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To enhance the charging and discharging strategy of the energy storage system (ESS) and optimize its economic efciency, this
paper proposes a novel approach based on the enhanced whale algorithm. Recognizing that the standard whale algorithm can
sometimes sufer from local optima in high-dimensional multiobjective optimization, this study introduces chaotic mapping and
individual information exchange mechanisms to address this challenge. Te proposed algorithm explores optimal confgurations
for diferent energy device placements and capacities through encircling and bubble searches, evaluating various multiobjective
functions for optimization. In addition, the algorithm refnes both the system operation model and the ESS confguration model,
with the objective function being the analysis of the average annual revenue of the ESS. Model testing results demonstrate that this
algorithm yields more moderate energy storage (ES) capacity decay, extending operational time to 3,124 days and achieving a full-
life cycle beneft of the ESS as high as 1,821,623.68 yuan. Also, our algorithm demonstrates high efciency, with minimal test time
(68.36 seconds) and quick optimization (0.031 seconds per cycle), regardless of problem complexity.

1. Introduction

Since the onset of the industrial revolution, the extensive use
of fossil fuels such as oil and coal has not only resulted in
resource depletion but has also caused signifcant envi-
ronmental pollution, thereby subjecting society to the dual
pressures of dwindling resources and ecological degradation
[1]. Recent years have witnessed the growing adoption of
alternative energy sources such as solar power, hydropower,
wind energy, and shale gas within active distribution net-
works [2]. Consequently, issues related to these new energy
sources are becoming increasingly salient. Researchers are
actively investigating methods for the efcient allocation of
ES to mitigate distribution network losses and enhance the
efectiveness of renewable energy, ultimately striving to
achieve the goals of energy conservation and improved
efciency [3]. However, new energy sources are inherently

characterized by randomness, intermittency, and volatility,
resulting in considerable fuctuations in the power output of
these energy generators and, in turn, introducing challenges
in terms of control [4]. Te lack of control over new energy
power has emerged as a signifcant constraint hindering the
further advancement of this feld. In response to the issue of
new energy power stability, the integration of ESSs into
distribution networks has emerged as a viable solution [5].
Yet, the fnite capacity of individual microgrid ESSs poses
a challenge. When a substantial volume of renewable energy
is introduced, it tends to accelerate the degradation of the
ESS’s lifespan, leading to increased operational costs for the
microgrid [6]. To address this challenge, various types of
microgrids located in diverse areas are interconnected to
create a comprehensive energy system [7]. Tis strategy
allows for the synchronization of power transmission across
these interconnected microgrids, enabling resource sharing
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and complementation. An integrated energy system (IES)
management strategy not only mitigates the deterioration of
ESSs but also enhances their reliability and stability [8]. Such
an approach holds the potential to surmount the challenges
associated with the widespread adoption of new energy
sources.

However, the randomness and volatility of high-density
photovoltaic (PV) systems can have a signifcant impact on
the quality of the system voltage waveform, infuenced by the
external environment [9]. Te interference with voltage
control equipment’s protective mechanisms is a complex
issue to manage and regulate, resulting in compromised
power quality for consumers and increased network losses.
Furthermore, it represents a signifcant threat to the security
and stability of the integrated energy distribution network
on the station side. In addition, the uncertainty associated
with the distribution of load demand on the consumer side
can afect the optimization of the IES [10]. To efectively
mitigate the impact of distributed photovoltaics and mini-
mize the infuence of consumer power consumption be-
havior on the system’s optimization, ES devices are
introduced. Tese devices rely on more accurate power
prediction and operation schedules based on the photo-
voltaic output and load demand [11]. To optimize the
functioning of ES devices and enable the rational utilization
of storage batteries and supercapacitors, experts and scholars
from around the world have proposed various ideas and
achieved notable research outcomes. In literature [12],
various methodologies within the Harris hawks optimiza-
tion (HHO) algorithm are introduced (such as enhanced
HHO opposition-based learning (OBL) (EHHOOBL), en-
hanced HHO Lévy fight (EHHOLF), and enhanced HHO
chaotic map (EHHOCM)) aiming to maintain a balance
between exploitation and exploration for community de-
tection in social networks. Literature [13] uses the improved
African vultures optimization algorithm (AVOA) that uses
the three binary thresholds (Kapur’s entropy, Tsallis entropy,
and Ostu’s entropy) in multithreshold image segmentation.
Te quantum rotation gate (QRG) mechanism has increased
population diversity in optimization stages, and optimal
local trap escapes to improve AVOA performance. Te
association strategy (AS) mechanism is used to obtain
a faster search for optimal solutions. Literature [14] employs
the Harris hawks optimization (HHO) algorithm to propose
an innovative technique utilizing random-key encoding for
tour generation. Tis approach preserves the fundamental
capabilities of the HHO algorithm while leveraging the
functionalities of active mechanisms within the continuous-
valued problem space. In the work of literature [15], a novel
strategy named MAS as metaheuristic (MAMH) is in-
troduced, incorporating multiagent systems (MASs) and the
agent concept. Tis method treats various potent meta-
heuristic algorithms as distinct agents, each pursuing in-
dividual objectives while concurrently competing and
cooperating with others to achieve common goals. Literature
[16] enhanced the cuckoo search optimization (CSO) al-
gorithm by integrating a genetic algorithm (GA) for com-
munity detection in intricate networks. Te GA operators
are dynamically employed to enhance the speed and

precision of the CSO. Te population size is dynamically
adapted, balancing exploration and exploitation. Te opti-
mization function utilizes the modularity objective function
(Q) and normalized mutual information (NMI). To address
the issue of local optima entrapment and enhance conver-
gence speed, population-based metaheuristic algorithms are
applied. Tis paper presents an asymmetric clustering ap-
proach for the asymmetric self-organizing map, with the
interactive autodidactic school (IAS) being among the uti-
lized population-based metaheuristic and asymmetric
algorithms [17].

Tis paper analyzes and investigates the operation ef-
ciency, capacity degradation, and storage lifetime of the ESS
with the objective of the average annual return of the IES.
Based on the multiobjective whale algorithm, this paper
introduces the chaotic mapping and individual information
exchange mechanism to overcome the problem of local
optimum when solving high-dimensional multiobjective
optimization. When studying the optimal operation of the
ESS, the installation location and capacity of diferent energy
devices are used as the optimal confguration variables of the
algorithm, and then, the optimized whale algorithm is used
to solve the optimal confguration of the ESS. Also, the
system model is used to verify the efectiveness of its im-
proved algorithm. Te paper is organized as follows: the
introduction provides an overview of the research, followed
by a review of the state of the art. Te main body of the
algorithm is then presented, along with a comprehensive
analysis and discussion of the results. Finally, the study’s
conclusions are presented in the last section.

2. State of the Art

2.1. Comprehensive Structure of Energy Distribution Network.
Currently, a comprehensive energy distribution network
typically comprises various components, including the
comprehensive energy system, lithium battery ESS, public
power grid, central control unit, and electrical equipment, as
depicted in Figure 1.

Within the structure of the comprehensive energy dis-
tribution network, we uphold the principle of restricting
power supply to electrical equipment through compre-
hensive energy sources. Tis strategy signifcantly curtails
the power requirements of electrical equipment from
the grid.

2.2. Application and Optimization Principle of the ESS.
Te mathematical model of the integrated energy distri-
bution network is illustrated in Figure 2. Tis system has the
capability to supply multiple forms of energy in the form of
heat and power to users. Te distribution network en-
compasses a higher-level grid, an ES device, a photovoltaic
power generation system, and a natural engine power
generation system. Te ESS performs peak shaving and
valley flling based on time-sharing tarifs to optimize re-
source utilization and reduce costs. When the power gen-
erated by the new energy generation system exceeds the
electrical equipment load, the ES device is charged.
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Conversely, when the power is insufcient, the ES device
discharges and additional power is procured from the
superior grid.

Te optimization model of the ESS is depicted in Fig-
ure 3. Initially, the output power of the various power supply
systems within the IES is regulated in response to the
electrical load demand. Subsequently, the system operation
model is optimized to identify the most efcient confgu-
ration among multiple options for the comprehensive en-
ergy system, improving the system’s economic performance
in the shortest time. Simultaneously, an optimal ES con-
fguration model is developed and the ES capacity is de-
termined based on the output power of diferent power
supply networks and time-of-use (TOU) pricing. As a result,
it enhances the annual income of the comprehensive energy
system while promoting a slower degradation of ES capacity.

2.3. Load Analysis of Electrical Equipment. Te electrical
equipment represented in the model corresponds to typical
high-power household appliances. Te key factors infu-
encing the load include the appliance’s physical dimensions,
initial charging duration, and service duration. Based on
fndings from a national survey of electrical equipment, the
operational time of these appliances follows a log-normal
distribution N(17.8, 3.6), as shown in the following
equation:

fs n1( 􏼁 �

1
σs

���
2π

√ exp −
n1 − μS( 􏼁

2σ2s
􏼢 􏼣, μs − 12⩽ n1 ⩽ 24,

1
σs

���
2π

√ exp −
n1 + 24− μs( 􏼁

2σ2s
􏼢 􏼣, 0⩽ n1 < μs − 12,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where μs and σS are, respectively, the expected value and
standard deviation of the initial charging time of household
appliances. n1 is the initial charging time of the electrical device.

Simultaneously, it is assumed that the initial charging
time of the electrical equipment follows a uniform distri-
bution, as expressed in the following equation:

fs n2( 􏼁 � rand (24, 1), (2)

where rand(24, 1) represents the random integer generated
in the interval [1, 18]. n2 is the initial charging time of the
electrical device.

According to the results of the national survey on
electrical equipment, the use time of electrical equipment
follows the lognormal distribution N(45, 0.87). Its proba-
bility density function is shown in the following equation:

fD
′ s1( 􏼁 �

1
s1σD1

���
2π

√ exp
ln s1 − μD1

􏼐 􏼑

2σD1

⎡⎣ ⎤⎦, (3)

Public power grid Central control unit

Integrated energy 
system

Energy storage 
system

Electrical 
equipment

Energy flow
Information flow

Figure 1: System structure of the integrated energy distribution network.
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Figure 2: IES structure.
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where μD1
and σD1

are the expected and standard deviation
of the service time of the electrical equipment, respectively.
s1 refers to the service duration of electrical devices.

Utilizing the usage guidelines and probability density
function provided above, the Monte Carlo algorithm is
employed to stochastically sample the initial charging time
and service duration of various electrical equipment.
Trough an analysis of the charging profles of electrical
equipment during diferent time intervals and the initial
state of charge (SOC) of ES batteries, it is possible to sub-
sequently calculate the daily load demand of electrical
equipment.

3. Methodology

In this paper, the enhanced multiobjective whale optimi-
zation algorithm (WOA) [19] is employed in conjunction
with models for ES operation efciency and ES capacity
attenuation. Tis study is focused on addressing ES issues,
particularly concerning the efciency of ES operations and
the decline in ES capacity within the ESS. By comparing
various algorithms, we investigate diferences in ES capacity
degradation time, the average annual income of the com-
prehensive energy system, and system operation efciency.
Furthermore, we delve into the optimization of the ESS
using the enhanced algorithm introduced in this paper.

Te paper provides a comprehensive methodology for
optimizing ESSs through the utilization of the improved
WOA.Tis methodology encompasses enhancements to the
algorithm, the management of objective functions, and the
modeling of ES efciency and degradation.

3.1. Improve the WOA. Te basic WOA is an optimization
algorithm based on the behavior of whales to round up prey.
It includes the following three search methods: bubble
search, enveloping search, and random mutation. Assume
that the initial population size of whales is T and the variable
dimension is D. Cetacean individuals in the solution space
position can be expressed as Ix � (i1x, i2x, · · · , iDx ). Each whale
corresponds to an optimal confguration of the ESS. Upon
discovering the optimal individual location, it represents the
optimal solution for confguring the ESS.

3.1.1. Enveloping Search. Enveloping exploration within the
whale optimization algorithm emulates the hunting actions
of groups of whales, where the leading whale identifes its
target and the other whales employ the lead position as
a point of reference. Tey update their positions in a specifc
manner to create an encircling pattern around the prey. Te
equation for individual position updates is provided in the
following equation:

I(n + 1) � I′(n) − G · D,

G � 2g · r − g,

g � 2−
2n

T
,

D � C · I′(n) − I(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where n denotes the present iteration count. I(n + 1) is the
updated position of the individual whale. I′(n) is the po-
sition of leading whale. G is a convergence factor. D is the
distance between the current individual and the leading
whale [20]. g linearly diminishes from 2 to 0 with the
progression of iterations. r and C represent random values
within the [0, 1] range. T indicates the maximum
iteration count.

3.1.2. Bubble Search. Bubble search in the algorithm sim-
ulates the foraging behavior of whales as they spiral and
release bubbles. In this process, individual particles update
their positions using the spiral equation, as indicated in the
following equation:

I(n + 1) � D′ · e
hl

· cos (2πl) + I′(n), (5)

where I(n + 1) is the updated position of the individual.
I′(n) is the leading whale position. l denotes a random
number falling within the range of [−1, 1]. h serves as
a constant for the spiral path. D′ stands for the distance
between the current individual and the leading whale.
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Figure 3: Optimization model structure.
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3.1.3. Random Variation. Individuals also introduce ran-
dom changes to their positions as they search for food. Tis
updating mechanism expands the search scope and helps
avoid getting stuck in local optimal solutions. Te individual
position update equation is presented as follows:

I(n + 1) � Irand(n) − G · D,

D � C · Irand(n) − I(n)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

⎧⎨

⎩ (6)

where I(n + 1) is the updated position of the individual.
Irand(n) is the location of a random individual whale.

Te improved multiobjective WOA builds upon the
basic algorithm, introducing cubic chaotic mapping and an
individual information exchange mechanism. In addition, it
incorporates a nonlinear convergence factor, adaptive
weighting, and multiobjective function processing.

(1) Initializing the Population Using Cubic Chaotic Mapping.
In the basic WOA, the initial population exhibits high
randomness, often starting too far from the optimal solution.
Tis can signifcantly impede the efciency of the iterative
search. To enhance population diversity and ensure even
coverage of the search space, cubic chaotic mapping is
employed for dynamic and uniform generation of the initial
population. Te cubic mapping is expressed in the following
equations:

j(t + 1) � 4j(t)
3

− 3j(t),

−1< j(t)< 1, j(t)≠ 0,

⎧⎪⎨

⎪⎩
(7)

it � Ld + 1+ jt( 􏼁
Ud − Ld( 􏼁

2
, (8)

where Ud and Ld are the upper and lower limits of the
solution space, respectively. Te whale population is gen-
erated according to equation (7). Te location of the whale is
mapped to the solution space according to equation (8) and
the location of the whale is initialized.

(2) Introduce Individual Information Exchange Mechanism.
In the basic WOA, the whale population conducts the search
for the optimal solution by updating their positions au-
tonomously. Te individual updating mechanism primarily
infuences the algorithm’s iteration efciency. To enhance
the algorithm’s convergence rate, the worst solution is
updated using a hybrid leapfrog algorithm. An individual
information exchange mechanism is introduced to facilitate
communication and learning between the weaker in-
dividuals and the best individuals. Te update equation for
the worst solution is provided in the following equation:

I � Im + r· Ih − IM( 􏼁, (9)

where I is the updated individual. Ih is the best individual in
the population. IM is the worst individual. r is a random
number between [0, 1].

For the updated individual I, if I is better than IM, I is
used instead of IM. Otherwise, substitute Ih for IM.

(3) Increase the Nonlinear Convergence Factor and Adaptive
Weight. Te search performance of the basic WOA is af-
fected by the convergence factor G, and the value of G is
determined by g. Due to the intricacy of the solution process,
the conventional linear degradation approach of a value has
proven to be inadequate for addressing real-world engi-
neering needs, particularly in high-dimensional nonlinear
optimization problems. As a result, this paper introduces an
updated method for the traditional convergence factor, and
its calculation equation is presented as follows:

g(n) � 2− u1 · e
u2 ·n/Nmax . (10)

In the equation, u1 and u2 are nonlinear adjustment
parameters and the values in this paper are 0.07 and 9/8π,
respectively.

In the optimization process of the WOA, a balance must
be struck between the convergence efciency and the al-
gorithm’s solution precision. During the initial optimization
stages, the range of random search is expanded to prevent
getting trapped in local optima. In the later stages of op-
timization, it is essential to enhance the learning capability of
the optimal solution to accelerate algorithm convergence.
Terefore, an adaptive weight coefcient is introduced to
balance the global and local search abilities of the algorithm.
After introducing this new convergence factor, equations
(4)–(6) are updated as shown in the following equation:

I(n + 1) � g(n) · Ih(n) − G · D,

I(n + 1) � g(n) · Ih(n) + D · e
hl cos (2πl),

I(n + 1) �[1− g(n)] · Irand(n) − G · D.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

(4) Multiobjective Function Processing. To address the op-
timal confguration model of the multiobjective function
proposed in this paper, the basic WOA is enhanced in the
following two aspects.

(1) A fast nondominant sort is introduced to calculate
the crowding degree and the elite retention strategy.

(2) Choose the solution with the highest comprehensive
satisfaction based on information entropy. Te
specifc steps are as follows.
Step 1: Normalize the objective function. Te cal-
culation method is shown in the following equation:

μx,z �
fx,max − fx,z

fx,z − fx,min
, (12)

where fx,z is the actual value of the k-th objective
function of individual x. μx,z is the value after
normalization of the k-th objective function of in-
dividual x. fx,max is the maximum value of the k-th
objective function of individual x. fx,min is its
minimum value.
Step 2: Calculate the weight of each indicator. Te
expression is shown in the following equation:
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Mz � −
1

ln (t)
􏽘

t

x�1

μx,z

􏽐
t
x�1 μx,z

· ln
μx,z

􏽐
t
x�1 μx,z

􏼠 􏼡,

τz �
1− Mz

t − 􏽐
t
x�1 Mz

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where Mz is the information entropy of the k-th
attribute. τz is the weight of the k-th attribute.
Step 3: Calculate the scale and ft degree, as shown in
the following equation:

Sx,+ �

������������������

􏽘

w

z�1
τzμx,z − τzμx,z+􏼐 􏼑

2

􏽶
􏽴

,

Sx,− �

������������������

􏽘

w

z�1
τzμx,z − τzμx,z−􏼐 􏼑

2

􏽶
􏽴

,

Cx �
Sx,−

Sx,− + Sx,+

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where Sx,+ and Sx,− are the positive ideal distance and
negative ideal distance of individual x, respectively.
μx,z+ is the maximum value of all objective functions
of individual x after normalization. μx,z− is its
minimum value. Cx is the ft degree of individual x,
and the larger the value, the higher the compre-
hensive satisfaction of the solution.
Step 4: Choose the solution with the highest Cx value
as the compromise solution.

In the multiobjective optimal confguration model
proposed in this algorithm, the variables to be optimized are
the installation position and capacity of the ESS. Te im-
proved WOA simulates the spatial positions of whale
groups.Te initialization of the whale population’s locations
corresponds to the initialization of numerous ES confgu-
rations. Te whale population continuously updates its
positions through enveloping search, bubble search, random
variation, and individual communication until it discovers
the optimal solution.Tis process is equivalent to comparing
and optimizing multiple objective functions associated with
various confguration schemes. Te optimal positions of the
whales represent the optimal allocation of ES. Te solution
steps using the enhanced WOA are outlined as follows.

(1) Input the power supply, load timing output pa-
rameters, and algorithm-related parameters.

(2) Initialize the whale population using cubic chaotic
mapping. Ten, calculate the objective function
values for each whale in the population.

(3) Perform rapid nondominant sorting of the whale
individuals in the algorithm.

(4) Utilize the enhanced WOA to update and optimize
the positions of each individual whale.

(5) Check whether the optimization process has reached
the maximum number of iterations. If not, return to
step (2). If the maximum iterations are reached,
output the set of frontier solutions.

(6) Select the compromise solution based on the nor-
malized processing values and output the fnal op-
timal confguration scheme.

Te algorithm fowchart of this paper is shown in
Figure 4.

Te time complexity of the algorithm can be summa-
rized as follows. Te input parameter step (step 1) has
a constant time complexity O(1). Te population initiali-
zation and objective function evaluation step (step 2) have
a time complexity of O(N + K∗N), where N is the pop-
ulation size and K is the number of objective functions. Te
fast nondominant sorting step (step 3) has a time complexity
of O(N2), where N is the population size. Te update and
optimization of individual positions step (step 4) have a time
complexity of O(N). Te termination condition check step
(step 5) has a constant time complexity O(1). Lastly, the
compromise solution selection step (step 6) has a time
complexity of O(K∗N), where K is the number of objective
functions and N is the population size. Overall, the entire
algorithm’s time complexity is O(N2 + K∗N).

3.2. Construction of the ES Model

3.2.1. Constraints

(1) Power-Balance Constraints

Usol,n + Us,n � Uv,n + Ugrid,n, (15)

where Usol,n is the output of the IES at time n. Us,n is the
output of the ESS in time cycle n. Tis paper assumes that
Us,n remains constant over time n. Uv,n indicates the total
power required by the charging device during time n. Ugrid,n

is the power traded between the IES and the grid during
n cycle.

(2) ES Constraints

(a) Te maximum and minimum limits of ES output are
shown in the following equation:

− Us,max ⩽Us,n ⩽Us,max, (16)

where Us,max is the maximum output of the ESS.
(b) Te following equation illustrates the SOC con-

straints for energy storage.

K
min,n
soc ⩽K

n
soc ⩽K

max,n
soc , (17)

where Kn
soc is the SOC of the ESS during cycle n.

Kmin,n
soc and Kmax,n

soc are the minimum and maximum
SOC of the ESS in time cycle n, respectively.
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Te SOC conversion of ES battery is given by the
following equation:

K
n+1
soc �

K
n
soc − ηc

n

Us,nΔn
Fini

, Us,n ⩽ 0,

K
n
soc −

1
ηdiscn

Us,nΔn
Fini

, Us,n > 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

where ηc
n is the charging efciency of the ES battery

in time cycle n. ηdiscn is the discharge efciency of the
ES battery during this cycle [21].

(c) SOC constraints in the fnal cycle of ESS.
To guarantee the proper functioning of the ESS in the
subsequent control cycle, the SOC after the ES action
in the preceding cycle needs to be adjusted to
a predefned value. Te calculation equation for this
adjustment is provided in the following equation:

Start

Input energy equipment, load
timing output parameters and
algorithm related parameters

The population is initialized based
on cubic chaotic mapping and the

objective function is calculated

A fast non-dominant sequencing was performed on
individual whales, and the comprehensive satisfaction

of the solutions was calculated.

Update the convergence factor a
and weight b according to formula

(9)

According to formula (10), bubble sum,
surround prey and search prey. Update

individual whale positions

Whether the number
of iterations t reaches the

maximum value

No

Yes

Output frontier solution set

The optimal energy storage
configuration scheme is obtained

End

n=n+1

The worst individual is updated
according to formula (8)

Figure 4: Te algorithm fowchart of this paper.
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K
No+1
soc � K

1
soc. (19)

No is the cycle number. In this article, a cycle is 1 day
and there are 96 cycles.

(d) SOC penalty at the conclusion of the ES cycle.

According to the constraint condition (19), the SOC
penalty in the fnal cycle of ES is shown in the following
equation:

rn,4 �
K

N0+1
soc − K

1
soc

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, n � N0,

0, n<N0,
􏼨 (20)

where rn,4 signifes the SOC without penalty in the fnal cycle
of ES.

In summary, the reward and penalty function is artic-
ulated as in the following equation:

rn � σ1rn,1 − σ2rn,2 − σ3rn,3 − σ4rn,4, (21)

where rn is the immediate return at time cycle n.
σ1, σ2, σ3, and σ4 are the weight coefcients of each com-
ponent of the reward and penalty, and all are positive. Tey
are in the range [0, 20] and are chosen as σ1 � 10, σ2 � 13.5,
σ3 � 15, σ4 � 18.5, respectively.

3.2.2. Operation Efciency Model of ES. Te efciency of
battery charging and discharging can be ascertained by
employing the steady-state circuit equivalent model of the
battery [22], as shown in Figure 5.

Voc is the open-circuit voltage in the fgure. Ib indicates
the battery current. Uout indicates the output power.R1 is the
series resistance. R2 is a short-time response resistance as-
sociated with transient response. R3 represents a short-time
response resistor linked to transient response, as well as
a long-time response resistor. All the aforementioned var-
iables exhibit a nonlinear relationship with the battery’s
SOC, as demonstrated in the following equation:

Voc � a0f
−a1ksoc + a2 + a3Ksoc − a4K

2
soc + a5K

3
soc,

R1 � h0f
−h1Ksoc + h2 + h3Ksoc − h4K

2
soc + h5K

3
soc,

R2 � c0f
−m1Ksoc + m2,

R3 � d0f
−n1Ksoc + n2,

Rt � R1 + R2 + R3,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where Rt is the terminal resistance. a0-a5, h0-h5, m0-m2, and
n0-n2 are all coefcients.

By solving equation (23) for a given SOC and Uout, the
current through an individual cell can be determined.

I
2
bRt − IbVoc + Uout � 0. (23)

Te following equation conveys the charging and dis-
charging efcacy of an individual battery.

ηc
�

Voc

Voc − IbRt

,

ηdisc �
Voc − IbRt

Voc

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

where ηc and ηdisc represent the charging and discharging
efciency of the battery, respectively.

Te energy storage system (ESS) utilized in this study
comprises numerous batteries organized in both series and
parallel confgurations. Te following equations ofer the
formulas for calculating the charging and discharging ef-
ciencies of the equivalent current, respectively.

I
2
eRt − IVoc + Ues

1
TseriesTpara

� 0, (25)

ηc
�

Voc

Voc − IeRt

,

ηdisc �
Voc − IeRt

Voc

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

where Ie represents the electric current of the ES battery. I

denotes the total current considering multiple batteries
arranged in both series and parallel confgurations. Tseriesi
indicates the count of battery cells arranged in series, while
Tpara represents the number of battery units linked in
parallel. Ues is the ES battery power.

Te operational efciency was computed using equation
(26). Te correlation between operational efciency and
output power and SOC was modeled using a second-order
polynomial, as demonstrated in the following equation:

ηc
� f0 + f1Ksoc + f2K

2
soc + f3Ues + f4U

2
es + f5UesKsoc,

η1/disc � b0 + b1Ksoc + b2K
2
soc + b3Ues + b4U

2
es + b5UesKsoc.

⎧⎨

⎩ (27)

In the equation, f0-f5 and b0-b5 denote the coefcients.

3.2.3. ES Attenuation Model. Battery capacity degradation is
infuenced by ambient temperature, depth of discharge,
SOC, and battery runtime. It is a nonlinear process and not
a simple sum of individual cycle degradation. Tis paper
employs a semiempirical battery capacity degradation
model. Over T loops, the battery-capacity degradation
model is defned in the following equation:

Floss �
1− μseif

−Tcseild − 1− μsei( 􏼁f
−Tld􏽨 􏽩Fini, Floss′ � 0,

1− 1− Floss′( 􏼁f
−Tld􏽨 􏽩Fini, Floss′ > 0,

⎧⎪⎨

⎪⎩
(28)

Voc

Ib

–

+

–

Uout

R1

R2

R3

+

Figure 5: Steady-state circuit equivalent model.
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whereFloss′ andFloss denote the decay capacities before and after
T loops, respectively. If Floss′ � 0, it indicates that the battery has
not undergone charging or discharging processes. μsei and csei
are the infuencing factors for solid electrolyte interface (SEI)
membrane formation during the use of new batteries. ld is the
capacity attenuation function of a single cycle.

Te residual usable capacity Fr of the ES battery is shown
in the following equation:

Fr � Fini − Floss, (29)

where Fini is the maximum capacity of the ES battery before
attenuation. Floss is the discharge capacity of the ES battery.

Equations (28) and (29) represent the approach for
calculating battery capacity degradation. However, obtain-
ing parameters for each cycle can be challenging in practice
because battery charge and discharge patterns are often
irregular. To address this, the rain-fow counting method is
utilized to compute battery loops and their associated pa-
rameters [23]. Figure 6 illustrates the process of calculating
ES battery capacity degradation using this method.

4. Result Analysis and Discussion

Tis paper has established a comprehensive ESS model,
encompassing the system operation model and the ES decay
model. By optimizing these models, the average annual
revenue status of the ESS is determined. Te efectiveness of
the algorithms and models proposed in this paper is
demonstrated through comparisons and analyses with other
approaches. Te abstract underscores the importance of
optimizing ESS capacity allocation to address the volatility
and uncontrollability of renewable energy generation for
energy stability. Given regional constraints, seasonal vari-
ations, and mid-day climate impacting photovoltaic energy
systems, this paper indirectly derives the optimal capacity
and power solution through the average annual return
profle of the ESS.

740 arrays of photovoltaic cells are utilized in this in-
vestigation, collectively possessing an ES capacity of
14.10MW. When the capacity of 1949 storage batteries
declines to 80% of their designated capacity, they are no
longer deemed functional. Te ESS operates at a charging
and discharging efciency rate of 90%. Te overall system
cost is approximately 32.8 million yuan, and the time-of-use
electricity prices are detailed in Table 1.

In this paper, three comparative algorithms are selected,
and their specifc details are presented in Table 2. During
testing, each algorithm’s specifc test conditions and pa-
rameters are described in Figure 7. For their proposed al-
gorithm, the authors likely conducted experiments or
simulations to determine the optimal parameter values. Te
sensitivity of these parameters to the performance of the
proposed algorithm is of utmost importance in ensuring its
efectiveness. Initially, the ftness function weights are set by
assigning suitable weights to each objective. Altering these
weights enables the algorithm to discover optimal solutions.
Subsequently, termination criteria are defned.Tese criteria
dictate when the algorithm should cease iterations. By
setting a maximum number of iterations or a convergence

threshold, the algorithm’s convergence is enhanced, and
excessive computations are avoided. Evaluating the algo-
rithm’s performance involves individually or collectively
varying these parameters to identify their optimal values.
Tis process aids in understanding how parameter changes
impact the algorithm’s behavior, facilitating fne tuning for
improved performance.

When the algorithm in this paper uses the actual data for
training, only the current cycle data are obtained in the test
stage and the loss of the ESS is considered. Literature [24]
addresses the ESS charging and discharging approach under
theoretical conditions, assuming all the factual information.
In contrast, literature [18] utilizes “actual data +17% de-
viation data within a normal distribution” during the
training phase, introducing variations between the data and
the factual information. In order to verify the robustness of
the calculation, the method considers many uncertain fac-
tors such as comprehensive energy, electrical equipment
charging, and electricity price. Literature [25] also assumes
that the charging and discharging strategy of the ESS is
solved when the actual data is known, but the loss of ES is not
considered. Since the proposed algorithm converts all costs
of ES, the average annual income is taken as the standard to
judge the optimization efect.

Table 3 shows the benefts of ESS calculated by diferent
algorithms. Figure 8 shows their corresponding ES capacity
attenuation curves.

Te results presented in Table 3 indicate that the ESS
operated by the algorithm in this paper has a duration of
3,124 days, which is the longest among the compared al-
gorithms. Moreover, it yields the highest life cycle beneft for
the ESS. Te average annual income from this algorithm

Start

Read energy storage SOC data for a
period of time

Calculate the number of cycles and
the parameters for each cycle.

Calculate the influence of each
cycle on energy storage capacity

attenuation.

Calculate the decay capacity of
energy storage in this period.

Calculate the remaining available
capacity of energy storage.

End

Figure 6: Calculation fow of ES battery capacity attenuation.
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ranks second, with only literature [24] outperforming it.
However, it is worth noting that literature [24] achieves the
best optimization results because it considers an ideal sce-
nario where it already knows the actual data of all cycles in
advance when optimizing. While this approach results in the
highest average annual return, it necessitates having access
to actual data within the optimization cycle, whichmight not
be practical in real-world applications. Te algorithm in this
paper operates under more realistic conditions, considering
only current data during testing, which may explain the
diference in performance.

In comparison to literature [24], literature [18] uses
more data than the actual data. Specifcally, it adds extra 17%
deviation data based on the actual data, with these data
following a normal distribution. Tis approach results in
a notable reduction in the lifespan of the ESS, as well as
a decrease in the system’s life cycle income and annual
average income. However, when compared to the algorithm
presented in this paper, the average annual return from
literature [18] is only slightly lower. Tis comparison
highlights that the proposed algorithm can efectively ad-
dress the charging and discharging decision problem of an

Table 1: Te time-of-use electricity prices used in the simulation case.

Highest peaks and lowest valleys

Time cycle 19:00–22:00 8:00–11:00
15:00–19:00

7:00-8:00
11:00–15:00
22:00-23:00

23:00–7:00

Commercial electricity price/yuan/kW·h 0.98 0.88 0.65 0.44
Industrial electricity price/yuan/kW h 0.93 0.85 0.58 0.41

Table 2: Description of the proposed algorithm and the referenced algorithm.

Methods Descriptions of the
algorithms

Literature [24] Basic whale algorithm
Literature [18] NSGA-II
Literature [25] Improved whale algorithm with NSGA-II

Proposed Multiobjective whale algorithm introducing chaotic mapping and individual
information exchange mechanism

Proposed

Literature [23]

Literature [24]

Literature [25]

Actual data

Actual data

Actual data

Actual data+17%
normal distribution

Method Data type Information
awareness

Current cycle
data

Optimize cycle
all data

Optimize cycle
all data

Optimize cycle
all data

Whether to
consider ES loss

Figure 7: Comparison of the four methods.

Table 3: Revenues of the photovoltaic-storage charging station.

Methods ES life (day) Life
cycle revenue (yuan)

Average annual revenue
(yuan·a−1)

Proposed 3124 1821623.68 199728.51
Literature [24] 2274 1489288.73 223105.39
Literature [18] 1885 1033258.44 186378.87
Literature [25] 1314 659334.72 168685.76
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ESS in an uncertain environment, ofering competitive re-
sults. It suggests that the algorithm’s ability to optimize ESS
performance even in the face of uncertainties makes it
a valuable tool for practical applications.

Te analysis of Figure 8 reveals that when not consid-
ering energy action losses, the ESS optimized by literature
[18] has the shortest lifespan at 1314 days. Tis is because
literature [18] does not account for energy action losses. In
comparison, literature [24] uses data with an additional 17%
normal distribution bias, leading to a reduction of 389 days
in the lifespan of the ESS when compared to literature [23].
In contrast to literature [23], which optimizes the entire
cycle of data, the algorithm presented in this paper utilizes
data from the current time cycle, resulting in the longest
lifespan for the system. Tis surpasses the performance of
literature [23] by 850 days. Tus, it can be inferred that
energy capacity losses, which lead to frequent charging and
discharging of the ESS, accelerate the decay of its lifespan
and ultimately reduce its long-term benefts. Tis demon-
strates the importance of considering energy action losses in
optimizing ESSs, as our algorithm achieves the longest
system lifespan, highlighting its efectiveness.

Absolutely, we have made a succinct and accurate ob-
servation. ES capacity loss indeed leads to frequent charge
and discharge loops of the ESS.Tis accelerated cycling of ES
components can signifcantly reduce the overall lifespan of
the system and, consequently, diminish the long-term
benefts it provides. Tis insight underscores the impor-
tance of considering and mitigating ES capacity decay in the
design and optimization of ESSs to ensure their sustained
efectiveness.

Te test result of energy storage SOC on a certain day is
shown in Figure 9. Te proposed algorithm can discharge
the ESS when the electricity price is high and charge it when
the electricity price is low. Tis shows that the improved
algorithm in this paper can learn the scheduling strategy that
makes the return higher. Compared to literature [18], lit-
eratures [23, 24] reduce the number of charging and dis-
charging loops, resulting in lower power for these
operations. In comparison to literatures [18, 23], our al-
gorithm achieves the least number of charging and dis-
charging loops for the ESS. Tis is because in our algorithm,

we assign a higher weight coefcient to the cost of ES, which
extends the lifespan of the system. During the decision-
making stage, our algorithm sacrifces short-term benefts by
reducing immediate gains in order to accumulate long-term
benefts.

In this case, σ2 relating to the ESS’s capacity reduction
penalty is utilized to delve deeper into the impact of the
weight coefcient on the outcomes of the reinforcement
learning algorithm. Te statistical results of sensitivity
analysis with the weight coefcient σ2 are shown in Table 4.

Te analysis in Table 4 shows that with the increase of σ2,
the life of the ESS extends. At the same time, the life cycle
returns also increase. When σ2 is less than 5, the average
annual revenue of the ESS increases. Tis indicates that the
choice of actions is more likely to avoid the end of the ES
penalty. As σ2 increases, the way in which ES can be acted
and profted from becomes more rational. However, when
σ2 is greater than 5, the average annual revenue of the ESS
begins to decrease and the decrease amplitude gradually
increases. Tis indicates that the ESS prioritizes the efects of
capacity reduction from ES actions when forming judg-
ments. As σ2 increases, the ESS reduces the number of ES
operations to delay capacity decay. As a result, prolonged
operational longevity and increased overall life cycle ad-
vantages can be achieved.

Te parameters utilized in the algorithm simulation
within this study, like σ2, were determined after numerous
trial simulations to derive a set of comparatively superior
experimental parameters. Nevertheless, this set of trial pa-
rameters might not represent the most optimal, highlighting
the challenge of parameter adjustment in the whale algo-
rithm. From Table 5, it can be observed that our algorithm
requires the longest time during training, but it operates
faster in the testing phase after the model is trained, with an
average optimization time of 0.0031 s per cycle. Te time
taken to test our algorithm is 68.36 seconds, and the opti-
mization duration per cycle is independent of the issue’s
intricacy. Te other three algorithms do not require pre-
training, so their training time is 0 s. Since they assume
a constant operating efciency for the ESS, they all require
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Figure 8: ES capacity attenuation curve.
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Figure 9: SOC of energy storage.
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longer testing time compared to our algorithm. Literature
[23] has the longest testing time, while literature [24] has the
longest average optimization time per time cycle. Due to the
fact that literature [18] does not consider the degradation of
the ESS, its average optimization time per time cycle is less
than that of literature [23] and literature [24]. However, it
still requires more time compared to our algorithm. Tis
indicates that our improved algorithm maintains a higher
computational efciency in complex problems.

Te iterative convergence curves of the proposed, literature
[26], and literature [27] are shown in Figure 10. It can be seen
fromFigure 9 that under the same population size and the same
number of iterations, the objective functions of the three al-
gorithms decrease with the increase of iterations. However, the
convergence speed of the proposed algorithm is fast, which
reduces the risk of premature convergence of particles. Tis
shows that the proposed algorithm has strong global and local
search ability and faster convergence speed.

In order to provide empirical evidence supporting the
signifcant improvement advantages of the improved algo-
rithm proposed in this paper over other existing algorithms,
a Wilcoxon rank-sum test [28] was conducted in-
dependently to compare the results of each experiment at
a signifcance level of 5%. Te comparison results are pre-
sented in Table 6, where “p” represents the test result and “h”
indicates the signifcance judgment result. If “p” is less than
0.05, “h” is denoted as 1, which means the signifcance of this
algorithm is stronger than other algorithms. Conversely, if
“p” is greater than 0.05, “h” is denoted as 0, indicating that
the signifcance of this algorithm is weaker than other al-
gorithms. In cases where “p” is displayed as N/A, it indicates

that a signifcance test could not be performed and the
signifcance of the proposed algorithmmay be similar to that
of other algorithms. Based on the statistical results presented
in Table 6, it is evident that the majority of the p values are
below the signifcance level of 0.05. Tis compellingly in-
dicates that there exist signifcant diferences between the
proposed algorithm and other algorithms under compari-
son. Notably, the performance of the proposed algorithm
consistently outperforms the comparison algorithms across
various functions. Tese fndings strongly support the ef-
fectiveness and superiority of the proposed approach,
lending further credibility to its potential for improved
performance and applicability.

Table 4: Sensitivity review of the weight coefcient σ2.

σ 2 ES life (day) Life
cycle revenue (yuan)

Average annual revenue
(yuan·a −1)

1.5 1588 682858.61 155256.84
3 2721 1523658.75 188756.67
6 3154 1773482.24 213862.48
9 3526 1856936.51 199858.22
15 6313 2716388.35 163252.73

Table 5: Comparative analysis of computation time among the four algorithms.

Methods Training time (s) Test time (s)
Average optimization time

of each cycle
(s)

Proposed 9284 68.36 0.0031
Literature [24] 0 33656.74 0.1514
Literature [18] 0 26569.35 0.1623
Literature [25] 0 1286.72 0.02115
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Figure 10: Fitness convergence curve.
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5. Conclusions and Future Works

Addressing the capacity degradation and operational ef-
ciency optimization problem in IESs, this paper utilizes an
enhancedWOA.Te experimental model takes into account
the uncertainty associated with photovoltaic power gener-
ation, electric appliance charging loads, and electricity
prices. In comparison to literatures [18, 23, 24], this paper’s
algorithm exhibits certain advantages. First, it avoids directly
modeling uncertainties, reducing the impact of variations in
the power output and electric device charging demands
within IESs, while also overcoming uncertainties related to
electricity prices on optimization results. Second, it does not
require access to actual data for future time cycles to achieve
relatively optimal results, thus reducing the infuence of
forecasting errors on the optimization outcome. Experi-
mental results indicate that this paper’s algorithm can
overcome issues of multiobjective optimization being sus-
ceptible to local optima. It efectively enhances ES capacity
degradation, resulting in extended lifespans and higher
overall lifecycle returns for ESSs. Moreover, the algorithm
optimizes the operation of ES devices, increasing the eco-
nomic viability of ESSs. However, this paper considers the
charging demands of all electrical appliances as a whole and
does not categorize the charging devices or account for their
spatial distribution. Terefore, this algorithm is not suited
for studying the charging strategies of individual devices or
optimizing the spatial distribution of charging devices. A
future research direction may involve a fner analysis of the
spatiotemporal distribution of electrical appliances, opti-
mizing their charging strategies and considering voltage
deviations and investment costs. Te paper’s abstract
mentions one of its objectives as improving the optimal
installation positions and capacities of various energy de-
vices. However, specifc optimization details are not dis-
closed in this paper. Future researchmay further explore and
reveal these optimization details.

Aiming at the optimization problem of capacity atten-
uation and operation efciency of ESS in IES, this paper
adopts the improved whale algorithm to solve the problem.
Te experimental model fully considers the uncertainties of
photovoltaic power generation, charging load of electrical
equipment, and electricity price. Compared with the liter-
atures [18, 23, 24], the algorithm in this paper has certain
advantages. One is that it avoids direct modeling of un-
certainty, which reduces the power issued by the IES and the
charging demand of electric devices, while overcoming the
impact of uncertainties such as electricity price on the
optimization results. Second, it can get better results without
obtaining the actual data in the future time cycle, which
reduces the impact of the prediction error on the

optimization results. Experimental results show that the
algorithm in this paper can overcome the problem of
multiobjective optimization, which is easy to fall into the
local optimum, and efectively improve the ES capacity
degradation so that the ES device can obtain a longer op-
erating life and higher whole-life cycle revenue. At the same
time, the algorithm in this paper optimizes the working
process of the ES device, which increases the economy of the
ESS. However, this paper considers the charging demand of
all electrical devices as a whole and does not categorize the
charging devices or consider the spatial distribution of
charging devices. Te algorithm in this paper cannot be used
to study the charging strategy for each piece of equipment
and the charging strategy optimized for the spatial distri-
bution of charging equipment. Further refnement to the
spatial and temporal distribution of electrical equipment,
optimization of its charging strategy, while taking into ac-
count the voltage deviation and investment costs will be the
direction of the subsequent research. In the abstract part of
the paper, it is mentioned that one of the objectives of this
paper is to improve the optimal location and capacity of
various energy devices. However, for some reasons, specifc
optimization details are not revealed in this paper. Future
research may further explore and reveal these optimization
details.
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