\ :oe U} occurs at o = %'.

We can prove that sup{Re e~iez : z e V(h2")} = (-l)"f$"\0) (0 « 6 =£ n). For V(h2),
this is sin 616. This was found first by J. Duncan, who also pointed out that
{V(h2) = W(T), the numerical range of the Volterra operator on L2(0,1)—see Halmos
[8, p. 109].

The following completes the proof of Theorem 2.

LEMMA 5. For 0=£ 0<; r , ge has the following property, for degrees of polynomial
2=2.

A partial sum (polynomial) of the power series at 0 is, on U, either always 3= the
function, or always «= the function. (2)

Hence, at the zeros of ge the polynomial has constant sign.

Proof. The functions cos* and sxnx/x have property (2) for all degrees (e.g. Hardy
[9, ExxXLVI, 5]). This gives (2) for 6 = 0, so assume now that 6 > 0.

We have g'(x) =-xk(x), where k(x) - (sinp - p cos p)/p3 = V5r72p~3/273/2(p),

and /„ is the usual Bessel function. From Luke [10, p. 299, Eqn. (26)], for Re^ > - 1 ,

R e v > - 1 ,

J(l(8 sin t)Jv(x cos f)sin"+11 cosv+]tdt = 6flx V,,+v+1(p)/p"+v+1. (3)
o

If we put JX = 1, v = - 2 , we get k(x) = 0'1 J j^cos^ cos/)/,(# sin r)sin2f dt. It is enough
to prove (2) for k and its polynomials of degree 3=0: we multiply by x and integrate to
establish (2) for g. As k is an integral of functions x —* acos(/3x) with a>0, each of
which satisfies (2) in the same direction for any degree, it follows that k satisfies
(2). q.e.d.

The above also gives g^n)(0) = -(In - l)fc(2"-2)(0), and

(_l)*fc(2*>(0) = 0-1 ^ cos2* t sin2 tf,(0 sin t) dt > 0,

since 7, > 0 on ]0, n]. Hence g^'o(0) =f 0, for n e N and 0 < 0 =£ n.

REMARKS. TO see that supRee"'GV(/j2") = (-l)"/^2n)(0), note that with the above
notation, in the disc centred at x' which contains V(h2") and has t, in V(h2") on its
boundary, we have that the segment [V, £] makes an angle 6 with the real axis. Hence
the tangent to the circle at £ is a support line of V(h2").

We can prove that

J'jr/2

6 COS(A: COS f)/,(0 sin t) dt.
o

This gives (-l)'%2"\0) = 1-6 Jj / 2 cos2" tJ{(6 sin t) dt. Since 7,(0 sin t) > 0, (-l)"/(2'°(0)
increases monotonically to 1 as n—»°°. So the V(h2") expand up to the unit disc.

For V(h2), the line segment in the boundary is [—HK,HK\. The point 4/n2 + 2i/jr
gives max{|lmz| :z 6 V(h2)}.

Functions e(z) = cosp for 6»jt are also "extremal functions". For instance, if for
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n < 6 <2JZ we integrate (z2 + 62 - n2)f(z)/(z*e'(z)) as above, we find the norm in X of
h4 + %h2 + r\ for certain %, r\.

The odd power case. For / in X, consider

L z2"+2e'(z)

dZ'
with e(z) = cosV(z + a-)2 + d2 =fg(z + a) for certain a>0, 0^6<JT, and p the 2n-
degree polynomial which starts the power series of e'. Take Ay = Tj — a, r, as before, and
let ;->• oo. This gives

- r/(0) = ~{2n + 1)! 2 4

where {ak} are the zeros of e', T = e(2"+2)(0)/e'(0), and we are defining 4>eX'. Then
\4>(e)\ = max{\(p(f)\ :f e X\} if p{ak) = 0 when |e(crt)| ^ 1, i.e. for ak = -a, and

p{ak) has the same sign at all ak^ —a. (5)

For then |$(e)| attains the estimate

Since —e'(x) = (x + a)gB(x + a) = (x + a) £ akx
k (say), we have

-p(x) = (x + a)(ao + . . . + a2n_lx
2"-1) + aa2nx

2n.

We require p(-a) = 0, i.e. g^"\tx) = a2n = 0. Then -p(x) = (x + a)(a0 + . . .+
a2n-\X

2"~x). This is to have constant sign at the zeros of ge(x + a). Put t = x + a. We
require tr2n.x{t) to have constant sign at the zeros of ge{t), where

2/1-1 g W r V ^

'2,,-(0= 2 —r 1 ^-^-
Let /3 = VJT2 — 62, the first positive zero of go. We prove the following, for n S= 2 and

certain 0. There exists cv, 0< <*</?, such that g$n)(a) = 0 and (r^-i -ge)(O has one
sign for t<a, the opposite sign for t>a: we say that r2,,_, crosses gfl at a. Therefore
t(r2n-i - ge)(t) has the same sign for t e]-°°, 0[U]a', <»[, which set contains the zeros of
ge. Hence at these zeros, tr2n_x{t) = t(rln-\ - ge){t) has constant sign. The case n — 1 is
considered later.

In (3) we put n = 0 and v = —{-. This gives, after substitution for cos/,

&,(*) = sin pip = I cos (jrt)/o(0Vl - f2) A.
Jo

Fix n e N Let G6(JC) = (-l)"g$"\x). Hence Gfl(x) = ft,cos (^0^(0d t> w h e r e

wn(f) = f2"/o(0Vl - f2). Our method is as follows. We find 0<a<jt such that
gi2"+2)(a-) = Gg(a) = 0. Define T(x) = G(a) + (x - a)G'(a). We prove that T crosses G
at <r. Integrating this In times, we find that r2n+1 crosses g8 at cv.
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Since Jo decreases on [0, JT], wo(t) =/0(flVl - t 2 ) increases on [0,1]. Let z, be the first
zero of Jo, so z, ^ 2-4. When 6>zu let a = Vl - (zj/0)2. Then w,,(f) < 0 (0 « t < a), and

on ]a,l], wn is positive and increasing. (6)

When 6 «£ zl5 take a = 0, so (6) is still valid.

LEMMA 6. Let k:[0, l]-^U+ be continuous, k^O. Then, for m,j e Z, 0 ^ / < m ,

f A:(f)rwo(0 rfr > a"1"' f k(t)t'wQ(t) dt.
Jo Jo

Proof. We have k(t)wo(t)(t
m - a"' V) 3=0, with strict inequality for some f. g.e.d

For 6 = 0, we shall see in (8), (12) that G" has a zero a with 0 < a < /3 = TT.

THEOREM 7 (Laguerre [1] p. 23). Let f be an entire function, real on U, with e~|z|/(z)
bounded and all the zeros off real and simple. Then the zeros off are real and simple,
and interlace the zeros off.

Hence this also applies to /(n) in place of / . Note that ge satisfies the conditions of
Theorem 7, and hence we can apply it to G'. Since G'(0) = 0, we get a unique zero a{6)
of G" between 0 and the first positive zero of G'. By Hurwitz's theorem. a(R) is
continuous. Define A = Vcr2 + d2; A{6) is continuous. If A< n, then a < \/n2 - d2 = /3.
We shall see in (7) that for 6 > (y/3/2)n, we have a > /? and A > x. We let d increase
from 0 till the first value 0O with A=n. We shall prove that for each 0=s 6< d0, the
function T crosses G at a, and since also a<fi, these values of 6, a give that \4>{e)\ is the
maximum of \4>(f)\ for/in X^

Suppose that (V3/2)JF < 6 < n. If 0 =£ x ^ /?, then x < nil. Since

ge(x)=\ cos(xt)w0(t)dt>0,
Jo

and cos(x/)>0, here, Lemma 6 gives G(x)>a2"ge(x)^0. This inequality for n replaced
by n + 1 is -G"(x)>0. Thus G" has no zero for 0^x ^/3, and so c>/3 . Hence

V3

This argument also shows that for O=s0«(V3/2)^ and Q^x^nll, since g e ( x ) > 0 we
have

G(x)>0>G"(x)

Henceforth we assume that 0 = £ ( V 3 / 2 ) J T . Therefore (V^/2) d =s \n < zx, and this
gives a < 3 . For 0<X<M, gg(x) = (p cosp-sinp)x/p3<0 since 0 < p < V 7 ^ / 2 < t h e
first positive root of tan p = p. Hence by Lemma 6,

-G'(x)= I sm(xt)t2n+lw0(t)dt>a2n I sin(xt)two(t)dt=-a2"ge(x)^0.
Jo Jo
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For n replaced by n + 1 we get G(3)(;c) > 0. Thus we have

G'(*)<0<G( 3 )(x) (0<x<Jt). (9)

Let 0 =£ 6 < 00, so that 0 < a < ft with G"(a) = 0. Since G(3) > 0 on ]0, n[, we have

n). (10)
Hence

T(x)>G(x) (0^x<a), T(x)<G(x) (a<x^n). (11)

Now put y = n/(l + a). For 0<t<^(l + a), we have cos(yt)>0. The substitution
s = 1 + a — t gives

Hence J(1+")/2
I cos(yf)M'n(?) dt = — I cos(y.s)%(l + a — s) ds.

r\ rO+a)a

cos(yt)wn(t) dt = cos(yOK(0 - wn(l + fl - 0) * < 0
•'a •'a

by (6), since a^t^l + a-1 in the last integral. ^cos(yt)wn(t) dt ^ 0 since here
w,,(/) ̂  0. We add these inequalities to get G(y) < 0. By (9), we deduce that

G(x)<0<G"(x) (n/(l + a)*zx^Jt), (12)

since n replaced by (n + 1) gives the G" inequality. Now by (8) and (12), a<y. Since
G t y ) < 0 < G ( 0 ) , we have by (10), -G'(a')>3'~1G(0). By (11), T(y)<G(y)<0. Since T
has slope G'(a), we deduce that

r(jc) < - (1 + 2fl)G(0) (x ^ In). (13)

We claim the following.

For each n<x< In, there exists 0 < w =£ a such that G'(w) < G'(x). (14)

To prove this let c = JIIX and b = JT/(JZ +x) so a < | < c < l . We have -G'(x) =
$l

osin(xt)v(t)dt, where v(t) = twn(t). Consider first the case a^b. Since v increases on
[a, 1], jc

a sin(xt)v(t) dt = c $l
a/c sin(ns)v(cs) ds < fl sin(jis)v(s) ds. For 0 < t < a, i(x + n)t

<na/(2b)*Zjz/2, and so sin(xf) — sin(^) = 2 sin—-—fcos—-—1>0. Since v is nega-
tive on [0,a[, we get fa

0(sin(xt) -sin(nt))v(t)dt^0. For c<t<l, we have v(t)>0
and sin(;rt)<0. Hence -G'(x)< fosin(xt)v(t)dt< foS\n(jis)v(s)ds (add the above
inequalities) = — G'{n). Thus we can take w = n.

Now suppose that a > b. Let w = na'1 - x. Then w > 0 since ax < n, and n - w >
ji + x - nb~l = 0. Since (x + w)a = n and x + w < 3n, we deduce that sin(xt) - sin(vvf) >
0 if 0 < f < a , and <0 if a<t<\. Hence (sin(xf) -s in(wf))v(0^0 for 0 < r < 1, and
-G'(x) + G'(w) < 0. Thus (14) is established.

Now by (10) and (14), G'(x) > G'(a) for n <x <2n. Since T{n) < G{n) by (11), we
have T(x)<G(x) (

https://doi.org/10.1017/S0017089500006315 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006315


44 M. J. CRABB AND C. M. McGREGOR

Now consider the case n = 1, i.e.

G(x) = -gg{x) = cos(*0w,(r) dt\ w,(0 = f2u>0(0-
Jo

Suppose that a >0, i.e. 9>z{. Since |/0|=£l, K | « l . Let A = Jg |wx| and 5 = JJw,. Then
A < ja

0t
2 dt = a273 < a/12 and

fi - ,4 = ( w, = G(0) = -cos 0/02 + sin 0/03 > - 4 cos z,/(3^2) > 1/12.
Jo

Hence B/A>l + a~l, and (B+A)/(B-A)<l + 2a. For all real A:,

|G(JC)|S£ f \wl\ = B+A = G(0)(B+A)/(B-A)<(l + 2a)G(0).
Jo

Hence by (13), T(x) < G(x) (x > In).
Since G is an even function, (9) shows that G increases on [ - JT ,0 ] . Since

7(0)>G(0), we have T(x)>G(x) (-;r =sx «0). Since -JtG'(a) > (1 + a)G(0), for
* < - J T . we have T(A:) > (2 + a)G(O) > (1 + 2a)G(0)> G(x). This completes the proof
that T crosses G if a > 0 and n = 1. For n > 1 and a > 0, the corresponding ratio fiM is
larger, (B + A)I{B -A) smaller, and the above still shows that Tcrosses G at a.

Consider the case a = 0, i.e. d^zx. By the above, T crosses G on \—n,2n], and
| r O ) | > ( l + 2tf)G(0) = G(0) for x eU\[-n,2jr]. Since wn^0 now, for real x,
\G(x)\^Pown = G(0). Thus \T(x)\>\G(x)\(xeU\[-n,2ji]), and T crosses G (on R).

Having now established the required property of r3, r5,. . . to make (5) hold, we
return to the case of /-,, i.e. n = 1 in (4). Note that r, = T is linear. By calculation,
ge(j8) = ^~4(2TT2 - 302), and gg(O) < 0. Hence for 0 ^ 6 < V2/3JZ = dQ, g£ has a zero at a,
0< a< ft. Since gg(x)<0 ( 0 < J : < ^ ) and g'e(0) = 0, a- is unique by Laguerre's theorem
applied to g'e. Since ge(x)<0 (0<x<a), we have T(O) >ge(0)>0, and similarly
T(fi)<ge(l3) = 0. Since Thas negative slope, T > 0 at all negative zeros of ge, and T<0
at all positive zeros of ge. Therefore tT{t) = tr^t) < 0 at all these zeros. This proves (5).

Let n e N, 0 =£ 6 < 0O and Q2 = (z + a)2 + 62. We know that

e(z) = fe(z + a) = cos Q

satisfies |0(e)| = sup{|^(f) | :/eZ,}. Hence by Lemma 4, |0(e)| = ||/i2n+1 -/2"+1r| | .
Define A:(z) = e~M(cos <2 + i(>l + az/A)sin QIQ). As in the even case, k e X. For real x,
Q2 = x2 + 2ax+A2>(A +ax/A)2, which gives |fc|«l on R and so fce^. Since
/c(0) = 1, t = /2"+^(2n+1)(0)eV(/i2"+1). Since s inQ=0 at each ak*-oc, (4) gives
4>((A + az/A)sinQ/Q) = 0. Hence |f - T'| = |0(ife)| = |0(g)| = \\h2n+l - T'| | . where we
put T' = / 2 " + 1 T. Thus Ce3V(/i2"+1), and V(h2n+l)c the circle with centre T' and
through t-

We prove that |T|-»OO as Q-*B0 and so A—>n. We have e'(0) = -asm A/A—>0 and
-e(2n+2)(0) -D 2 n + \{x + a)sin Q/Q](0) = aD2"+l sin Q/Q(O) = ag$"+l)(a) = a(-l)"Gr(a)
=f0, by (9), and since D2nsin Q/Q(0) = 0. This remains non-zero at 0O. and so
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o. As A —> n, £ —» £0 where

±Re(£0) = £>*"+1[0* + ax/w)sin 2/(21(0) = JiDf+ 1 sin Q/Q(0) =f 0.

Since £ e K(/i2n+1), so does £0. The function fc(-z) gives - £ and - £ 0 in V. The above
circle centred at x' has |T'|-—*«>, and since x'eiU, we get [£0) —^o]^9V, as before.
Also, using the functions k(z), we get [£„, £0] £ 5V. Note that £ 0 ^ ~£o-

When 0 = 0, k(z) = eu and £ = - 1 . As 6 varies from 0 to 80, r traces a continuous
curve from —1 to £0 in 3V, since A and a- are continuous in 0. The reflections of this arc
in the axes and the origin are also in dV. With the two line segments they give a closed
curve, which must be all of dV.
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