
JFP 27, e23, 52 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000156

1

Contributions to a computational theory of
policy advice and avoidability�

NICOLA BOTTA

Transdisciplinary Concepts and Methods - Research Domain 4,

Potsdam Institute for Climate Impact Research, Potsdam, Germany

(e-mail: botta@pik-potsdam.de)

PATRIK JAN SSON and CEZAR IONESCU

Computer Science and Engineering, Chalmers University of

Technology & University of Gothenburg, Göteborg, Sweden.

(e-mail: {patrikj,cezar}@chalmers.se)

Abstract

We present the starting elements of a mathematical theory of policy advice and avoidability.

More specifically, we formalize a cluster of notions related to policy advice, such as policy,

viability, reachability, and propose a novel approach for assisting decision making, based on

the concept of avoidability. We formalize avoidability as a relation between current and future

states, investigate under which conditions this relation is decidable and propose a generic

procedure for assessing avoidability. The formalization is constructive and makes extensive use

of the correspondence between dependent types and logical propositions, decidable judgments

are obtained through computations. Thus, we aim for a computational theory, and emphasize

the role that computer science can play in global system science.

1 Introduction

This paper is a result of inter-disciplinary activities carried out in the framework

of several EU-financed projects1 in the context of Global Systems Science (GSS). It

shows that dependently typed programming languages can be a useful vehicle for

communication between computer scientists and scientists from other disciplines,

for formalizing computable theories, and, of course, for writing provably correct

software. It hopefully also points to the fact that the main role of computer science

is not confined to the execution of arithmetical operations or sending data over

networks, but is rather to be found in the formulation of concepts, identification

and resolution of ambiguities, and, above all, in making our ideas clear.

� This work was partially supported by the projects GRACeFUL (Grant agreement no. 640954) and
CoeGSS (Grant agreement no. 676547), which have received funding from the European Union’s
Horizon 2020 research and innovation programme.

1 Global Systems Dynamics and Policy (GSDP, 2010–2013), Global Systems Rapid Assessment Tools
through Constraint Functional Languages (GRACeFUL, 2015–2018), Centre of Excellence for Global
Systems Science (CoeGSS, 2015–2018).

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

2 N. Botta et al.

1.1 The need for a theory of policy advice

Scientists involved in fields related to GSS, such as the study of climate change

impacts, global finance, epidemics, or international policy, are often faced with the

requirement of acting as advisors to policy makers. For example, they are asked to

contribute to the design of international emission reduction agreements (Carbone

et al., 2009; Holtsmark and Sommervoll, 2012), to the introduction of a financial

transaction tax at EU level (EU-FTT, European Comission (2013)), to programs for

the eradication of contagious diseases, (Sandler and G. Arce M., 2002), or to efforts

in combating international terrorism (Sandler and Enders, 2004).

In all these application domains, policy making is in need of rigorous scientific

advice. At the moment, however, we are lacking an established theory of policy

advice. More specifically, we identify three major gaps:

1. The terms used to phrase specific, concrete decision problems – for example

sustainability, avoidability, policy – are devoid of precise, well established

technical meanings. They are used in an informal, vague manner. The decision

problems themselves are often affected by different kinds of uncertainties and

tackled with different approaches.

2. There are no accountable contracts between advisors and decision makers. The

latter do not precisely know what kind of outcomes and guarantees they can

expect from implementing the advice received.

3. The proper content of policy advice is unclear. When can decision makers

expect to receive advice in the form of simple sequences of actions (“do

this, then that, then the other”)? When do they have to expect full fledged

“action rules” (“if the situation at decision step t satisfies conditions C1

and C2, then do action A1, otherwise do action A2”)? These questions are

essential, especially for problems in which the temporal scales of the underlying

decision process are not well separated from the time required for implementing

decisions.

Our main contributions are towards filling the first gap. But the theory presented

in Section 3 also provides some understanding of the theoretical and practical

limitations of policy advice and of the kind of guarantees that decision makers can

expect from advisors. And we do provide a tentative answer to the question of what

the proper content of policy advice can be.

1.2 Sequential decision problems and policy advice

The main contribution of this paper is the formalization of a cluster of concepts

required for a theory of policy advice. The formalization is rooted in optimal control

theory, specifically in the study of sequential decision problems (SDPs) and their

solutions by dynamic programming.

SDPs and methods for computing optimal policy sequences are at the core of many

applications in economics, logistics, and computing science and are, in principle,

well understood (Bellman, 1957; Gnesi et al., 1981; De Moor, 1995; De Moor, 1999;

Botta et al., 2013a; Botta et al., 2017). For example, SDPs appear in integrated

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 3

assessment models (Bauer et al., 2011; Research Domain III, PIK, 2013) in models

of international environmental agreements (Finus et al., 2003; Helm, 2003; Bauer

et al., 2011; Heitzig, 2012) and in agent-based models of economic systems (Gintis,

2006; Gintis, 2007; Mandel et al., 2009; Botta et al., 2013b).

The problems addressed by optimal control theory involve the control of a system

evolving in time, in order to optimize a reward function over time. In sequential

decision problems, time is discrete, and the controls are represented by decisions

taken at each time step (hence “sequential”).

In the case in which the system to be controlled is deterministic and the initial state

of the system can be measured exactly, the solution of a SDP can be represented in

a particularly simple form as a list of successive controls.

Most cases relevant for decision making, however, are fraught with uncertainties,

both regarding the transitions of the system and the initial state. In such cases, the

solution consists not of a sequence of controls, but of policies.

Informally, a policy is a function from states to controls: it tells which control

to select when in a given state. Thus, for selecting controls over n steps, a decision

maker needs a sequence of n policies, one for each step. We will give a precise

definition of policy sequences and of optimal policy sequences in Section 3 but,

conceptually, optimal policy sequences are sequences of policies that cannot be

improved by associating different controls to current and future states.

Optimal policy sequences (or, perhaps almost optimal policy sequences) are,

for a specific decision problem, the most tangible content that policy advice can

deliver for decision making. Thus, it is important that advisors make sure that

stakeholders fully understand the difference between controls and policies and,

therefore, between control sequences and policy sequences. In fact, the influential

“rules versus discretionary measures” paper by Kydland and Prescott (1977), can

be interpreted in terms of this distinction. To illustrate this difference, advisors can

turn to stylized SDPs (knapsack, production lines, traffic, etc.). Traffic problems

are particularly useful in this respect (the sequence of controls, “first turn left,

then right, stop ten seconds at traffic light, then turn right” is liable to lead to

accidents) and to exemplify the notions of state and control space. Further, it

is important that both advisors and decision makers understand that, in general,

policy advice cannot (and should not try to) provide, optimal sequences of controls

(“optimal action plans,” “optimal courses of action,” etc.), because no such optimal

control sequence can be computed at the time decisions have to be taken and

implemented.

What can be computed at the time decisions have to be taken and implemented,

however, are optimal policy sequences. A provably optimal policy sequence for a

specific problem provides the decision maker with a rule for decision making and

with a guarantee that, for that particular problem and at any decision step, there

is no better way of making decisions given what is known at that step about

the current state and the future. Again, advisors can take advantage of variations

of elementary SDPs (with randomly moving obstacles, random production line

failures, etc.) to illustrate the differences between deterministic and non-deterministic

SDPs.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

4 N. Botta et al.

1.3 The notion of “avoidability”

For many of the SDP problems we cited above, the state and the control spaces can be

defined fairly rigorously. Minimal models of international agreements on greenhouse

gas emissions, for instance, can be described in terms of a few state variables –

perhaps greenhouse gas concentrations and certain gross domestic product measures

– and of a few controls: greenhouse gas abatements, investments, etc.

The evolution of the system underlying the decision process can be affected by dif-

ferent kinds of uncertainty, for instance, about model parameters or measurements.

Such uncertainties typically lead to non-deterministic, stochastic, or fuzzy systems.

The framework presented in Botta et al. (2017) for monadic SDPs allows one to treat

all these (and other) cases seamlessly. Thus, at least conceptually, uncertainties are

not a serious obstacle towards a rigorous control theoretical approach for decision

making in climate impact research.

But reward functions (the functions that are to be optimized) are: in most

practical cases, it is not obvious how they should be defined. This is a limitation to

the applicability of both control and game-theoretical approaches to climate impact

research.

A common way (Finus et al., 2003; Helm, 2003) of defining reward functions is

that of deriving some estimate of the costs and of the benefits associated with the

particular decision process under consideration and define rewards on the basis of

a cost-benefits analysis. However, there are both pragmatical and ethical concerns

with this approach, see for instance Aldred (2009). These difficulties have led a

number of authors to argue that, instead of basing decision making on cost-benefits

analyses, it would be more sensible to focus on policies that try to avoid future

possible states, which are known to be potentially harmful. This is the approach

exemplified in Raven et al. (2007) but also in Schellnhuber (1998) where the notion

of avoidability is implicit in the idea of “tolerable windows.”

Some idea of avoidability is also subsumed in the notions of mitigation (“A

human intervention to reduce the sources or enhance the sinks of greenhouse

gases,” (Allwood et al., 2014)) and adaptation (“The process of adjustment to

actual or expected climate and its effects . . . to moderate harm or exploit beneficial

opportunities,” (Allwood et al., 2014)). These are at the core of IPCC’s Working

Group III research: avoidability of levels of greenhouse gases reckoned to be

potentially harmful for a specific human system in the case of mitigation and

avoidability (realizability) of the potential harm (opportunities) from climate in the

case of adaptation.

But what does it precisely mean for possible future states to be avoidable? And

under which conditions is it possible to decide whether a state is avoidable or not?

If we had well understood and widely accepted notions of avoidability and a

decision procedure to discriminate between avoidable and non-avoidable states,

policies that avoid certain future states could be computed as optimal sequences of

SDPs with ad-hoc reward functions. For example, one could define rewards to be

zero for states which should be avoided and one elsewhere and take advantage of

the framework presented in Botta et al. (2017) to compute policies that provably

keep the system in a tolerable subset of the state space.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 5

Moreover, unambiguous notions of avoidability could help clarifying the notions

of mitigation and adaptation. And a computational theory of avoidability could be

a first step towards a computational theory of mitigation and adaptation.

Further, a theory of avoidability and, in particular, a generic decision procedure

for assessing avoidability, could be useful in many GSS-related fields. In financial

markets, even after two decades of Financial Stability Reviews, for instance,

unambiguous notions (let apart operational tests) of stability are still elusive

(Goodhart, 2004). Here, it seems sensible to take a complementary approach and

start asking in which sense and whether certain future conditions that are considered

or perceived to be potentially dangerous are avoidable.

1.4 Outline

This paper is organized as follows: In Section 2, we motivate and explain the basic

notation adopted throughout this paper.

In Section 3, we present a theory of policy advice for decision making under

uncertainty. First, we introduce the notion of monadic sequential decision processes

by generalizing the deterministic, the non-deterministic and the stochastic case.

Then, we introduce the notion of decision problem and apply a new formulation

of the theory originally presented in Botta et al. (2017) to decision making under

uncertainty. Specifically, we introduce the notions of policy and policy sequence, we

discuss which aspects of decision making under uncertainty need to be accounted for

and how different principles of decision making – e.g., precautionary principles and

expectation-based principles – can lead to different notions of optimality. We also

generalize the procedure for computing provably optimal policy sequences originally

presented in Botta et al. (2017) to reward functions of generic type and demonstrate

how to apply the theory to a simple decision problem in the context of climate

change.

In Section 4, we extend the theory of Section 3 to SDPs for which a reward

function is not obviously available. Further, we explain how avoidability measures

could be applied in climate impact research, e.g., to operationalize notions of levity

(Otto and Levermann, 2011), mitigation and adaptation. In Section 5, we draw some

preliminary conclusions and in Section 6, we outline future work.

1.5 Related work

The relation between our work and GSS has been discussed in the first part of the

introduction. Here, we situate the present paper in the context of our previous work,

and relate it to similar developments in Computing Science.

This paper is based on the dependently typed theory of time-dependent, monadic

SDPs originally presented in Botta et al. (2017). A first theory of time-independent,

deterministic SDPs was presented in Botta et al. (2013a).

Our paper summarizes the work done on monadic SDPs over the last two years

and improves the theory of Botta et al. (2017) in three essential ways. First, by

generalizing the return type of the reward function at the core of SDPs. This is now

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

6 N. Botta et al.

data N : Type where
Z : N

S : N → N

data Vect : N → Type → Type where
Nil : Vect Z a
Cons : (x : a) → (xs : Vect n a) → Vect (S n) a

head : {n : N} → {A : Type} → Vect (S n) A → A
head (Cons x xs) = x

A : Type
Sorted : Vect n A → Type
sort : Vect n A → Vect n A

SortSpec : Type -- a specification of sort
SortSpec = (n : N) → (xs : Vect n A) → Sorted (sort xs)

sortLemma : SortSpec
sortLemma = { a proof that sort satisfies the specification SortSpec }

Fig. 1. Idris syntax examples.

an arbitrary total preorder with a generic (⊕) operation. Second, by replacing all

types which were expressed in terms of lifted Boolean computations in Botta et al.

(2017) by more general types. Third, by extending the original theory of monadic

SDPs with a novel theory of avoidability.

Moreover, we have complemented the new formalization with a number of results

which have allowed us to eliminate all postulates of the (Botta et al., 2017) theory.

The new theory – discussed in Sections 3 and 4 from the perspective of policy ad-

vice – is available in the form of literate Idris files in SequentialDecisionProblems2.

To the best of our knowledge, it is the first theory of policy advice that

entails a computational procedure for obtaining provably optimal policies and

for exhaustively investigating the possible consequences of implementing (optimal

or not) policies.

Notice, however, that a similar approach for solving deterministic SDPs has been

proposed (De Moor, 1995) and developed in the Algebra of Programming book (Bird

and De Moor, 1997). For a discussion of the differences and of the similarities, we

refer the reader to Botta et al. (2013a).

2 Preliminaries

In this paper, we assume the reader knows functional programming and has some

familiarity with dependent types. We use Idris (Brady, 2013) as the implementation

language and in this section (starting with Figure 1), we provide a few examples of

the syntax to get readers used to Agda or Coq up to speed. We originally decided

on using Idris (instead of Agda) because of its emphasis on programming, efficient

compilation, and interoperability with systems libraries.

2 In https://gitlab.pik-potsdam.de/botta/IdrisLibs

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 7

Idris provides three implementations of dependent sums (generalized Cartesian

products, Σ-types): DPair , Exists , and Subset . In spite of the different names, their

definitions are conceptually equivalent to

data Σ : (A : Type) → (P : A → Type) → Type where

MkSigma : {A : Type } → {P : A → Type } → (x : A) → (pf : P x) → Σ A P

which is the one we will use throughout this paper.

In our development later, most functions will be polymorphic, using a combination

of explicit and implicit type arguments. In addition to type parameters, we will also

make our development generic in a number of function parameters (like next ,

reward , etc.). To avoid passing around the full set of parameters to all functions we

will introduce these parameters as we go along and then collect them at the end.

2.1 Equality and equational reasoning

Idris has a built in heterogeneous equality type written (a = b), where a : A and

b : B . The only constructor is Refl : (a = a) and if we have in our hands a value

r : (a = b), we know that a and b are equal (and therefore also that A and B are

equal). Here are two examples of using the equality type to postulate some desired

properties about multiplication:

postulate Val : Type

postulate unitMult : (y : Val) → 1 ∗ y = y

postulate assocMult : (x , y , z : Val) → (x ∗ y) ∗ z = x ∗ (y ∗ z)

Idris has a special syntax for equational reasoning: you can string together a chain

of reasoning steps to a full proof. If p1 shows that a1 = a2 and p2 shows that

a2 = a3 then (a1 ={ p1 }= a2 ={ p2 }= a3 QED) is a proof of a1 = a3 .

As an example, we show a lemma about exponentiation: x ˆm ∗x ˆn = x ˆ (m +n).

We prove the lemma using induction over m which means we need to implement

three definitions of the following types:

expLemma : (x : Val) → (m : �) → (n : �) → (x ˆ m ∗ x ˆ n = x ˆ (m + n))

baseCase : (x : Val) → (n : �) → (x ˆ Z ∗ x ˆ n = x ˆ (Z + n))

stepCase : (x : Val) → (m : �) → (n : �) → (ih : x ˆ m ∗ x ˆ n = x ˆ (m + n)) →
(x ˆ (S m) ∗ x ˆ n = x ˆ ((S m) + n))

Note that the last argument ih to the step case is the induction hypothesis. The main

lemma just uses the base case for zero and the step case for successor and passes a

recursive call to expLemma as the induction hypothesis.

expLemma x Z n = baseCase x n

expLemma x (S m) n = stepCase x m n (expLemma x m n)

With this skeleton in place the proof of the base case is easy:

baseCase x n =

(x ˆ Z ∗ x ˆ n)

={ Refl }= -- By definition of (ˆ)

(1 ∗ x ˆ n)

={ unitMult (x ˆ n) }= -- Use 1 ∗ y = y for y = x ˆ n

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

8 N. Botta et al.

Table 1. Curry–Howard correspondence relating Idris and logic

Idris Logic

p : P p is a proof of P

FALSE (empty type) False

non-empty type True

P → Q P implies Q

Σ A P there exists an x of type A such that P x holds

(x : A) → P x for all x of type A, P x holds

(x ˆ n)

={ Refl }= -- By definition of (+)

(x ˆ (Z + n))

QED

and the step case is only slightly longer:

stepCase x m n ih =

(x ˆ (S m) ∗ x ˆ n)

={ Refl }= -- By definition of (ˆ)

((x ∗ x ˆ m) ∗ x ˆ n)

={ assocMult x (x ˆ m) (x ˆ n) }= -- Associativity of multiplication

(x ∗ (x ˆ m ∗ x ˆ n))

={ cong ih }= -- Use the ind. hyp.: ih = expLemma x m n

(x ∗ x ˆ (m + n))

={ Refl }= -- By definition of (ˆ) (backwards)

(x ˆ (S (m + n)))

={ Refl }= -- By definition of (+)

(x ˆ (S m + n))

QED

Here, we used cong to apply the induction hypothesis “inside” the context x ∗ . For

early examples of using the equality proof notation (in Idris’ sister language Agda),

see Mu et al. (2009).

2.2 Programs and proofs

We have seen that we can represent properties as types. In contrast to languages

like Coq, in Idris properties are values of type Type like Bool , �, etc. Thus, for

a : A and for a property P a : Type, values of type P a correspond to proofs that a

fulfills P a . We sum up the correspondence between Idris and logic in Table 1.

3 Monadic sequential decision problems and policy advice

3.1 Deterministic decision processes

We have argued that, if a decision process is deterministic and the initial state

can be measured exactly, solutions of the corresponding decision problem can be

represented in a particularly simple form as lists of successive controls. In this

section, we formalize the notion of deterministic decision processes.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 9

a b c d e

0
1
2
3
4
5
6
7

... ...

n

7
2

1
4
7

8
8

?

a b c d e

0
1
2
3
4
5
6
7

... ...

n

a b c d e

0
1
2
3
4
5
6
7

... ...

n

Fig. 2. Possible evolution starting from b (left), states from which less than three decision

steps can be done (middle, pale red) and states that cannot be reached, no matter what the

initial state at step 0 is and which controls are selected (right, pale red). The black squares

represent unavailable columns: only e and a , b, c belong to State 3 and State 6, respectively.

States A deterministic decision process starts in an initial state x0 at an initial

decision step t0. Without loss of generality, we can take t0 : � and t0 = 0.

The type of x0 – the state space at t0 or, in other words, the set of possible initial

values – represents all information available to the decision maker at t0. In a decision

process like those underlying models of international environmental agreements, x0

could just be a tuple of numbers representing some estimate of the greenhouse

gas (GHG) concentration in the atmosphere (and, perhaps, in other earth system

components), some measure of the gross domestic product, and possibly other model

variables, see also the example from Section 3.12.

In the example of Figure 2, the state space at step t0 is simply the set {a , b, c, d , e }
and the starting state is b. In most decision processes, the state space depends on

the decision step. Let’s focus on the picture on the left of Figure 2 (we will come to

the other two pictures later): the state space at step t � 2, t = 4, t = 5 and t � 7

consists of the five columns a to e. But at t = 3, the state space is just column e and

at t = 6 only columns a , b, and c constitute the state space. In general, a decision

process is characterized by a function

State : (t : �) → Type

defining the state space and State t represents the state space at decision step t . In

the signature of State, we see a first application of dependent types. In a language

in which types were not allowed to be predicated on values, it would not be possible

to express the important property that the type State t depends on the value t!

Controls In a sequential decision process, the decision maker is required to select

a control (action, option, choice, etc.) at each decision step. In many applications,

controls represent some rate of consumption (of resources which might be limited),

some production or investment rate or perhaps different energy options.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

10 N. Botta et al.

In models of international environmental agreements of the kind discussed in

Finus et al. (2003), decision makers could select some rates of abatement of CO2

emissions, see example from Section 3.12. In the model presented in Heitzig (2012),

controls could be request for entering or exiting a coalition or a market.

In the example of Figure 2, the controls are, for all but the first and the last

column, L to move to the left of the current column, A to stay at the current column

and R to move to the right of the current column. In the first column, only A and R

belong to the control space and in the last column, the control space only consists

of A and L.

In defining the control space for a particular decision process, it is important to

carefully identify which options the decision makers have at their disposal and, we

should add, “want” to dispose of. It is easy to imagine decision problems, typical

examples are steering problems or negotiations problems, in which decision makers

consciously decide to exclude certain control options, e.g., to avoid potentially

unmanageable future states.

In general, the set of controls available to the decision maker at a given decision

step depends both on that step and on the particular state of the process at that

step. Thus, the control space can, in general, be described by a function

Ctrl : (t : �) → (x : State t) → Type

In the signature of Ctrl , we see another application of dependent types. The type

Ctrl t x depends on the values t and x .

Transition functions In deterministic decision processes, the current state and the

control selected at the current state together determine the next state. Thus, a

deterministic decision process is characterized by a function

next : (t : �) → (x : State t) → (y : Ctrl t x) → State (S t)

and next t x y is the state obtained by selecting control y in state x at step t .

Notice, again the type dependencies: the type of x depends on the value t; the type

of y depends on t and on x . Finally, next returns a value in State (S t) that is the

state space at step S t = t + 1.

Rewards We have mentioned in the introduction that, in SDPs, the decision maker

seeks controls that maximize a reward function. This is expressed as a “sum”

of rewards, one for each decision step. The notion of sum should be understood

in a broad sense: every monoid is, in principle, suitable for defining a reward

function. The reward obtained in a single decision step depends, in general, on

the current state, on the selected control, and on the next state. In models of

international environmental agreements, for instance, rewards are computed on the

basis of abatement costs and of avoided climate impact damages. Abatement costs

certainly depend on the abatement level and, e.g., when the state space also represents

available technologies, on the current state. Avoided damages might depend both on

the current state and on the next state. In general, a decision process is characterized

by a function

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 11

reward : (t : �) → (x : State t) → (y : Ctrl t x) → (x ′ : State (S t)) → Val

and reward t x y x ′ represents the value of selecting control y in state x at decision

step t and moving to state x ′. The return type of reward is just a type Val : Type.

Decision processes Before moving to the next section, let us summarize the results

obtained so far for deterministic decision processes. We have seen that specifying

one such process requires defining four functions: State, Ctrl , next , and reward .

Of course, this implies defining Val , the type of rewards. The first two functions

define the types of the state and of the control spaces. The function next defines the

“dynamics” of the process and reward its valuation.

Depending on the specific decision process, defining State, Ctrl , next , and reward

might be trivial or challenging. In climate impact research, it is probably safe to

assume that the specification of State and Ctrl cannot be meaningfully delegated to

decision makers and requires a close collaboration between these, domain experts

and perhaps modelers.

3.2 Non-deterministic decision processes

The difference between deterministic and non-deterministic decision processes is

that, in the second case, selecting a control y : Ctrl t x when in a state x : State t

at step t : � does not yield a unique next state x ′ : State (S t) but a whole set

of possible next states. For instance, a non-deterministic process similar to the one

sketched on the left of Figure 2 could be one that, when selecting a control SR

(defined as “move somewhere to the right”) in b at the initial decision step, yields a

move to c or to d or perhaps e.

Non-deterministic decision processes account for uncertainties in the decision

process (“fat-finger” errors in trading games, uncertainty about the effectiveness of

controls, etc.), in the transition function (uncertainties about modeling assumptions,

observations, etc.) or in the reward function.

There are many ways to account for these and other kinds of uncertainty in the

formalization of sequential decision processes but one that has turned out to be

particularly simple and effective (Ionescu, 2009) is to have the transition function

return a list of values instead of a single value:

nexts : (t : �) → (x : State t) → (y : Ctrl t x) → List (State (S t))

Because List is a functor, we have a high-order function fmap that propagates

uncertainty on the outcome of nexts to rewards:

rewards : (t : �) → (x : State t) → (y : Ctrl t x) → List Val

rewards t x y = fmap (reward t x y) (nexts t x y)

In other words, for each possible next state we have, through reward t x y , a

corresponding possible reward. Therefore, for every t : �, x : State t and y : Ctrl t x ,

we have a unique list of possible rewards. Before further discussing the formalization

of non-deterministic decision processes, let’s move to the stochastic case.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

12 N. Botta et al.

3.3 Stochastic decision processes

The difference between non-deterministic and stochastic decision processes is that,

in the second case and for a given t : �, x : State t and y : Ctrl t x we do not

only know the possible next states but also their probabilities. Building upon the

non-deterministic case discussed above, we can easily formalize the stochastic case

by replacing

nexts : (t : �) → (x : State t) → (y : Ctrl t x) → List (State (S t))

with

nexts : (t : �) → (x : State t) → (y : Ctrl t x) → SimpleProb (State (S t))

Here, SimpleProb A represents a finite probability distribution on A. A value of type

SimpleProb A is constructed in terms of two values:

data SimpleProb : Type → Type where

MkSimpleProb : {A : Type } →
(aps : List (A,NonNegRational)) →
sumMapSnd aps = 1 →
SimpleProb A

The first value is a list of pairs of type (A,NonNegRational). In Idris, NonNegRational

is not a pre-defined numerical type. For an implementation of non-negative rational

numbers, please see NonNegRational2.

The second value is a proof that the sum of the probabilities in the list is one.

Thus, for instance MkSimpleProb [(’a’, 1/6), (’b’, 1/3), (’a’, 1/6), (’c’, 1/3)] Refl

represents a probability distribution on characters in which the probability of ’a’,

’b’ and ’c’ is 1 / 3 and the probability of all other characters is zero. Just like List

and Vect n , SimpleProb is a functor. Its fmap function

fmap : {A,B : Type } → (A → B) → SimpleProb A → SimpleProb B

transforms a probability distribution on A into a probability distribution on

B , by applying a function that transforms elements of A into elements of B .

The implementation of fmap is conceptually straightforward. It is documented

in NonNegRational/MonadicOperators2. As in the non-deterministic case, nexts

induces, via fmap, a probability distribution on rewards

rewards : (t : �) → (x : State t) → (y : Ctrl t x) → SimpleProb Val

rewards t x y = fmap (reward t x y) (nexts t x y)

3.4 Monadic decision processes

In the previous two subsections, we have seen two representations of uncertainty:

• when we only know the possible results of a transition with values in A, we

can represent this by a list of elements of A, i.e., a value of type List A, and

• when we also have information about the probabilities of the results, we can

represent this by a value of type SimpleProb A.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 13

Other representations of uncertainty are possible. For example, we might want to

describe the quality of possible results of a transition, by using fuzzy sets (e.g.,

we might want to talk about “big increases in global temperature,” “satisfactory

economic growth,” and so on). Or we might want to combine various representations

of uncertainty: say, fuzziness in one dimension with non-determinism in another.

In all these cases, we represent uncertainty of outcomes of type A by some

structure of type M A, that combines possible results with some information about

the uncertainty. In the case of non-determinism, we have M = List (no additional

information), in the case of stochastic uncertainty we have M = SimpleProb

(elements with probabilities), and so on.

In all these cases, we can find a function fmap that transforms representations of

uncertainty of outcomes of type A to representations of uncertainty of outcomes of

type B by using a function at the element level

fmap : {A,B : Type } → (A → B) → M A → M B

in a way which preserves identities and compositions. In other words, the structures

with which we represent uncertainty are functorial.

Moreover, in all these cases, we have a way of expressing that an outcome is

certain. In the case of non-determinism, we do this by wrapping the outcome as a

singleton list:

certain : {A : Type } → A → List A

certain a = [a]

In the case of stochastic uncertainty, we use a concentrated probability distribution,

etc. The transition functions we use to represent uncertain outcomes all have the

form

nexts : (t : �) → (x : State t) → (y : Ctrl t x) → M (State (S t))

Thus, as opposed to the deterministic case, a decision step yields a M -structure – a

value of type M t for some type t – of states, and we cannot just apply nexts to

it again. Via fmap we can apply nexts to the elements inside the structure, but then

we end up with a “second-order” uncertainty: we obtain a structure of structures of

states. We appear to have lost the basic operation of a discrete dynamical system,

namely the ability to iterate the transition function in a uniform fashion.

In fact, however, in all the cases we have seen so far we can reduce a “second-

order” representation of uncertainty to a “first-order” one. For example, in the case

of lists:

reduce : {A : Type } → List (List A) → List A

reduce = concat

Similarly, we reduce probabilities of probabilities on A to just probabilities on A,

fuzzy sets of fuzzy sets to just fuzzy sets, and so on. In all cases, the reduction

satisfies some simple laws, such as, for all ma : M A

reduce (certain ma) = ma

This can be paraphrased as follows: certainty about an uncertain representation

(denoted by ma) can be reduced to just the uncertain representation.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

14 N. Botta et al.

Thus, in general, uncertainty about outcomes of type A is represented by a

structure of type M A, where the type constructor M : Type → Type satisfies the

following properties:

• it is a functor (i.e., we have a function fmap lifting functions from elements to

functions on M -structures)

• we have a way of representing certain outcomes (certain : A → M A)

• we have a way of reducing “second-order” uncertainty (reduce : M (M A) →
M A)

• these items are related by a small number of simple equations.

Readers familiar with Haskell or category theory will have recognized that these

conditions imply that M is a monad (Spivey, 1990; Moggi, 1991) and that certain and

reduce are just domain-specific names for return and join . The equations referred to

above can be found in, e.g., Section 10.3 of Bird (1998); for their interpretation in

the context of dynamical systems, see Ionescu (2009). In particular, the combinator

�= (bind), which can be defined in terms of fmap and join by

(�=) : {A,B : Type } → M A → (A → M B) → M B

ma �= f = join (fmap f ma)

describes how to compute the transition from an uncertain state to the next, using

a transition function that defines only how to compute an uncertain state from a

certain one: for f : A → M B we have (�= f) : M A → M B .

In particular, for a stochastic system with state space A, f a is the conditional

probability distribution over the next state, given that the current state is a . If A is

finite, f is traditionally represented by a matrix, whose (i , j)th entry represents the

probability that the next state is j , given that the current one is i . An uncertain state

is then represented by a vector, whose i th component is the probability that the

state is i . The next uncertain state is then computed by vector-matrix multiplication,

and this corresponds to the monadic bind combinator for the probability monad.

The reason for using a function of type A → M A rather than M A → M A is

that the former is usually easier to define. If one cannot define the transition even

when the current state is completely known, then one can also not define it in the

more difficult case in which the current state is uncertain (otherwise, one could just

“forget” elements of the complete description).

A final remark: in decision problems, it is useful to recover certainty as a limiting

case of uncertainty and deterministic systems as special instances of monadic systems.

Our formalization handles that gracefully: the identity functor given by Id A = A

is a monad, for which fmap, certain (or return), and reduce (or join) are all identity

functions and the bind combinator is just (flipped) function application.

3.5 Decision problems

Consider again a non-deterministic decision process (M = List) starting in

x0 : State t0

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 15

The set of controls available to the decision maker in x0 at step t0 is Ctrl t0 x0. The

set of states that can follow after selecting y0 : Ctrl t0 x0 is

nexts t0 x0 y0 : List (State (S t0))

Each of the states in nexts t0 x0 y0 represents a possible next state and for each of

these states we have a corresponding possible reward:

fmap (reward t0 x0 y0) (nexts t0 x0 y0) : List Val

If we are to take one single step, and if we have a means of measuring the value of

the possible rewards obtained by selecting a specific control:

meas : List Val → Val

then, at least conceptually, the problem of making an optimal decision can be solved

straightforwardly: for every control in Ctrl t0 x0, we measure the value of the

possible rewards for that control and select the one that yields the highest value.

Clearly, this approach cannot, in general, be applied straightforwardly. But it surely

works for finite Ctrl t0 x0 and this is particularly relevant for applications.

But what if we are to take decisions for two or more steps? What does it mean

for a decision in step 2 to be “optimal”?

The problem we face is that, even if we were able to select an optimal control y∗
0

at step 1 (whatever this means!) we would not be able to even precisely state which

controls are available at step 2, let alone which ones are optimal! This is because,

for each possible outcome in nexts t0 x0 y∗
0 we would have potentially different sets

of controls and potentially different optimal choices.

The argument shows that, except for the deterministic case where a decision at

step 1 implies a unique next state, it does not make sense to ask for a specific

decision (let alone an “optimal” decision) at step 2 without knowing the outcome

of step 1: what is optimal at step 2 very much depends on which of the possible

states actually occurs in a particular realization.

Decision making that takes into account the facts as they unfold during a

particular realization of the decision process is not only more flexible than decision

making based on a fixed control plan. In general, taking advantage of the information

that becomes available during a particular decision process yields higher rewards.

This is particularly clear if one considers decision processes like those underlying

activities such as driving, lecturing, playing a competitive game or negotiating a

price. No one would seriously consider tackling such activities by blindly following

some fixed, a priori computed “action plan.” What is required here is, on one hand,

the capability to recognize which situations or states actually occur and, on the other

hand, rules that tell one which actions to take for every possible situation or state.

But if policy advice cannot be about recommending static decision plans and

delivering scenarios according to such plans, what should then be the content of

policy advice?

To answer this question consider again the two-step decision process outlined

above. As we have seen, we cannot say which decision should be taken at step 2

without having performed step 1. But we certainly can compute (again, in principle

and with the same caveats mentioned for the case of step 1) an optimal control

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

16 N. Botta et al.

for every possible outcome of step one. That is, we can compute a function that

associates a best control for step 2 to every state in State t1 which can be obtained

by selecting y∗
0 in step 1.

In fact, we can compute a function that associates to every x1 : State t1 an

optimal control y∗
1 : Ctrl t1 x1. In control theory such functions are called policies

and we argue that the main content of policy advice – what advisors are to provide

to decision makers – are policies, perhaps, in practice, policy “explanations” or

narratives. More precisely, if a decision process unfolds over n steps what is required

for decision making under uncertainty are n policies, one for each decision step.

Formally:

Policy : (t : �) → Type

Policy t = (x : State t) → Ctrl t x

data PolicySeq : (t : �) → (n : �) → Type where

Nil : PolicySeq t Z

(::) : Policy t → PolicySeq (S t) n → PolicySeq t (S n)

Notice that a policy sequence is a dependent vector which is parameterized by two

indices. The first index t : � represents the step at which the first decision has

to be taken. The second index n : � gives the length of the policy sequence or,

equivalently, the number of policies of the sequence. Thus, a policy sequence of

length n assists decision making over n steps.

These notions of policy and policy sequence are, as we will see in the next sections,

too simplistic. In order to derive a generic method for computing optimal policies, we

will have to refine these notions. This is done in Section 3.9. In the next two sections,

we formalize optimality and introduce two fundamental notions: reachability and

viability. These will be the basis for the notion of avoidability presented in Section 4.

We conclude this section with three remarks. The first one is that, if we have

a policy sequence of length n and a measure meas for the value of the possible

rewards, we can compute the value (in terms of the sum of measures of possible

rewards) of making n decision steps according to that sequence.

Clearly, the computation is not completely straightforward: at the mth decision

step, the value of applying the n − m policies left after m decision steps has to be

computed for every possible “next” state! This generates a M -structure of values that

has to be measured with meas . We discuss such computation in detail in Sections 3.6

and 3.9. In spite of its computational complexity, the problem of maximizing the

sum of the rewards obtained over n decision steps can be phrased as the problem

of finding a policy sequence of length n whose value is at least as good as the value

of every other possible policy sequence.

The second remark follows directly from the first one: a particular decision

problem is characterized, among others, by a monad M and by a measure meas :

M Val → Val . The monad characterizes the kind of uncertainties inherent in

the decision process. If there are no uncertainties, M is simply Id , the identity

monad. The measure meas characterizes how the decision maker values such

uncertainties. In many textbooks on dynamic programming, it is implicitly assumed

that M = SimpleProb and meas is the expected value measure. Often, this is a sensible

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 17

assumption. But other measures are possible. In decision problems in climate impact

research, for instance, one might want to apply measures that are informed by

other guidelines than the maximization of the expected value. Typical examples are

worst-case measures, or, in game-theoretical terms, “safety” strategies. Measures of

possible rewards have to satisfy a monotonicity condition, see Section 3.10. It is a

responsibility of advisors to clarify the role of measures in non-deterministic SDPs

and to make sure that decision makers understand the implications of adopting

different principles of measurement on the outcome of a decision process.

The third remark is that SDPs that are not deterministic cannot, in general, be

re-conducted to “equivalent” deterministic problems. Consider a specific decision

process that is, assume that M , State, Ctrl , and nexts are given. We can easily

transform this process into a “deterministic” one

mnexts : (t : �) → (mx : MState t) → (p : ((x : State t) → Ctrl t x)) → MState (S t)

mnexts t mx p = join (fmap (λx ⇒ nexts t x (p x)) mx)

by introducing an “equivalent” state space

MState : (t : �) → Type

MState t = M (State t)

This is possible because M is a monad and therefore has a join transformation. But

notice that, in the new formulation, the third argument of mnexts are values of type

(x : State t) → Ctrl t x . Thus, the policies of the original problem play the role

of controls in its deterministic formulation! This is not arbitrary or accidental: in

order to apply the nexts function of the original problem3 to the states in mx , we

have to compute a control (of the original process) for each such state. Therefore,

we need a policy. The transformation has not brought any practical advantage over

the original formulation. Even worse, it has brought the obligation of answering

two questions: what does it mean for mnexts to be “equivalent” to nexts and how

to introduce an “equivalent” decision problem by means of a suitable mreward

function.

Fortunately, there is no need to reformulate monadic decision problems. As we

will see in the next section, the notion of policy is strong enough to allow all

monadic problems (deterministic, non-deterministic, stochastic, etc.) to be tackled

with a uniform, seamless approach. This allows decision makers to select controls on

the basis of whatever states will occur in actual realizations in a provably optimal

way and according to a notion of optimality, which is intuitively understandable

and computationally compelling.

3.6 Optimal policies

What is the value, in terms of rewards, of making n decision steps from some initial

state x : State t by applying the policy sequence ps : PolicySeq t n? More formally:

how do we compute val?

3 There is little else we can do except for applying nexts if the new process has to be, in some meaningful
sense, “equivalent” to the original one.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

18 N. Botta et al.

val : (x : State t) → (ps : PolicySeq t n) → Val

If n = 0, that is, we take zero steps, then we will collect no rewards. In this case ps

is an empty policy sequence, there is no policy to apply and the answer is simply

zero:

val {t } {n = Z } x ps = zero

Here, we assume that Val : Type is equipped with a zero value zero : Val . What

if we are to make one or more decision steps? In this case n = S m for some

m : � and the policy sequence consists of a first policy, say p, and of a possibly

empty tail. We can make a first decision by applying the policy p to the initial value

x . This yields a control y : Ctrl t x and an M -structure of possible next states

nexts t x y : M (State (S t)). M is a functor. Thus, we can compute, for every

x ′ : State (S t) in nexts t x y the sum of reward t x y x ′ : Val and of the value of

making m decision steps from x ′ by applying the rest of the policy sequence. This

yields an M -structure of Vals, one for every possible next state in nexts t x y . As

discussed in the previous section, the value of such a structure is measured by a

function meas : M Val → Val :

val {t } {n = S m } x (p :: ps) = meas (fmap f mx ′) where

y : Ctrl t x ; y = p x

f : State (S t) → Val ; f x ′ = reward t x y x ′ ⊕ val x ′ ps

mx ′ : M (State (S t)); mx ′ = nexts t x y

In the introduction, we argued that an optimal policy sequence is, informally, a policy

sequence that cannot be further improved. We can now formalize this intuition.

Consider a policy sequence ps for n decision steps, starting at t . We say that

ps : PolicySeq t n is optimal iff for every x : State t and for every ps ′ : PolicySeq t n ,

applying ps ′ for n decision steps from x does not yield a better value than applying

ps4:

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n } ps = (x : State t) → (ps ′ : PolicySeq t n) → val x ps ′ 	 val x ps

The notion of optimality of policy sequences requires Val to be equipped with a

binary “comparison” relation

() : Val → Val → Type

Notice that, if () is reflexive

reflexive	 : (a : Val) → a 	 a

the empty policy sequence (there is only one) is optimal:

nilOptPolicySeq : OptPolicySeq Nil

nilOptPolicySeq x ps ′ = reflexive	 zero

4 Remember that, as explained in Section 2, in Idris properties are values of type Type. Thus
OptPolicySeq ps is a predicate: it explains (defines) what it means for ps to be optimal. In turn,
values of type OptPolicySeq ps are optimality proofs for ps .

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 19

This is a trivial but important observation. It is a consistency check for the notion

of optimality introduced above and, as we will see in Section 3.10, the base case for

a generic form of backwards induction for computing optimal policy sequences.

3.7 Viability and reachability (the deterministic case)

The notions of policy and policy sequence introduced in Section 3.5 are conceptually

correct but, for practical purposes, of little use.

Let’s consider again the decision problem sketched in Figure 2. For concreteness,

assume that the transition function is deterministic and defined such that it simply

effects the selected command: selecting L at step 0 in b yields a , selecting A yields b

and selecting R yields c and so on. Also, assume that states like a , b and c at step 2

and e at step 5 are truly “dead-ends” or, in other words, that there are no controls

for these states (at step 2 and 5, respectively).

Consider the head of a policy sequence p :: ps of length n = S m � 3 for this

problem. According to the notions of policy and policy sequence introduced in

Section 3.5, the types of p and ps are Policy 0 and PolicySeq 1 m . Thus, p is a

function that associates a control to each of the initial states a , b, c, d , and e. There

is nothing preventing p to choose L in b

p b = L

But a policy that is the head of a sequence of policies for three or more steps cannot

select a move to the left for the initial state b! This would lead, for next defined as

outlined above, to a at t = 1 and, from there, to a dead-end no matter what ps at

step 2 prescribes. In other words, such a policy sequence would not allow, in general,

to take more than two steps. To avoid such situations, policies that are elements of

policy sequences have to fulfill two additional constraints. The first constraint is that

Property 1

The mth policy of a policy sequence of length n >m has to select controls that yield

next states from which at least further n − S m steps can be taken.

The above rule requires p (the 0th policy of p :: ps) to select R in b. But what

shall p select in a? There is no control in a that leads to next states from which at

least two more steps can be taken!

The point is simply that a cannot belong to the domain of p. This leads us to the

second constraint that policies that are elements of sequences supporting a given

number of decision steps have to fulfill. This is a logical consequence of the first

one:

Property 2

The domain of the mth policy of a policy sequence of length n > m has to consist

of states from which at least n − m steps can be taken.

Viability Can we formulate these two constraints generically, that is, independently

of the particular decision problem at stake or, in other words, for arbitrary State,

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

20 N. Botta et al.

Ctrl , nexts , and reward of the appropriate types? Maybe surprisingly, the answer is

positive.

Let’s consider, first, the deterministic case M = Id . Properties 1 and 2 express

constraints for the co-domain and for the domain of policies. These constraints are

specified in terms of particular subsets of the state space: in Property 1 we consider,

at the S mth decision step of a sequence of n steps starting at decision step t , next

states at step t + S m from which at least further n − S m steps can be taken. In

Property 2, we consider states at decision step t = m from which at least n −m steps

can be taken. In both cases, we use a property of states – that of allowing a given

number of further steps – to select certain subsets of the state space.

We call this property viability. We say that a state x : State t is viable for k steps

if it is possible, by selecting suitable controls, to take at least k further steps starting

from x .

In the middle of Figure 2, we have represented states that are viable for less than

three steps in pale red. For instance, a at step 0 is viable for 2 decision steps. At

step 1, a and b are viable for 1 step and, at step 2, a , b and c are dead-ends: they

are viable for 0 steps. A state which is viable for S k steps is also viable for k steps.

We can specify the notion of viability in terms of two properties:

Definition 1 (Viability)

Every state is viable for zero steps. A state x : State t is viable for S m steps iff there

exists a control y : Ctrl t x such that next t x y is viable for m steps.

A formalization of this notion is straightforward:

Viable : (n : �) → State t → Type

viableBaseCase : (x : State t) → Viable Z x

viableToGoodCtrl : (x : State t) → Viable (S n) x → GoodCtrl t x n

viableFromGoodCtrl : (x : State t) → GoodCtrl t x n → Viable (S n) x

Here, GoodCtrl captures the existential constraint on controls:

Good : (t : �) → (x : State t) → (n : �) → (Ctrl t x) → Type

Good t x n y = Viable {t = S t } n (next t x y)

GoodCtrl : (t : �) → (x : State t) → (n : �) → Type

GoodCtrl t x n = Σ (Ctrl t x) (Good t x n)

Thus, for instance, viableToGoodCtrl ensures that for states that are viable S n

steps, we can compute a “good” control: one that yields a next state that is viable

n steps. It is probably worth mentioning that, instead of specifying Viable, we could

define it

Viable {t } Z x = Unit

Viable {t } (S n) x = GoodCtrl t x n

Such a definition would trivially fulfill the specification. The reason why we prefer to

let Viable undefined in the theory is efficiency: when applying the theory to specific

decision problems, it is often possible to provide more efficient, non-inductive,

problem-specific implementations.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 21

Policies revisited With the notion of viability in place, we can refine the formalization

of policy and policy sequence introduced in Section 3.5 to account for the constraints

expressed in Properties 1 and 2:

Policy : (t : �) → (n : �) → Type

Policy t Z = Unit

Policy t (S m) = (x : State t) → Viable (S m) x → GoodCtrl t x m

data PolicySeq : (t : �) → (n : �) → Type where

Nil : PolicySeq t Z

(::) : Policy t (S n) → PolicySeq (S t) n → PolicySeq t (S n)

A policy is now parameterized on two indices: a decision step counter t and a

number of steps n . We read p : Policy t n as “p is a policy to make decisions at step

t that support n decision steps.”

On a policy for 0 steps, we have no requirements: we can take Policy t Z to be

the singleton type.5 But we require a policy for making a decision at step t that

supports m further decision steps to associate to every state x in State t that is

viable for S m steps a control in Ctrl t x such that next t x y is viable for m steps.

Notice that, in contrast to the notion of policy from Section 3.5, we now have a

constraint on the states to which policies can be applied. This enforces Property 2.

We also have a constraint on the controls returned by policies. These have to be

“good” controls. A good control is just a control paired with a proof (a guarantee

for the decision maker) that control yields a next state from which a suitable number

of further steps can be taken. Thus, Property 1 is enforced by the second element of

the dependent pair returned by policies.

As we will see in Section 4, the notion of viability is crucial not only for building

a sound theory of decision making. When considering policies that avoid potentially

harmful future states, one has to be careful not to run into alternative states that

lead to dead-ends.

Reachability In the beginning of this section, we have argued that the notions of

policy and policy sequence introduced in Section 3.5 were conceptually correct but

that, in order to be useful, three problems had to be solved. We have formulated

two of them through Property 1 and Property 2 for the deterministic case. We

have seen that addressing these problems is mandatory to make sure that policies

for n decision steps do not lead to dead-ends. We have solved these problems for

the deterministic case and derived a notion of viability which, if decidable, allows

advisors to make precise statements about the capability of states (current or future)

to sustain future decision steps. We now turn our attention to the third problem.

Consider, again, the decision process sketched in Figure 2. On the right-hand side

of the figure we have colored in pale red those states which, under the assumptions

that decision makers can only move one column to the left or to the right or stay

in the same column (these are also the assumption used for coloring partially viable

states in the middle of Figure 2), cannot be reached. Thus, for instance, c at decision

5 In Idris the singleton type is denoted by Unit . It contains a single element, denoted by ().

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

22 N. Botta et al.

a b c d e

0
1
2
3
4
5
6
7

... ...

n

Fig. 3. Bifurcation.

step 4 cannot be reached because there is no control that allows to move from e,

the only state in State 3, to c : State 4.

Computing policies for subsets of the state space that cannot be reached in a

decision process can imply a significant waste of resources. Consider, for instance,

the decision problem sketched in Figure 3.

Here, all columns are valid and there are no dead-ends. But the set of controls

available to the decision maker is more limited than in the example of Figure 2. In a

and e, the only control available to the decision maker is A. In b and d , the decision

maker can only select L and R, respectively. The only state in which the decision

maker truly faces a decision problem is c. Here, it can move to the left or to the

right. In other words, the decision maker faces at step zero and in c a dilemma but

has otherwise no choices.

The decision problem models a bifurcation: for t > 1, the system is either in a

or in e no matter what the initial condition was. Thus, there is a wedge of states

that cannot be reached. This is marked in pale red in Figure 3. As the number of

columns increases, the fraction of the state space that cannot be reached becomes

bigger and bigger. Policy advice should focus on future states, which actually can

happen. We can achieve this goal by putting forward a third constraint on policies:

Property 3

The domain of the mth policy of a policy sequence starting at step t has to consist

of states in State (t + m) which are reachable.

The notion of reachability is in a certain sense dual to the notion of viability: in

the deterministic case, the intuition is that every state at the initial decision step

is reachable and that a state x ′ : State (S t) is reachable iff it has a reachable

predecessor and there exists a control that allows the decision maker to move from

there to x ′:

Reachable : State t ′ → Type

reachableBaseCase : (x : State Z) → Reachable x

reachableForward : (x : State t) → Reachable x → (y : Ctrl t x) → Reachable (next t x y)

reachableBackward : (x ′ : State (S t)) → Reachable x ′ → Σ (State t) (λx ⇒ x ‘ReachablePred ‘ x ′)

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 23

Explaining what it means for x : State t to be a reachable predecessor of x ′ : State (S t)

is straightforward:

Pred : State t → State (S t) → Type

Pred {t } x x ′ = Σ (Ctrl t x) (λy ⇒ x ′ = next t x y)

ReachablePred : State t → State (S t) → Type

ReachablePred x x ′ = (Reachable x , x ‘Pred ‘ x ′)

Policies revisited again We can now further refine our notion of policy by requiring

it to take values in reachable subsets of the state space:

Policy t (S m) = (x : State t) → Reachable x → Viable (S m) x → GoodCtrl t x m

We conclude this section by noting that, in the deterministic case, we have been

able to express the notions of viability and reachability and Properties 1, 2, and

3 generically. An immediate consequence is that we can apply the framework

presented in Botta et al. (2017) to compute provably correct optimal policies for

arbitrary decision problems.

In the next section, we show how to extend the notions of reachability and

viability (and the corresponding notions of policy and policy sequence) to the

general, monadic case.

3.8 Viability and reachability (the monadic case)

Consider again the monads for the deterministic case, for the non-deterministic case

and for the stochastic case: Id , List , and SimpleProb. These are not just monads

but container monads. A monadic container M has, in addition to the monadic

interface, a membership predicate, a predicate assessing non-emptiness and a “for

all” predicate:

Elem : {A : Type } → A → M A → Type

NotEmpty : {A : Type } → M A → Type

All : {A : Type } → (P : A → Type) → M A → Type

We will write a ∈ ma for Elem a ma for readability. A value of type a ∈ ma

represents a proof that a is contained in ma . We require Elem , NotEmpty , and All

to fulfill the natural conditions

allElemSpec0 : {A : Type } → {P : A → Type } →
(a : A) → (ma : M A) → All P ma → a ∈ ma → P a

elemNotEmptySpec0 : {A : Type } →
(a : A) → (ma : M A) → a ∈ ma → NotEmpty ma

elemNotEmptySpec1 : {A : Type } →
(ma : M A) → NotEmpty ma → Σ A (λa ⇒ a ∈ ma)

This interface is similar to the Haskell class Foldable that provides elem , null , and

all , but we use functions returning Type instead of Bool .

A key property of monadic containers is that if we map a function f : A → B

over a container ma , f will only be used on values in the subset of A which are in

ma . We model the subset as Σ A (λa ⇒ a ∈ ma) and we formalize the key property

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

24 N. Botta et al.

by requiring a function tagElem which takes any a : A in the container into the

subset:

tagElem : {A : Type } → (ma : M A) → M (Σ A (λa ⇒ a ∈ ma))

tagElemSpec : {A : Type } → (ma : M A) → fmap outl (tagElem ma) = ma

The specification requires tagElem ma to just add a tag to the elements of ma . For the

monads Id , List and SimpleProb, tagElem and tagElemSpec are easily implemented.

We used tagElem as part of the interface of container monads in an earlier paper

(Botta et al., 2017) but we have not found it elsewhere.

Viability and reachability The notion of viability for the deterministic case expressed

necessary and sufficient conditions for being able to perform a given number of

steps from a given state. We extend this notion to the monadic case by defining a

state x : State t to be viable S m steps iff there is a control in Ctrl t x which allows

the decision maker to take m further steps no matter which state will follow after

selecting y . Thus, the notion of viability is unchanged but the conditions required

for a control to be “good” are stronger:

Good : (t : �) → (x : State t) → (n : �) → (Ctrl t x) → Type

Good t x n y = (NotEmpty (nexts t x y),All (Viable {t = S t } n) (nexts t x y))

GoodCtrl : (t : �) → (x : State t) → (n : �) → Type

GoodCtrl t x n = Σ (Ctrl t x) (Good t x n)

We read the specification of Viable for the monadic case as: “a state x at step t is

viable for S m steps if there is a control in Ctrl t x such that all states in nexts t x y

are viable for m steps.” With the notion of monadic container, it is straightforward

to formalize the predecessor relation in the monadic case

Pred : State t → State (S t) → Type

Pred {t } x x ′ = Σ (Ctrl t x) (λy ⇒ x ′ ∈ nexts t x y)

and to define reachability analogously to the deterministic case

Reachable : {t ′ : �} → State t ′ → Type

reachableBaseCase : (x : State Z) → Reachable x

reachableForward : (x : State t) → Reachable x → (y : Ctrl t x) → All Reachable (nexts t x y)

reachableBackward : (x ′ : State (S t)) → Reachable x ′ → Σ (State t) (λx ⇒ x ‘ReachablePred ‘ x ′)

3.9 Policies and policy sequences revisited

With viability and reachability in place, the notions of policy and policy sequence

for the general, monadic case are formally identical to the deterministic case:

Policy : (t : �) → (n : �) → Type

Policy t Z = Unit

Policy t (S m) = (x : State t) → Reachable x → Viable (S m) x → GoodCtrl t x m

data PolicySeq : (t : �) → (n : �) → Type where

Nil : PolicySeq t Z

(::) : Policy t (S n) → PolicySeq (S t) n → PolicySeq t (S n)

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 25

Computing the value of policy sequences for the general, monadic case is almost

straightforward, too. To this end, it is useful to introduce the set of possible next

states:

PossibleNextState : (x : State t) → (y : Ctrl t x) → Type

PossibleNextState {t } x y = Σ (State (S t)) (λx ′ ⇒ x ′ ∈ (nexts t x y))

With this notion in place, we can implement val and the helper function sval by

mutual recursion:

mutual

val : (x : State t) → Reachable x → Viable n x → PolicySeq t n → Val

val {t } {n = Z } x r v ps = zero

val {t } {n = S m } x r v (p :: ps) = meas (fmap (sval x r v gy ps) (tagElem mx ′)) where

gy : GoodCtrl t x m; gy = p x r v

y : Ctrl t x ; y = ctrl gy

mx ′ : M (State (S t)); mx ′ = nexts t x y

sval : (x : State t) → (r : Reachable x) → (v : Viable (S m) x) →
(gy : GoodCtrl t x m) → (ps : PolicySeq (S t) m) →
PossibleNextState x (ctrl gy) → Val

sval {t } {m } x r v gy ps (MkSigma x ′ x ′emx ′) = reward t x y x ′ ⊕ val x ′ r ′ v ′ ps where

y : Ctrl t x ; y = ctrl gy

mx ′ : M (State (S t)); mx ′ = nexts t x y

ar ′ : All Reachable mx ′; ar ′ = reachableForward x r y

av ′ : All (Viable m) mx ′; av ′ = allViable gy

r ′ : Reachable x ′; r ′ = allElemSpec0 x ′ mx ′ ar ′ x ′emx ′

v ′ : Viable m x ′; v ′ = allElemSpec0 x ′ mx ′ av ′ x ′emx ′

As in Section 3.6, we pattern-match on the length of the policy sequence. For policy

sequences consisting of a first policy p and of a tail policy sequence ps , we first

apply p and compute a control y and an M -structure of possible new states mx ′.

Here, ctrl and allViable are projections. They extract from a good control gy

for a state x at step t the control y and the associated proof that all states in

mx ′ = nexts t x y are viable m steps, see Appendix A. The proof is crucial for

computing sval x r v gy ps , the function to be mapped on tagElem mx ′.

In the above implementation of val , sval plays the role of f in the implementation

of val presented in Section 3.6. Thus, sval x r v gy ps associates to possible next

states x ′ in mx ′ the sum of the reward from the transition from x to x ′ and of the

value of making m further decision steps from x ′ according to ps .

In order to compute these two values for a given x ′, we need to provide evidence

that x ′ is reachable and viable m steps. These proofs are coded in r ′ and v ′. We

prove that x ′ is reachable by providing two pieces of evidence: that all elements of

mx ′ are reachable and that x ′ is an element of mx ′.

We know that all elements of mx ′ are reachable because x is reachable and

because of reachableForward. We know that x ′ is an element of mx ′ because we

have built such evidence by applying tagElem to mx ′. Here, we fully exploit the

assumption that M is a monadic container.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

26 N. Botta et al.

A similar argument allows us to establish that x ′ is viable for m steps. This is a

necessary condition for computing val x ′ r ′ v ′ ps and motivates the “strong” notion

of viability discussed in the previous section.

3.10 A framework for monadic sequential decision problems

In this section, we introduce the computational core of our theory: first, we formalize

the notion of optimality for policy sequences. Then, we formulate Bellman’s original

principle of optimality. Finally, we derive a generic method for computing optimal

policy sequences and show that the method yields optimal policies for arbitrary

SDPs. We refer to the appendix for technical details and focus on the main results

from an application perspective.

Optimality of policy sequences In the previous section, we have expressed a value in

terms of the sum of the possible rewards over n decision steps of taking decisions

according to a policy sequence ps : PolicySeq t n through val .

The emphasis here is on a value and possible. As explained at the end of Section 3.5,

in order to compute the value of ps , the decision maker has to adopt a measure

meas for estimating the rewards associated to the possible outcomes of the decision

steps. Decision makers who are measuring chances according to a precautionary

principle might end up taking very different decisions from decision makers that

measure chances according to their expected value.

The responsibility of adopting a measure is a crucial one and it is a responsibility

of the policy advisors to make stakeholders aware of the importance of consciously

adopting a measure, to provide alternatives, and to explain the consequences of

adopting different criteria.

But, given a decision problem that is, given M , State, Ctrl , nexts , and reward of

suitable types, and a measure, val x r v ps gives the value, in terms of rewards, of

taking n decisions starting from a state x : State t that is reachable and viable for

n steps and following the policy sequence ps : PolicySeq t n . Under these premises,

it is clear what it means for ps to be optimal:

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n } ps = (x : State t) → (r : Reachable x) → (v : Viable n x) →
(ps ′ : PolicySeq t n) → val x r v ps ′ 	 val x r v ps

We read this notion of optimality for policy sequences as follows: “a policy sequence

ps for making n decision steps starting from a state in State t is optimal iff for

every state in State t which is reachable and viable for n steps and for every policy

sequence ps ′ of the same type as ps , the value of ps is at least as high as the

value of ps ′.” Just as for our simple-minded formalization of policy sequence from

Section 3.6, also here we can prove that the empty policy sequence is optimal:

nilOptPolicySeq : OptPolicySeq Nil ; nilOptPolicySeq x r v ps ′ = reflexive	 zero

Bellman’s optimality principle Bellman’s optimality principle (Bellman, 1957) can be

expressed through the notion of optimal extension. Being an optimal extension is

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 27

a property of a policy. It is relative to a policy sequence. The idea is that a policy

p for decision step t is an optimal extension of a policy sequence ps for n further

decision steps iff for every policy p ′, the value of p :: ps is at least as high as the

value of p ′ :: ps:

OptExt : PolicySeq (S t) m → Policy t (S m) → Type

OptExt {t } {m } ps p = (x : State t) → (r : Reachable x) → (v : Viable (S m) x) →
(p ′ : Policy t (S m)) → val x r v (p ′ :: ps) 	 val x r v (p :: ps)

Notice that optimal extensions are, in fact, pre-extensions: if ps is a sequence of

policies for making m decision steps starting from step S t and p is an optimal

extension of ps , then p :: ps is a policy sequence for making S m decisions starting

from step t . This will give us “backwards induction” later: we build up our sequence

of policies step by step from the last towards the first step.

If p is an optimal extension of ps : PolicySeq (S t) m we know (for sure, no matter

whether the decision process is deterministic, non-deterministic, stochastic, etc.) that

there are no better ways of making decisions at step t than those indicated by p,

given that we will make decisions in the future according to ps . The last conditional

is crucial for expressing Bellman’s principle. This can be stated as follows:

Bellman : (ps : PolicySeq (S t) m) → OptPolicySeq ps →
(p : Policy t (S m)) → OptExt ps p →
OptPolicySeq (p :: ps)

We read Bellman’s principle as follows: for every policy sequence ps and policy p,

if ps is an optimal policy sequence and p an optimal extension of ps , then p :: ps is

optimal.

Bellman’s principle is particularly important because it embodies a simple al-

gorithm for constructing optimal policy sequences: start with the empty policy

sequence. As seen above, this is optimal. Then, compute an optimal extension of the

empty policy sequence and proceed from there. This algorithm is called backwards

induction and we derive a generic and provably correct implementation in the next

section.

For the moment, it is important to understand that Bellman’s principle reduces

the problem of computing optimal policy sequences for n steps to the problem of

computing n optimal extensions. This is crucial because of two reasons. The first

one is that computing optimal extensions is, in principle, straightforward. We discuss

this problem at the end of this section. The second reason is that Bellman’s principle

suggests that, if we can compute optimal extensions with complexity independent

of the length of the policy sequence to be extended, the complexity of computing

optimal policy sequences is linear in the number of steps. This is important because

it makes a rigorous approach towards policy advice applicable to real problems.

But does Bellman’s principle hold? The answer is positive and, in principle, known

since 1957. Here, we implement a machine checkable proof. Proving that the policy

sequence (p :: ps) is optimal, given that ps is optimal and that p is an optimal

extension of ps , means implementing a function that, for every p ′ :: ps ′ (with p ′

and ps ′ of the same type as p and ps , respectively) and for every x : State t ,

r : Reachable x and v : Viable (S m) x , computes a value of type

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

28 N. Botta et al.

val x r v (p ′ :: ps ′) 	 val x r v (p :: ps)

Let vax = val x r v for brevity. The idea is to first prove that

vax (p ′ :: ps ′) 	 vax (p ′ :: ps), vax (p ′ :: ps) 	 vax (p :: ps)

From these premises and assuming () to be a preorder (we have already assumed

() to be reflexive in the computation of nilOptPolicySeq)

transitive	 : {a , b, c : Val } → a 	 b → b 	 c → a 	 c

we can immediately deduce the result. A proof of the second part —that the value

of p ′ :: ps is at most as good as that of p :: ps— can be immediately computed from

the assumption that p is an optimal extension of ps . A proof of the first part —that

p ′ :: ps ′ is not better than p ′ :: ps— can be derived from the optimality of ps and

from the definition of val . From this inequality

vax (p ′ :: ps ′) 	 vax (p ′ :: ps)

follows from

meas (fmap svax ′ (tagElem mx ′)) 	 meas (fmap svax (tagElem mx ′))

where svax ′, svax : PossibleNextState x (ctrl gy ′) → Val and mx ′ : M (State (S t))

are

svax ′ = sval x r v gy ′ ps ′, svax = sval x r v gy ′ ps , mx ′ = nexts t x y

and sval is the function defined in Section 3.9. In the above expressions, the control

y ′ is obtained by applying the policy p ′ to x , r and v :

gy ′ = p ′ x r v , y ′ = ctrl gy ′

Thus, the question is whether we can deduce

meas (fmap svax ′ (tagElem mx ′)) 	 meas (fmap svax (tagElem mx ′))

from the optimality of ps . For this, we need two additional assumptions:

monotonePlus	 : a 	 b → c 	 d → (a ⊕ c) 	 (b ⊕ d)

measMon : {A : Type } → (f : A → Val) → (g : A → Val) →
((a : A) → f a 	 g a) →
(ma : M A) → meas (fmap f ma) 	 meas (fmap g ma)

The first requirement is clear. The monotonicity condition for meas was originally

discovered by Ionescu (2009) in a formalization of “vulnerability” as a measure

of possible future harm. It is a natural condition that all meaningful measures

should satisfy. It is easy to see that the expected value measure and “worst

case” measures satisfy this condition. As for other specifications of the monadic

container interface already discussed, measMon is only required to hold for A =

PossibleNextState x (ctrl gy ′) for Bellman to hold.

In Appendix B, we give a full machine checkable proof of Bellman’s principle for

a generic M , that is, independently of whether the decision problem is deterministic,

stochastic, non-deterministic or something else.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 29

Backwards induction Assume that we have a procedure for computing an optimal

extension of a policy sequence:

optExt : PolicySeq (S t) n → Policy t (S n)

postulate optExtLemma : (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

The postulate is a strong new assumption and we will come back to it later. Under

this assumption, a generic backwards induction procedure for computing optimal

policy sequences can be implemented as follows:

backwardsInduction : (t : �) → (n : �) → PolicySeq t n

backwardsInduction t Z = Nil

backwardsInduction t (S n) = let ps = backwardsInduction (S t) n in optExt ps :: ps

It is easy to see that backwardsInduction t n yields optimal policy sequences for

arbitrary t and number of decision steps n . It surely does so for n equal to

zero because the empty policy sequence is optimal. Assume ps : PolicySeq (S t) n is

optimal. Bellman’s optimality principle shows that (optExt ps::ps) : PolicySeq t (S n)

is also optimal. A machine checkable proof can be implemented easily:

backwardsInductionLemma : (t : �) → (n : �) → OptPolicySeq (backwardsInduction t n)

backwardsInductionLemma t Z = nilOptPolicySeq

backwardsInductionLemma t (S n) = Bellman ps ops p oep where

ps : PolicySeq (S t) n; ps = backwardsInduction (S t) n

ops : OptPolicySeq ps; ops = backwardsInductionLemma (S t) n

p : Policy t (S n); p = optExt ps

oep : OptExt ps p; oep = optExtLemma ps

Notice how the induction hypothesis – the optimality of ps – is obtained through

a recursive call to backwardsInductionLemma . The lemma shows that, in order to

implement a provably correct, generic procedure for computing optimal policy

sequences, two ingredients are crucial: Bellman’s optimality principle and the

capability of computing optimal extensions of arbitrary policy sequences. We have

given a machine checkable proof of Bellman’s principle in Appendix B. In the next

section, we derive a generic procedure for computing optimal extensions.

Can we compute optimal extensions? Conceptually, computing an optimal extension

p of a policy sequence ps is straightforward. We can define the policy p by computing,

for every state x (which is reachable and viable for S n steps), a “best” value in the

co-domain of p:

cval : (x : State t) → (r : Reachable x) → (v : Viable (S n) x) → (ps : PolicySeq (S t) n) →
GoodCtrl t x n → Val

cval {t } x r v ps gy = meas (fmap (sval x r v gy ps) (tagElem mx ′)) where

y : Ctrl t x ; y = ctrl gy

mx ′ : M (State (S t)); mx ′ = nexts t x y

optExt : PolicySeq (S t) n → Policy t (S n)

optExt {t } {n } ps = p where

p : Policy t (S n); p x r v = cvalargmax x r v ps

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

30 N. Botta et al.

In the implementation above, cval x r v ps is a function that computes the value

(measured by meas) of applying a (good) control fo make a first decision step in x

and then n further steps according to ps .

We construct an optimal extension p of ps by computing a best “good” control

– a value of type GoodCtrl t x n – for each (reachable and viable) state. The

computation is done by cvalargmax . In turn, cvalargmax x r v ps computes a good

control that maximizes cval x r v ps . Thus, the computation of an optimal extension

always implies solving a maximization problem for each (reachable and viable) state.

We formalize the requirements that cvalargmax has to fulfill as follows:

cvalargmax : (x : State t) → (r : Reachable x) → (v : Viable (S n) x) →
(ps : PolicySeq (S t) n) → GoodCtrl t x n

cvalmax : (x : State t) → (r : Reachable x) → (v : Viable (S n) x) →
(ps : PolicySeq (S t) n) → Val

cvalargmaxSpec : (x : State t) → (r : Reachable x) → (v : Viable (S n) x) →
(ps : PolicySeq (S t) n) →
cvalmax x r v ps = cval x r v ps (cvalargmax x r v ps)

cvalmaxSpec : (x : State t) → (r : Reachable x) → (v : Viable (S n) x) →
(ps : PolicySeq (S t) n) → (gy : GoodCtrl t x n) →
(cval x r v ps gy) 	 (cvalmax x r v ps)

The reason for using these very specific functions, instead of more general max and

argmax , is that optimization is, in most cases, not computable. The assumptions

on cvalmax and cvalargmax are the minimal requirements for the computability of

optimal extensions. Anything more general risks being non-implementable.

Depending on the specific application, implementing the above specification can

be quite difficult or even impossible. It is certainly straightforward for the case in

which the set of feasible controls is finite and Val is a total preorder. For this case,

we provide ready-to-use implementations in Opt2. We give a machine checkable

proof of optExtLemma in Appendix C.

Theories for solving optimization problems constitute an important sub-domain

of numerical analysis, combinatorics and interval arithmetic. They go well beyond

the scope of the theory presented here.

3.11 Towards a theory of policy advice

In the previous section, we have presented a theory for specifying and solving SDPs

under different kinds of uncertainty.

Syntactically, the theory has been introduced through a very limited number of

Idris constructs: forward declarations like M and Viable, fully defined functions like

GoodCtrl , Policy , and data types like PolicySeq . In particular, we have not made

use of records, interfaces, namespaces, and parameterized blocks.

Roughly speaking, forward declarations represent theory assumptions. Fully

defined functions and data type represent notions, algorithms and results.

Thus, for instance, OptPolicySeq is a fully defined function. It explains what it

means for a policy sequence to be optimal. optExt is also a fully defined function.

It implements an algorithm for computing optimal extensions of arbitrary policy

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 31

sequences. In contrast, reflexive	 is a forward declaration of a function. It requires

() (another forward declaration) to be reflexive.

The idea is that users apply the theory by filling in all forward declarations.

This allows them to use the theory’s fully implemented functions, e.g., to compute

machine checked optimal policy sequences.

When considering the theory’s assumptions, it is useful to distinguish between a

core theory and a full theory. The core theory contains only those assumptions,

notions, and algorithms that are needed to fully specify a concrete SDP and to

compute optimal policy sequences for that problem. The full theory contains those

assumptions and intermediate results (theorems) that are needed to prove that the

methods implemented in the core theory are indeed correct.

We provide a complete list of the assumptions of the core theory and of the full

theory in Appendix D. The core and the full theory are available as literate Idris files

at SequentialDecisionProblems2. The code presented in this section is available

in the same repository in papers/JFP20162.

In the rest of this section, we summarize the most important features of the theory

from the perspective of policy advice. We also discuss two questions on limitations

and possible extensions of the theory.

In a nutshell, the (core) theory allows to define a specific decision problem by

implementing five functions: M , State, Ctrl , nexts , and reward . The (full) theory

requires M to be a monadic container but does not impose any restriction (or implicit

assumption) on the other functions except for those implicit in their signature.

It promotes a disciplined, accountable approach towards policy advice in a three-

fold way. First, the theory explains what decision makers and advisors have to

provide for a decision problem to be unambiguously specified. Second, it explains

what it means for policy sequences to be optimal and which guarantees decision

makers can expect from implementing optimal policies. Third the theory provides a

backwards induction procedure for actually computing optimal policies.

The last result holds under two additional assumptions: that decision makers and

advisors agree on a monotone measure meas : M Val → Val for estimating the

value of uncertain rewards and that they provide a method for maximizing the

function cval x r v ps (for arbitrary x , r , v , and ps) that meets the specification

given in the last section.

The latter is a strong assumption. But it cannot be avoided and decision theories

that do not explicitly mention this assumption, most likely sweep it under the rug.

For example the finiteness assumption is introduced in many applications through

a discretization of the control space.

Since Bellman’s original contribution in 1957, backwards induction has been

routinely implemented and applied to a vast number of decision problems in,

among others, economics, bioinformatics and computing science. But our theory is,

to the best of our knowledge, the first one that entails a generic, machine checkable

implementation. A new theory raises two obvious questions:

1. Can the theory deliver more given the specification of a decision problem?

2. Can the theory demand less for the specification of a decision problem?

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

32 N. Botta et al.

The answer to the first question is positive: given a decision problem, we can provide

more than optimal policy sequences. In particular, we can provide different notions

of monadic trajectories and methods for computing the possible future evolutions

resulting from selecting controls according to a given sequence of policies, optimal

or not.

These notions can be applied to refine and give precise meanings to the idea of

“scenario.” The related methods allow advisors to automatically generate consistent

and provably complete samples of possible future evolutions. In decision problems

with a limited number of options and severe uncertainties, optimal policy sequences

can be expected not to be unique. For these problems, decision makers can take

advantage of consistent and complete scenarios, e.g. to estimate the impact of

different optimal policies according to criteria that are not captured by the notion of

optimality characterizing the decision problem. Thus, for instance, a decision maker

might not be able (or allowed) to modify the notion of optimality underlying the

decision process but still have preferences on optimal policy sequences. He could

for instance prefer an optimal policy sequence in which the highest rewards come

immediately after the first decision steps to an optimal policy sequence in which the

highest rewards come towards the end of the decision procedure, e.g., to increase his

chances at being re-elected.

A comprehensive theory of trajectories and scenarios and computational methods

for generating such trajectories and scenarios and for combining systems character-

ized by different kinds of uncertainty have been originally proposed by C. Ionescu

and we refer the interested reader to Ionescu (2009).

Here, we just outline a generic procedure for computing an M -structure of (all)

possible future evolutions under a given policy sequence. To this end, it is important

to recognize that a policy sequence naturally generates an M -structure of state-

control sequences. These new sequences can be introduced in a similar way as policy

sequences:

data StateCtrlSeq : (t : �) → (n : �) → Type where

Nil : (x : State t) → StateCtrlSeq t Z

(::) : Σ (State t) (Ctrl t) → StateCtrlSeq (S t) n → StateCtrlSeq t (S n)

The idea is that, if we are given a sequence of policies ps for n steps and some

initial state x , we can construct an M -structure of possible state-control sequences

of length n . For example, for M = SimpleProb, we obtain a probability distribution

of state-control sequences representing all possible evolutions of the system given

the controls implied by ps and starting from x :

possibleStateCtrlSeqs : (x : State t) → Reachable x → Viable n x →
(ps : PolicySeq t n) → M (StateCtrlSeq t n)

We give an implementation of possibleStateCtrlSeqs in Appendix E. If observations

of initial states are themselves uncertain, one does not have a well-defined initial

state. Instead one has an M -structure of possible initial states. Even in this case, we

can compute all possible state-control sequences entailed by a sequence of policies:

morePossibleStateCtrlSeqs : (mx : M (State t)) → All Reachable mx → All (Viable n) mx →
(ps : PolicySeq t n) → M (StateCtrlSeq t n)

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 33

morePossibleStateCtrlSeqs {t } {n } mx ar av ps = (tagElem mx) �= f where

f : Σ (State t) (λx ⇒ x ∈ mx) → M (StateCtrlSeq t n)

f (MkSigma x xemx) = possibleStateCtrlSeqs x r v ps where

r : Reachable x ; r = allElemSpec0 x mx ar xemx

v : Viable n x ; v = allElemSpec0 x mx av xemx

Here, we have used the fact that M is a monad and, therefore, we have an explicit

rule, �=, for computing how uncertainties on states are propagated by transition

functions.

The answer to the second question raised above – whether the theory can demand

less for the specification of a decision problem – is also positive. The key idea lies

in the notion of avoidability and is the subject of the second part of this work.

3.12 A stylized greenhouse gases emission problem

We demonstrate how the theory presented in this section can be applied to specify

and solve decision problems under uncertainty with a simple example. This is a

stylized stochastic greenhouse gases (GHG) emission problem of the kind studied,

among others, by Webster (2000; 2008).

A complete, commented implementation of the problem is available at

EmissionsGame1 in SequentialDecisionProblems/applications2. Here, we skip

over a number of details related to, among others, export/import, auto implicits and

name qualification rules.

The idea of the problem is that, at each decision step, a decision maker has to

select a certain level of emissions or emission reductions. In Webster (2000), for

example, the decision maker can select one of a handful of levels. For simplicity,

here we assume that the decision maker has only two options: freezing or increasing

emissions. Thus, the control space at any decision step and for any state is

Ctrl t x = FreezeOrIncrease

Here, FreezeOrIncrease is a type with only two values: Freeze and Increase. At each

decision step, the decision maker has to make up her choice on the basis of two

pieces of information: an amount of cumulated emissions and a state of the world.

The latter can be either good or bad.

Again, for simplicity, we assume that, at each decision step, emissions can be

increased by zero or one unit. Thus, after t decision step, the amount of cumulated

emissions can be at most t . We represent cumulated emissions through values of

type Fin n6. Thus

State t = (Fin (S t),GoodOrBad)

The idea is that the game starts with zero cumulated emissions and with the world

in the good state. In these conditions, the risk for the world to turn bad is low. But

if the cumulated emissions increase beyond a critical threshold, the probability that

6 In Idris, Fin n is a datatype representing the natural numbers between 0 and n − 1. Thus, there are
no values of type Fin 0 and the single value of type Fin 1 represents the natural number 0. Fin 2 has
values representing 0 and 1 and so on.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

34 N. Botta et al.

the world becomes bad increases. If the world is in the bad state, there is no chance

to come back to the good state.

Thus, our idealized problem is stochastic and M = SimpleProb. We have pro-

vided suitable defaults for deterministic, non-deterministic, and stochastic decision

problems. These can be included in applications by importing suitable auxiliary

modules.

Thus, in our example, we define M , fmap, Elem , NotEmpty , All , elemNotEmpty

Spec0 , elemNotEmptySpec1 , tagElem , allElemSpec0 from the core theory by

importing FastStochasticDefaults from SequentialDecisionProblems2.

In contrast to StochasticDefaults that defines SimpleProb in terms of non-

negative rational numbers, FastStochasticDefaults implements simple probabil-

ity distributions in terms of non-negative, double precision floating point numbers,

and a weaker “sum one” requirement: the sum of the probabilities of a “sum

one” probability distribution is only required to be strictly positive. This allows fast

arithmetic and the computation of optimal policy sequences for a sizable number

of decision steps.

Importing FastStochasticDefaults also injects proper definitions for return ,

(�=), finiteAll , finiteNotEmpty , decidableAll , and decidableNotEmpty in the local

scope. These entities are declared in Utils, another auxiliary module. They are

proof obligations in specific deduction skeletons.

Thus, for instance, one skeleton derives the finiteness of AllViable from the

finiteness of All and Viable. From the finiteness of AllViable and of NotEmpty ,

another skeleton derives the finiteness of Good from which, assuming finiteness of

controls, finiteness of good controls follows.

Additional assumptions, deduction skeletons, and default implementations are

part of the infrastructure that we have built to support the specification of SDPs.

In our specific case, the additional assumptions are finiteness of states and controls

and the imported modules automatically fill in all the assumptions of the theory

apart from State, Ctrl , and from those defined in the rest of this section.

We mentioned that, in our stylized GHG emission problem, if the cumulated

emissions increase beyond a critical threshold, the probability that the state of the

world turns to bad increases. We encode this idea in our transition function. We

represent the critical threshold with cr : Double and denote the probabilities of

staying in a good world when the cumulated emissions are below and above the

critical threshold by p1 , p2 : NonNegDouble:

cr = 0.0; p1 = cast 0.99; p2 = cast 0.10

With the transition probabilities in place, the transition function of the emission

problem is easily defined by pattern matching on the state of the world and on the

decision maker’s decision

nexts t (e,Good) Freeze =

let goodState = (weaken e,Good) in

let badState = (weaken e,Bad) in

if (fromFin e � cr) then mkSimpleProb [(goodState, p1), (badState, one − p1)]

else mkSimpleProb [(goodState, p2), (badState, one − p2)]

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 35

nexts t (e,Good) Increase =

let goodState = (FS e,Good) in

let badState = (FS e,Bad) in

if (fromFin e � cr) then mkSimpleProb [(goodState, p1), (badState, one − p1)]

else mkSimpleProb [(goodState, p2), (badState, one − p2)]

nexts t (e,Bad) Freeze =

let badState = (weaken e,Bad) in mkSimpleProb [(badState, one)]

nexts t (e,Bad) Increase =

let badState = (FS e,Bad) in mkSimpleProb [(badState, one)]

In the code above, FS is a function that computes the successor of a value of type

Fin n and weaken is a function that embeds a value of type Fin n in Fin (S n) by

leaving the corresponding natural number unchanged.

In order to complete the specification of our emission problem, we have to define

the reward function. Remember that Val , the return type of reward has to have a

⊕ combinator, a zero value and a total preorder 	. In our example, these are the

standard addition, zero and the smaller or equal relation on non-negative double

precision floating point numbers. With these definitions in place, we can proceed to

define the reward function of the problem. The idea is that being in a good world

yields one unit of benefits per step and being in a bad world yields half of those

benefits:

badOverGood : NonNegDouble; badOverGood = cast 0.5

Emitting greenhouse gases also brings benefits. These are a fraction of the step

benefits in a good world. Further, freezing emissions brings less benefits than

increasing emissions:

freezeOverGood : NonNegDouble; freezeOverGood = cast 0.1

increaseOverGood : NonNegDouble; increaseOverGood = cast 0.3

Finally, the reward function is defined by pattern matching on the control and on

the next possible states of the world:

reward t x Freeze (e,Good) = one + one ∗ freezeOverGood

reward t x Increase (e,Good) = one + one ∗ increaseOverGood

reward t x Freeze (e,Bad) = one ∗ badOverGood + one ∗ freezeOverGood

reward t x Increase (e,Bad) = one ∗ badOverGood + one ∗ increaseOverGood

To measure the possible rewards, we use the expected value

meas = expectedValue; measMon = monotoneExpectedValue

Completing the specification of our problem requires defining Viable, viableToGood

Ctrl, finiteViable, decidableViable,Reachable, reachableForward,decidableReachable,

finiteCtrl , finiteState, and two functions to show states and control. For this example,

Viable t n is simply the unit type and the implementations of viableToGoodCtrl,

finiteViable, etc. are rather trivial. We do not discuss them here.

The last part of EmissionsGame1 is a minimal program for computing an optimal

sequence of policies and for printing all the state-control sequences and all the

rewards that can result from the application of those policies. The file can be

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

36 N. Botta et al.

compiled with make emissionsgame1 from the command line. For five decision

steps, it produces the output:

enter number of steps:

Nat: 5

thanks!

computing optimal policies ...

computing optimal controls ...

possible state-control sequences:

[([((0,G),F) ([((0,G),F) ([((0,G),F) ([((0,G),F) ([((0,G),F) ([((0,G),F)

((0,G),F) ((0,G),F) ((0,G),F) ((0,G),F) ((0,G),F) ((0,B),I)

((0,G),F) ((0,G),F) ((0,G),F) ((0,G),F) ((0,B),I) ((1,B),I)

((0,G),F) ((0,G),F) ((0,G),F) ((0,B),I) ((1,B),I) ((2,B),I)

((0,G),I) ((0,G),I) ((0,B),I) ((1,B),I) ((2,B),I) ((3,B),I)

((1,G),) ((1,B),) ((1,B),) ((2,B),) ((3,B),) ((4,B),)

],0.95)],0.01)],0.01)],0.01)],0.01)],0.01)

]

possible rewards:

[(5.7, 0.95) (5.2, 0.01) (4.7, 0.01) (4.4, 0.01) (4.1, 0.01) (3.8, 0.01)]

done!

Here, (0,G) represents the initial state: zero cumulated emissions and a world in a

good state. We have six possible state-control sequences starting from (0,G). These

are represented by the columns of the possible state-control sequences table.

As required by possibleStateCtrlSeqs , the possible state-control sequences are

a probability distribution. Thus, each column represents a possible outcome of

applying the optimal policies ps and the probability of that outcome.

The results show that, in a good world, optimal policies require to freeze emissions

in all but the last decision step. Conversely, in a bad world, freezing emissions is

never an optimal option.

The first column indicates that freezing policies keep the world in a good state

with a probability of 95%. The probability of ending up in a bad world is 5%. This

probability is equally distributed over the remaining possible trajectories. This is an

artifact of having rounded the results to two decimals, the actual probabilities are

slightly different. The last table shows the possible rewards and their probabilities.

We do not further comment the results but notice that, even for this oversimplified

example, the framework allows to systematically investigate the logical consequences

(in terms of optimal emission policies) of a number of assumptions.

Thus, for instance, increasing the uncertainty below the critical threshold has the

effect of making freezing policies sub-optimal: if the probability of staying in a good

world when the cumulated emissions are below the critical threshold diminishes from

99% to about 65%, freezing emissions becomes sub-optimal no matter whether in

a good or in a bad world state.

Importing the full theory guarantees that the results obtained, be these expected

or surprising, are logical consequences of the problem specification (for instance,

as discussed above, of the specification of transition probabilities) and not of

computational artifacts.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 37

4 Policy advice and avoidability

The major weakness of the theory presented in the previous section is that it relies

on a reward function:

reward : (t : �) → (x : X t) → (y : Ctrl t x) → (x ′ : X (S t)) → Val

In order to specify a decision problem, reward has to be defined for every time t : �,

for every state x : State t , for every control y : Ctrl t x and for every “possible”

next state x ′ : State (S t).

We could try to be a little bit more precise and only require reward to be defined

for states which are reachable and viable for a given number of steps. We could also

try to constrain x ′ to be a possible next state. But still, reward has to be defined for

a decision problem to be specified.

As our GHG emission problem example demonstrates, specifying the state spaces

State, the control spaces Ctrl and the transition function nexts of a particular

decision process is often straightforward. But the notion of rewards (payoffs, utility,

etc.) is more problematic. We do not want to discuss here the reasons of such

difficulties. As mentioned in the introduction, they can be practical, ethical or

perhaps just operational.

Instead, we ask ourselves whether a theory of policy advice and decision making

can be built without relying on the notion of rewards. A way of re-formulating

this question is to ask whether rewards could be defined in terms of something less

questionable.

4.1 Avoidability

Consider, for concreteness, the problem of designing abatement policies for GHG

emissions. Here, the first and foremost concern is to envisage sequences of policies

that avoid certain future states which are considered to be potentially harmful,

for instance, because in these states certain “climate” variables or certain “socio-

economic” variables exceed critical thresholds. In our stylized example, such states

were lumped together in the notion of a “bad” world.

If we knew that a policy sequence provably avoids (or provably avoids with a

probability above a given threshold) these potentially harmful states and if such a

policy sequence was implementable at “low” costs, it would be foolish not to adopt

it.

The argument suggests that, in many decision problems, avoidability is a relevant

notion that could be fruitfully applied to inform policy advice.

But what does it mean for a future possible state to be avoidable? The question

is crucial because, in absence of a clear understanding of what it means for a state

to be avoidable, one very first concern of policy advice – namely that of avoiding

potentially harmful future states – is void of meaning.

Before attempting a formalization of the notion of avoidability, it is useful to

fix a few intuitions: First notice that, in contrast to the notions of reachability

and viability put forward in the previous sections, the notion of avoidability is

necessarily a relative one. Whether a future state, say a state that can possibly occur

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

38 N. Botta et al.

in 10 decision steps from now is avoidable or not certainly depends on the current

state.

Thus, avoidability is a relation between states. More precisely, it is a relation

between states at a given time and states at some later times. Another remark is that

we are interested in the avoidability of “possible” future states. We do not care what

it means for states that are not reachable to be avoidable. The other way round:

we are interested in the avoidability of states that are reachable from a given (e.g.,

current) state. The latter notion of reachability is again a relative one.

A third remark is that the notion of avoidability entails the notion of an

alternative. Consider again Figure 2: for all initial states from which at least three

steps can be made (these are, under the assumption that the decision maker can

only move to the left, ahead or to the right, columns b, c, d , and e), column e at

time 3 is unavoidable. This is simply because column e has no alternative: is the

only state that can happen at time 3.

Finally consider, again in Figure 2, columns c and d at time 5. Are these states

avoidable? There are certainly alternatives: a , b, and e. Columns a and b, however,

are not reachable from any initial state. Column e is reachable but is a dead-end: it is

only viable for zero steps. Should we conclude that columns c or d are unavoidable?

We think that, at least for one notion of avoidability, this should be the case:

alternatives shall be at least as viable as the state to be avoided.

4.2 Reachability from a state

We have argued that, in order to formalize a notion of avoidability, we need to

explain what it means for a state to be reachable from a given state. Consider two

states x ′′ : State t ′′ and x : State t . We explain what it means for x ′′ to be reachable

from x by considering two cases:

ReachableFrom : State t ′′ → State t → Type

ReachableFrom {t ′′ = Z } {t } x ′′ x = (t = Z , x = x ′′)

ReachableFrom {t ′′ = S t ′ } {t } x ′′ x =

Either (t = S t ′, x = x ′′) (Σ (State t ′) (λx ′ ⇒ (x ′ ‘ReachableFrom ‘ x , x ′ ‘Pred ‘ x ′′)))

The first case is one in which t ′′ is equal to zero. Remember that we are formalizing

a notion of reachability in the future. Therefore, t ′′ cannot be smaller than t: t ′′ � t .

For t ′′ = Z , t ′′ � t implies t = Z . Thus, t also has to be equal to zero and x has

to be equal to x ′′. This formalizes, at time zero, the intuition that a state at a given

time is reachable from a state at the same time if and only if the two states are equal.

The second case explains what it means for x ′′ to be reachable from x for the case

in which t ′′ is not zero. In this case, t ′′ is the successor of a time t ′ and we have two

cases: either t = t ′′ and x = x ′′ or x ′′ has a predecessor which is reachable from x .

It is easy to show that the above definition is consistent with our intuition that, if

x ′′ : State t ′′ is reachable from x : State t , then it is the case that t ′′ � t:

reachableFromLemma : (x ′′ : State t ′′) → (x : State t) → x ′′ ‘ReachableFrom ‘ x → t ′′ � t

We prove reachableFromLemma in Appendix F.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 39

4.3 Avoidability

We are now ready to formalize the notion of avoidability discussed in Section 4.1:

a state x ′ : State t ′ which is reachable from a state x : State t and viable for n steps

is avoidable from x if there exists an alternative state x ′′ : State t ′ which is also

reachable from x and viable for n steps:

Alternative : (x : State t) → (m : �) → (x ′ : State t ′) → (x ′′ : State t ′) → Type

Alternative x m x ′ x ′′ = (x ′′ ‘ReachableFrom ‘ x ,Viable m x ′′,Not (x ′′ = x ′))

AvoidableFrom : (x ′ : State t ′) → (x : State t) → x ′ ‘ReachableFrom ‘ x → Viable n x ′ → Type

AvoidableFrom {t ′ } {n } x ′ x r v = Σ (State t ′) (λx ′′ ⇒ Alternative x n x ′ x ′′)

The above formalization explains what it means for a state x ′ to be avoidable given

a “current” state x . It is a more or less word-by-word translation of the informal

notion discussed in Section 4.1. It requires, for x ′ to be avoidable, the existence of

an alternative state x ′′ which is at least as viable as x ′.

Thus, for instance, in the stylized GHG decision problem discussed at the end of

Section 3, “bad” states of the world can be avoided from conditions in which the

world is in a good state.

The viability constraint in this notion of avoidability is essential, for instance for

policy advice that has to be informed by sustainability principles. In developing

the theory presented in this paper, we have consciously refrained from using, in the

formal framework, terms which are prominently used in specific application domains,

in particular in climate impact research.7 Thus, we have denoted the capability of a

state to support a certain number of future evolution steps with “viability” and not

with “sustainability.”

The rationale behind our approach is that it is in a domain specific theory that

domain specific notions, for instance the notion of sustainability in climate impact

decision problems, are to be given a meaning. This is done in terms of domain-

independent notions (for instance, those proposed here) and the translation is usually

referred to as a domain-specific language (DSL).

Our work has been inspired by climate impact research, but our main goal has

been to provide a framework of domain-independent notions. It is a responsibility

of the developers of a DSL for climate impact research – a team that necessarily

has to include climate scientists and decision makers – to give meaning to notions

like sustainability in a suitable DSL.

But we have to ask ourselves whether our domain-independent notions are flexible

enough to support such a DSL. And since our main motivation comes from climate

impact research, our notions should be at least able to support a DSL for this

domain.

From this angle, the notion of avoidability outlined above is perhaps too narrow.

Consider, again, the problem of designing abatement policies for GHG emissions.

7 An exception to this rule is the vocabulary used in discussing our stylized GHG emissions problem
and the usage of the term “policy” that is widely used in a number of application domains. We feel
that its usage here is justified: policy is a standard notion in control theory and our notion of policy
is consistent with that usage.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

40 N. Botta et al.

Here, it seems natural for a decision maker to raise the question whether a future state

x ′ that is considered to be particularly bad from the point of view of sustainability

can be avoided given a (factual or hypothetical) “current” state x , given that x ′ is

reachable from x , etc. In this case the property of x ′ being unsustainable could be

expressed by the property of x ′ being viable only for a limited number of steps.

Perhaps x ′ is to be avoided because it is only viable for zero steps like for instance

states a , b and c at time 2 in Figure 2. In this case, the intuition is that a meaningful

alternative to x ′ should be more viable than x ′. We can capture this idea by dropping

the requirement that the alternative state has to be as viable as x ′. This is easily

done by replacing Viable n x ′ in the argument list of AvoidableFrom with a natural

number m and by requiring the alternative to x ′ to be viable for m steps:

AvoidableFrom : (x ′ : State t ′) → (x : State t) → x ′ ‘ReachableFrom ‘ x → (m : �) → Type

AvoidableFrom {t ′ } x ′ x r m = Σ (State t ′) (λx ′′ ⇒ Alternative x m x ′ x ′′)

Thus, the generalization introduces a family of avoidability notions through the

additional parameter m . This parameter allows one to strengthen or to weaken the

viability requirements that the alternative state has to fulfill. This gives advisors

more flexibility to adapt the notion of avoidability to the specific decision problem.

For a given decision problem, it allows stakeholders to investigate the consequences

of weaker and stronger notions of avoidability.

4.4 Decidability of avoidability

Beside formalizing notions of avoidability, an avoidability theory has to answer the

question of whether such notions are decidable. This is crucial for applications.

Knowing what it means for future states to be avoidable is essential to give content

to notions that build upon avoidability. In climate impact research, for instance,

mitigation and adaptation (Allwood et al., 2014) depend on the notion of avoidability.

They take on different meanings as the underlying notion of avoidability changes.

Another notion that depends on that of avoidability is levity (Otto and Levermann,

2011). In a nutshell, the idea is that a future state that is potentially very harmful

and easily avoidable (perhaps because there are many alternative states) has a high

levity. The rationale behind this notion is normative: policies should try to avoid

states with high levity values. Obviously, different notions of avoidability imply

different notions of levity.

For applications, however, it is often important to be able to assess whether a

given future state x ′ – again, given a current state x , etc. – is avoidable or not.

In other words, it is important to have a decision procedure which allows one to

discriminate between states which are avoidable and states which are not avoidable.

Decidability does not, in general, come for free. A typical example is that of

equality. We have a very clear notion of what it means for two functions to be

equal: they have to have the same value at every point. But, in general, we do not

have a decision procedure for equality of functions. For functions on real numbers,

for instance, we do not have a decision procedure even if we restrict ourselves to

equality on a closed interval.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 41

The example makes clear that, if we do not introduce additional requirements,

there is little hope for avoidability to be decidable: nothing so far prevents State t

from being functions of real variables! A minimal requirement is that equality on

states is decidable

decEqState : (x : State t) → (x ′ : State t ′) → Dec (x = x ′)

and we expect most practical applications to fulfill this requirement: if states cannot

be distinguished from each other, decision makers will have a very hard time

implementing no matter which policy! In the specification above, Dec is the standard

decidability notion from Idris’ prelude:

data Dec : Type → Type where

Yes : {P : Type } → (p : P) → Dec P

No : {P : Type } → (np : P → Void) → Dec P

The idea is that if a predicate P : Type is decidable, then we have either an evidence

– this is just a value p : P wrapped by Yes – or a function np : P → Void wrapped

by No. In Idris, Void represents the empty type.

Thus, our notion of avoidability is decidable if we can implement a function that

returns a value of type Dec (AvoidableFrom x ′ x r m) for every x ′, x , r , and m of

the appropriate types. In the next section, we discuss under which conditions we

can implement such a function and provide an implementation. We conclude this

section with two remarks.

An important consequence of decidability is that one can implement a Boolean

test. Thus, if avoidability is decidable, decision makers could rely on a test that

provably returns True if a state x ′ is avoidable from x and False if x ′ is not

avoidable. This could be very useful, for instance in negotiations.

A second implication of avoidability being decidable is that one could easily derive

avoidability orderings and use these to compute provably optimal precautionary

policies. For instance, one could say that a state x is more avoidable than y if x has

a bigger set of alternative states. Such orderings could be combined with measures

of possible harm to construct, e.g., reward functions that assign low values to states

that are highly avoidable and are possibly very harmful. This would support a more

disciplined and more transparent approach towards policy advice, in particular for

decision problems in which realistic estimates of costs and benefits are lacking or

questionable.

Decidability allows scientific advisors to suggest accountable decision making

using core principles, such as levity, avoidance, and safety in climate impact research.

4.5 Finite types and decidability

Consider again the notion of avoidability introduced in the last section:

AvoidableFrom : (x ′ : State t ′) → (x : State t) → x ′ ‘ReachableFrom ‘ x → (m : �) → Type

AvoidableFrom {t ′ } x ′ x r m = Σ (State t ′) (λx ′′ ⇒ Alternative x m x ′ x ′′)

This notion explains x ′ : State t ′ to be avoidable from x : State t if there exists

a state x ′′ : State t ′ such that Alternative x m x ′ x ′′. Thus, a decision procedure

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

42 N. Botta et al.

for avoidability has to provide, for every x ′, x , r , and m either an alternative

state or a contradiction. In Idris, a contradiction is a function that, given a

x ′′ : State t ′ and a value of type Alternative x m x ′ x ′′, produces a value of

the empty type. Thus, a minimal condition for avoidability to be decidable is

that Alternative x m x ′ x ′′ is decidable for every x , m , etc. The intuition is that

decidability of Alternative x m x ′ x ′′ is also sufficient if State t ′ is finite.

This intuition is correct and certainly does not depend on anything specific to

State. We can afford to be a little bit more general and formulate

finiteDecSigmaLemma : {A : Type } → {P : A → Type } →
Finite A → ((a : A) → Dec (P a)) → Dec (Σ A P)

We read the lemma as follows: if A is a finite type and P : A → Type is decidable,

then Σ A P is decidable. We have to explain what it means for a type A to be

finite. The idea is that A is finite if there exists a natural number n such that A is

isomorphic to Fin n

Finite : Type → Type; Finite A = Σ � (λn ⇒ Iso A (Fin n))

We do not detail here the notions of an isomorphism and of Fin . These would

introduce technicalities that add little to the theory proposed here. In the same

spirit, we do not provide a formal proof of finiteDecSigmaLemma here but the

idea is clear: a finite type A of cardinality n can be represented by a value of

type Vect n A and the question of whether there exists a value in A that fulfills

a decidable predicate can be answered by linear search on a vector representation

of A.

4.6 Decidability of avoidability, continued

In the last section, we have shown that, if Alternative x m x ′ x ′′ is decidable for

every x ′′ : State t ′ and State t ′ is finite, then avoidability of x ′ is decidable. The next

and last step is to discuss under which conditions Alternative x m x ′ x ′′ is decidable.

This is pretty straightforward: Alternative x m x ′ x ′′ is just a synonym for three

conditions:

Alternative x m x ′ x ′′ = (x ′′ ‘ReachableFrom ‘ x ,Viable m x ′′,Not (x ′′ = x ′))

Thus, we have to understand under which conditions x ′′ ‘ReachableFrom ‘ x ,

Viable m x ′′ and Not (x ′′ = x ′) are decidable. A necessary and sufficient condition

for Not (x ′′ = x ′) to be decidable is that equality in State t ′ (both x ′′ and x ′ are states

in State t ′) is decidable. As already mentioned, this is a very natural assumption,

posited via decEqState. What about reachability and viability? Let’s look at viability

first. We have introduced Viable in Section 3.8 through the specification

Viable : (n : �) → State t → Type

viableBaseCase : (x : State t) → Viable Z x

viableToGoodCtrl : (x : State t) → Viable (S n) x → GoodCtrl t x n

viableFromGoodCtrl : (x : State t) → GoodCtrl t x n → Viable (S n) x

An implementation of Viable that fulfils this specification is

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 43

Viable : (n : �) → State t → Type

Viable {t } Z = ()

Viable {t } (S m) x = GoodCtrl t x m

A decision procedure for Viable n x is a function that computes a value of type

Dec (Viable n x) for every n : �, t : � and x : State t:

decViable : (n : �) → (x : State t) → Dec (Viable n x)

Can we implement such a function for Viable defined as above? The case n equal

to zero is trivial: by definition, every state is viable for zero steps:

decViable Z = Yes ()

For n = S m , Viable n x is equal to GoodCtrl t x m . Provided Ctrl t x is finite and

we have a decision procedure for Good

finCtrl : (x : State t) → Finite (Ctrl t x)

decGood : (x : State t) → (n : �) → (y : Ctrl t x) → Dec (Good t x n y)

we can easily complete the implementation of decViable and obtain decidability of

Viable:

decViable {t } (S m) x = finiteDecSigmaLemma (finCtrl x) (decGood x m)

In Section 3.8, we have explained that controls which are good for performing m

further decision steps yield non-empty M -structures of possible next states such that

all states in such structures support at least m further decision steps

Good t x m y = (NotEmpty (nexts t x y),All (Viable {t = S t } m) (nexts t x y))

Thus, decidability of Good can be reduced to decidability of NotEmpty and, provided

that Viable is decidable, to decidability of All . It might appear that we are stuck

in a circular argument: decidability of Viable requires decidability of Good which

requires decidability of Viable Fortunately, this is not the case. If the control

space is finite, it is enough for NotEmpty and All to be decidable for M -structures

of states

decAll : (P : (State t) → Type) → ((x : State t) → Dec (P x)) →
(mx : M (State t)) → Dec (All P mx)

decNotEmpty : (mx : M (State t)) → Dec (NotEmpty mx)

for deriving decidability of Good and of Viable inductively:

mutual

decGood : (x : State t) → (m : �) → (y : Ctrl t x) → Dec (Good t x m y)

decGood {t } x m y = decPair (decNotEmpty mx ′) (decAll (Viable m) (decViable m) mx ′) where

mx ′ : M (State (S t)); mx ′ = nexts t x y

decViable : (n : �) → (x : State t) → Dec (Viable n x)

decViable Z = Yes ()

decViable {t } (S m) x = finiteDecSigmaLemma (finCtrl x) (decGood x m)

A similar argument shows that, if, again, Ctrl t x is finite and we have a decision

procedure for x ∈ mx for arbitrary x : State t and mx : M (State t)

decElem : (x : State t) → (mx : M (State t)) → Dec (x ∈ mx)

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

44 N. Botta et al.

then the predecessor relation Pred is decidable:

decPred : (x : State t) → (x ′ : State (S t)) → Dec (x ‘Pred ‘ x ′)

decPred {t } x x ′ = finiteDecSigmaLemma (finCtrl x) (λy ⇒ decElem x ′ (nexts t x y))

From here and using decidability of conjunctions and disjunctions, it is easy to see

that ReachableFrom is decidable, too:

decReachableFrom : (x ′′ : State t ′′) → (x : State t) → Dec (x ′′ ‘ReachableFrom ‘ x)

decReachableFrom {t ′′ = Z } {t } x ′′ x = decPair dp dq where

dp : Dec (t = Z); dp = decEq t Z

dq : Dec (x = x ′′); dq = decEqState x x ′′

decReachableFrom {t ′′ = S t ′ } {t } x ′′ x = decEither dp dq where

dp : Dec (t = S t ′, x = x ′′); dp = decPair (decEq t (S t ′)) (decEqState x x ′′)

dq : Dec (Σ (State t ′) (λx ′ ⇒ (x ′ ‘ReachableFrom ‘ x , x ′ ‘Pred ‘ x ′′)))

dq = finiteDecSigmaLemma fState dRP where

fState : Finite (State t ′); fState = finState t ′

dRP : (x ′ : State t ′) → Dec (x ′ ‘ReachableFrom ‘ x , x ′ ‘Pred ‘ x ′′)

dRP x ′ = decPair drf dpred where

drf : Dec (x ′ ‘ReachableFrom ‘ x); drf = decReachableFrom x ′ x

dpred : Dec (x ′ ‘Pred ‘ x ′′); dpred = decPred x ′ x ′′

We can summarize the results of this section in the following result: for finite state

and control spaces, if equality on states and the monadic container queries Elem ,

NotEmpty , and All are decidable, then Viable and ReachableFrom are decidable and

therefore avoidability is decidable.

4.7 Further thoughts

We have motivated our formalization of the notion of avoidability with the need

of tackling decision problems in which estimates of rewards are unavailable or are

considered to be problematic. If, however, reward (cost) estimates are available and

we have computed sequences of policies that provably avoid certain future states,

we can ask ourselves what is the (minimal, maximal, average, etc.) cost of avoiding

such states.

This question can be answered by applying the possibleStateCtrlSeqs function

discussed at the end of Section 3.11 (and implemented in Appendix E) to our policy

sequence. Of course, cost estimates will be relative to a “current” state.

For a sequence of policies for performing n decision steps and a current (viable

and reachable) state, possibleStateCtrlSeqs computes an M -structure of state-control

sequences of length n . Each sequence represents a possible consequence of applying

those policies from that current state. If the decision problem was stochastic and

therefore M is a probability distribution, each sequence will be associated to a

specific probability. Computing the cost of a sequence of state-control pairs is

straightforward:

valStateCtrlSeq : (t : �) → (n : �) → StateCtrlSeq t n → Val

valStateCtrlSeq t Z (Nil x) = zero

valStateCtrlSeq t (S Z) ((MkSigma x y) :: (Nil x ′)) = reward t x y x ′

valStateCtrlSeq t (S (S m)) ((MkSigma x y) :: (MkSigma x ′ y ′) :: xys) =

reward t x y x ′ ⊕ valStateCtrlSeq (S t) (S m) ((MkSigma x ′ y ′) :: xys)

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 45

Mapping valStateCtrlSeq on the state-control sequences computed by possibleState

CtrlSeqs yields an M -structure of possible costs. Now, one can compute minimal,

maximal, average cost of avoiding certain future states or whatever other cost

measure as desired.

5 Conclusions

In the first part of this paper, we have outlined a theory of decision making for

SDPs.

The theory is motivated by decision problems in climate impact research but can

also be applied to other domains. It supports a disciplined, accountable approach

towards policy advice and a rigorous treatment of decision problems under different

kinds of uncertainty. These encompass (but are not limited to) deterministic (no

uncertainty), non-deterministic, and stochastic uncertainty.

The theory requires decision problems to be specified in terms of four entities:

a state space, a decision space, a transition function, and a reward function. It

gives precise meaning(s) to notions which, in informal approaches towards policy

advice and decision making, are often unclear. In particular, the theory explains

the notions of decision process, decision problem, policy, policy sequence, and

optimality of policy sequences. It also provides decision makers with a generic

procedure for computing provably optimal policy sequences. Thus, the theory

makes an accountable approach toward policy advice possible. Examples of com-

putations of optimal policies and scenarios for variations (deterministic, non-

deterministic, stochastic) of the problem sketched in Figures 2 and 3 are available

in SequentialDecisionProblems/examples2

In contrast to game theoretical approaches where multiple players are treated

explicitly and the temporal dimension is often treated implicitly, the approach

proposed here emphasizes a control theoretical perspective. The focus is on the

temporal dimension and the point of view is that of an individual decision maker.

Notice that this does not imply that we can only apply the theory to problems

where there is only a single decision maker. While decision problems with multiple

players (and, perhaps, with free-riding opportunities for individual decision makers

as they commonly appear, for instance, in models of international environmental

agreements) cannot be described explicitly in the theory, they can certainly can be

modeled. Thus, for instance, we could apply the theory to investigate the effectiveness

of measures designed to incentivate (coerce, enforce) coordination in a competitive

game with a “Tragedy of the Commons” like structure (Hardin, 1968), by setting

up a chain of (possibly sequential) decision problems. In each such problems,

the transition function for the single “representative” decision maker explicitly

represented in our theory would encode the collective behavior of the other decision

makers. Modeling competitive games with multiple, different decision makers would

be more complicated but possible. The solution of a decision problem would inform

the transition function of the next problem in the chain, and so on. The study of the

evolution of coordination – in particular, under uncertainty – would be an interesting

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

46 N. Botta et al.

subject at the border between game theory, control theory and evolutionary decision

making (Ellison, 1993; Peyton Young, 1993; Ellison, 1995; Peyton Young, 2001).

In the second part of our paper, we have worked towards extending our theory

to decision problems for which a reward function is not obviously available or

for which notions of optimality based on costs-benefits analyses are questionable.

The extension is based on the idea of avoidability. We have proposed a family of

avoidability notions and discussed under which conditions avoidability is decidable.

We have also sketched how decidable notions of avoidability could be used to derive

avoidability measures.

Avoidability measures could be applied in climate impact research, e.g., to

operationalize notions of levity, mitigation, and adaptation. These notions are

considered to be crucial in policy advice but, to the best of our knowledge, have not

so far been formalized. We consider our theory as a first step in this direction.

6 Future work

In Section 3.1, we noted that “In climate impact research, it is probably safe to

assume that the specification of State and Ctrl cannot be meaningfully delegated to

decision makers and requires a close collaboration between these, domain experts

and perhaps modelers.” As future work we would like to develop a Domain Specific

Language to support the specification of SDPs. The aim would be to (A) make

it easier for domain experts to describe a problem in a way that fits the theory

developed here and (B) develop a collection of simple examples and reusable

combinators to build more complex SDPs.

Our algorithms for solving SDPs are based on computable policies. In Section 3.5,

we wrote “In control theory such functions are called policies and we argue that the

main content of policy advice – what advisors are to provide to decision makers –

are policies, perhaps, in practice, policy ‘explanations’ or narratives.” Future work

includes investigating how to provide (or even parse) “text approximations” of

policies using natural language technology.

A Auxiliary functions

In Section 3.9, we have used the following auxiliary functions:

ctrl : GoodCtrl t x n → Ctrl t x

ctrl (MkSigma y) = y

allViable : (y : GoodCtrl t x n) → All (Viable n) (nexts t x (ctrl y))

allViable (MkSigma p) = snd p

B Bellman’s principle

The proof of Bellman’s principle from Section 3.10 in full:

Bellman : (ps : PolicySeq (S t) m) → OptPolicySeq ps →
(p : Policy t (S m)) → OptExt ps p → OptPolicySeq (p :: ps)

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 47

Bellman {t } {m } ps ops p oep = opps where

opps : OptPolicySeq (p :: ps)

opps x r v (p ′ :: ps ′) = transitive	 s4 s5 where

gy ′ : GoodCtrl t x m; gy ′ = p ′ x r v

y ′ : Ctrl t x ; y ′ = ctrl gy ′

mx ′ : M (State (S t)); mx ′ = nexts t x y ′

av ′ : All (Viable m) mx ′; av ′ = allViable gy ′

f ′ : PossibleNextState x (ctrl gy ′) → Val ; f ′ = sval x r v gy ′ ps ′

f : PossibleNextState x (ctrl gy ′) → Val ; f = sval x r v gy ′ ps

s1 : (x ′ : State (S t)) → (r ′ : Reachable x ′) → (v ′ : Viable m x ′) →
val x ′ r ′ v ′ ps ′ 	 val x ′ r ′ v ′ ps

s1 x ′ r ′ v ′ = ops x ′ r ′ v ′ ps ′

s2 : (z : PossibleNextState x (ctrl gy ′)) → (f ′ z) 	 (f z)

s2 (MkSigma x ′ x ′emx ′) =

monotonePlus	 (reflexive	 (reward t x y ′ x ′)) (s1 x ′ r ′ v ′) where

ar ′ : All Reachable mx ′; ar ′ = reachableForward x r y ′

r ′ : Reachable x ′; r ′ = allElemSpec0 x ′ mx ′ ar ′ x ′emx ′

v ′ : Viable m x ′; v ′ = allElemSpec0 x ′ mx ′ av ′ x ′emx ′

s3 : meas (fmap f ′ (tagElem mx ′)) 	 meas (fmap f (tagElem mx ′))

s3 = measMon f ′ f s2 (tagElem mx ′)

s4 : val x r v (p ′ :: ps ′) 	 val x r v (p ′ :: ps); s4 = s3

s5 : val x r v (p ′ :: ps) 	 val x r v (p :: ps); s5 = oep x r v p ′

In the above implementation, we construct a function opps that returns a value of

type

val x r v (p ′ :: ps ′) 	 val x r v (p :: ps)

for arbitrary p ′ :: ps ′, x , r , and v . This is finally done by applying transitivity of ()

to s4 and s5 . The computation of s5 is trivial and follows directly from the fourth

argument of Bellman , oep. This is a proof that p is an optimal extension of ps . In

order to compute s4 , we proceed as outlined in Section 3.9: we first apply optimality

of ps to deduce that

val x ′ r ′ v ′ ps ′ 	 val x ′ r ′ v ′ ps

for arbitrary x ′ : State (S t) which are reachable and viable m steps. This is done

in s1 . Then, we show that f ′ is point-wise smaller than f by applying monotonicity

of (⊕) w.r.t. (). This is encoded in s2 . Finally, we apply the monotonicity of

meas to compute s3 that is equal to s4 by definition of val . Notice that, in the

implementation of Bellman , sval is the function defined as in Section 3.9.

C Optimal extensions

We have to show that, for every policy sequence ps : PolicySeq (S t) n , the policy

p = optExt ps : Policy t (S n) is an optimal extension of ps . This means showing

that, for every p ′ : Policy t (S n), x : State t , r : Reachable x and v : Viable (S n) x ,

one has

val x r v (p ′ :: ps) 	 val x r v (p :: ps)

This immediately follows from the definition of optExt and from the specification

of cvalmax and cvalargmax . From cvalmaxSpec, we know that, for every good

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

48 N. Botta et al.

control gy ′, cval x r v ps gy ′ 	 cvalmax x r v ps . This holds, in particular, for

gy ′ = p ′ x r v :

cval x r v ps (p ′ x r v) 	 cvalmax x r v ps

From cvalargmaxSpec, we know that cvalmax x r v ps = cval x r v ps (cvalargmax

x r v ps). Therefore,

cval x r v ps (p ′ x r v) 	 cval x r v ps (cvalargmax x r v ps)

But by definition of optExt , cvalargmax x r v ps is just p x r v . Therefore,

cval x r v ps (p ′ x r v) 	 cval x r v ps (p x r v)

The result follows from the definition of cval . In the implementation of optExtLemma ,

s3 to s5 are trivial consequences of s2 . They are written explicitly here to improve

understandability but we could as well define optExtLemma {t } {n } ps p ′ x r v to

be equal to s2 and erase the last 3 lines of the program:

optExtLemma : (ps : PolicySeq (S t) n) → OptExt ps (optExt ps)

optExtLemma {t } {n } ps x r v p ′ = s5 where

p : Policy t (S n); p = optExt ps

gy : GoodCtrl t x n; gy = p x r v

y : Ctrl t x ; y = ctrl gy

av : All (Viable n) (nexts t x y); av = allViable gy

gy ′ : GoodCtrl t x n; gy ′ = p ′ x r v

y ′ : Ctrl t x ; y ′ = ctrl gy ′

av ′ : All (Viable n) (nexts t x y ′); av ′ = allViable gy ′

f : PossibleNextState x (ctrl gy) → Val ; f = sval x r v gy ps

f ′ : PossibleNextState x (ctrl gy ′) → Val ; f ′ = sval x r v gy ′ ps

s1 : cval x r v ps gy ′ 	 cvalmax x r v ps; s1 = cvalmaxSpec x r v ps gy ′

s2 : cval x r v ps gy ′ 	 cval x r v ps (cvalargmax x r v ps)

s2 = replace {P = λz ⇒ (cval x r v ps gy ′ 	 z)} (cvalargmaxSpec x r v ps) s1

s3 : cval x r v ps gy ′ 	 cval x r v ps gy; s3 = s2

s4 : meas (fmap f ′ (tagElem (nexts t x y ′))) 	 meas (fmap f (tagElem (nexts t x y))); s4 = s3

s5 : val x r v (p ′ :: ps) 	 val x r v (p :: ps); s5 = s4

D Core theory and full theory: the assumptions

We list all parameters and functions that have to be defined to specify and solve

a SDP (core theory). Specifications that are not strictly necessary to instantiate the

theory, for instance viableBaseCase from Section 3, are not listed here.

M : Type → Type

fmap : {A,B : Type } → (A → B) → M A → M B

Elem : {A : Type } → A → M A → Type

NotEmpty : {A : Type } → M A → Type

All : {A : Type } → (P : A → Type) → M A → Type

allElemSpec0 : {A : Type } → {P : A → Type } →
(a : A) → (ma : M A) → All P ma → a ∈ ma → P a

tagElem : {A : Type } → (ma : M A) → M (Σ A (λa ⇒ a ∈ ma))

Val : Type

zero : Val

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 49

(⊕) : Val → Val → Val

() : Val → Val → Type

meas : M Val → Val

State : (t : �) → Type

Ctrl : (t : �) → (x : State t) → Type

nexts : (t : �) → (x : State t) → (y : Ctrl t x) → M (State (S t))

reward : (t : �) → (x : State t) → (y : Ctrl t x) → (x ′ : State (S t)) → Val

Viable : (n : �) → State t → Type

viableToGoodCtrl : (x : State t) → Viable (S n) x → GoodCtrl t x n

Reachable : State t ′ → Type

reachableForward : (x : State t) → Reachable x → (y : Ctrl t x) → All Reachable (nexts t x y)

cvalargmax : (x : State t) → (r : Reachable x) → (v : Viable (S n) x) →
(ps : PolicySeq (S t) n) → GoodCtrl t x n

The following parameters and functions (full theory) are sufficient to implement a

machine checkable proof that the results of the core theory are correct:

reflexive	 : (a : Val) → a 	 a

transitive	 : (a : Val) → (b : Val) → (c : Val) → a 	 b → b 	 c → a 	 c

monotonePlus	 : {a , b, c, d : Val } → a 	 b → c 	 d → (a ⊕ c) 	 (b ⊕ d)

measMon : {A : Type } → (f : A → Val) → (g : A → Val) →
((a : A) → (f a) 	 (g a)) → (ma : M A) → meas (fmap f ma) 	 meas (fmap g ma)

cvalmax : (x : State t) → (r : Reachable x) → (v : Viable (S n) x) →
(ps : PolicySeq (S t) n) → Val

cvalargmaxSpec : (x : State t) → (r : Reachable x) →
(v : Viable (S n) x) → (ps : PolicySeq (S t) n) →
cvalmax x r v ps = cval x r v ps (cvalargmax x r v ps)

cvalmaxSpec : (x : State t) → (r : Reachable x) →
(v : Viable (S n) x) → (ps : PolicySeq (S t) n) →
(gy : GoodCtrl t x n) → (cval x r v ps gy) 	 (cvalmax x r v ps)

E State-control trajectories

The implementation of possibleStateCtrlSeqs from Section 3.11:

possibleStateCtrlSeqs : (x : State t) → (r : Reachable x) → (v : Viable n x) →
(ps : PolicySeq t n) → M (StateCtrlSeq t n)

possibleStateCtrlSeqs {t } {n = Z } x r v Nil = ret (Nil x)

possibleStateCtrlSeqs {t } {n = S m } x r v (p :: ps ′) =

fmap g (bind (tagElem mx ′) f) where

y : Ctrl t x ; y = ctrl (p x r v)

mx ′ : M (State (S t)); mx ′ = nexts t x y

av : All (Viable m) mx ′; av = allViable (p x r v)

g : StateCtrlSeq (S t) m → StateCtrlSeq t (S m); g = ((MkSigma x y)::)

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

50 N. Botta et al.

f : Σ (State (S t)) (λx ′ ⇒ x ′ ∈ mx ′) → M (StateCtrlSeq (S t) m)

f (MkSigma x ′ x ′emx ′) = possibleStateCtrlSeqs {n = m } x ′ r ′ v ′ ps ′ where

ar : All Reachable mx ′; ar = reachableForward x r y

r ′ : Reachable x ′; r ′ = allElemSpec0 x ′ mx ′ ar x ′emx ′

v ′ : Viable m x ′; v ′ = allElemSpec0 x ′ mx ′ av x ′emx ′

F Reachability from a given state

The implementation of reachableFromLemma from Section 4.2:

reachableFromLemma : (x ′′ : State t ′′) → (x : State t) → x ′′ ‘ReachableFrom ‘ x → t ′′ � t

reachableFromLemma {t ′′ = Z } {t = Z } x ′′ x prf = LTEZero

reachableFromLemma {t ′′ = S t ′ } {t = Z } x ′′ x prf = LTEZero

reachableFromLemma {t ′′ = Z } {t = S m } x ′′ x (prf1 , prf2) = void (uninhabited (sym prf1))

reachableFromLemma {t ′′ = S t ′ } {t = S t ′ } x ′′ x (Left (Refl , prf2)) = eqInLTE (S t ′) (S t ′) Refl

reachableFromLemma {t ′′ = S t ′ } {t = t } x ′′ x (Right (MkSigma x ′ (prf1 , prf2))) = s2 where

s1 : t ′ � t; s1 = reachableFromLemma x ′ x prf1

s2 : S t ′ � t; s2 = idSuccPreservesLTE t t ′ s1

Acknowledgments

The authors thank the JFP reviewers, whose comments have led to significant

improvements of the original manuscript.

The work presented in this paper heavily relies on free software, among others

on Idris, Agda, GHC, git, vi, Emacs, LATEX, and on the FreeBSD and Debian

GNU/Linux operating systems. It is our pleasure to thank all developers of these

excellent products.

References

Aldred, J. (2009) Ethics and climate change cost-benefit analysis: Stern and after,. URL

https://ideas.repec.org/p/lnd/wpaper/442009.html#cites.

Allwood, J., Bosetti, V., Dubash, N., Gómez-Echeverri, L. & von Stechow, C. (2014) Glossary.

In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Edenhofer,

O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum,

I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow,

C., Zwickel, T. & Minx, J. (eds). Cambridge, UK and New York, USA: Cambridge

University Press, pp. 33–51.

Bauer, N., Baumstark, L., Haller, M., Leimbach, M., Luderer, G., Lueken, M., Pietzcker,

R., Strefler, J., Ludig, S., Koerner, A., Giannousakis, A. & Klein, D. (2011) RE-

MIND: The equations. URL https://www.pik-potsdam.de/research/sustainable-

solutions/models/remind/remind-equations.pdf.

Bellman, R. (1957) Dynamic Programming. Princeton University Press.

Bird, R. (1998) Introduction to Functional Programming using Haskell. International Series in

Computer Science, 2nd ed. Prentice Hall.

Bird, R. & De Moor, O. (1997) Algebra of Programming, International Series in Computer

Science. Hemel Hempstead: Prentice Hall.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

Contributions to a computational theory of policy advice and avoidability 51

Botta, N., Ionescu, C. & Brady, E. (2013a) Sequential decision problems,

dependently-typed solutions. In Proceedings of the Conferences on Intelligent Computer

Mathematics (CICM 2013), “Programming Languages for Mechanized Mathematics Systems

Workshop (PLMMS)”, CEUR Workshop Proceedings, vol. 1010 CEUR-WS.org. URL

http://dblp.uni-trier.de/db/conf/mkm/cicmws2013.html#Botta13.

Botta, N., Jansson, P., Ionescu, C., Christiansen, D. R. & Brady, E. (2017) Sequential decision

problems, dependent types and generic solutions. Logical Methods Comput. Sci. 13(1).

doi: 10.23638/LMCS-13(1:7)2017.

Botta, N., Mandel, A., Hofmann, M., Schupp, S. & Ionescu, C. (2013b) Mathematical

specification of an agent-based model of exchange. In Proceedings of the AISB Convention

2013, “Do-Form: Enabling Domain Experts to use Formalized Reasoning” Symposium.

Brady, E. (2013) Idris, a general-purpose dependently typed programming language:

Design and implementation. J. Funct. Program. 23, 552–593. ISSN 1469-7653. URL

http://journals.cambridge.org/article S095679681300018X.

Carbone, J. C., Helm, C. & Rutherford, T. F. (2009) The case for international emission trade

in the absence of cooperative climate policy. J. Enviorn. Econ. Manage. 58, 266–280.

CoeGSS. (2015–2018) Center of excellence for global systems Science [online]. Accessed

December 30, 2015. Available at: http://coegss.eu/

De Moor, O. (1995) A generic program for sequential decision processes. In

PLILPS ’95 Proceedings of the 7th International Symposium on Programming Languages:

Implementations, Logics and Programs. Springer, pp. 1–23.

De Moor, O. (1999) Dynamic programming as a software component. Proceedings of the 3rd

WSEAS International Conference Circuits, Systems, Communications and Computers (CSCC

1999), pp. 4–8.

Ellison, G. (September 1993) Learning, local interaction, and coordination.

Econometrica 61(5), 1047–1071. URL http://ideas.repec.org/a/ecm/emetrp/

v61y1993i5p1047-71.html.

Ellison, G. (1995) Basins of Attraction, Long-Run Equilibria, and the Speed of Step-by-Step

Evolution. Technical Report, MIT, Department of Economics, Working Paper No. 96-4.

URL http://ssrn.com/abstract=139523.

European Comission (2013) Proposal for a financial transaction tax. URL http://ec.

europa.eu/taxation customs/taxation-financial-sector en#prop.

Finus, M., van Ierland, E. & Dellink, R. (2013) Stability of climate coalitions

in a cartel formation game. FEEM Working Paper No. 61.2003, 2003. URL

http://ssrn.com/abstract=447461.

Gintis, H. (2006) The emergence of a price system from decentralized bilateral exchange. B.

E. J. Theor. Econ. 6, 1302–1322.

Gintis, H. (2007) The dynamics of general equilibrium. Econ. J. 117, 1280–1309.

Gnesi, S., Montanari, U. & Martelli, A. (1981) Dynamic programming as graph searching:

An algebraic approach. J. ACM 28(4), 737–751.

Goodhart, C. (2004) Some new directions for financial stability? Per Jacobsson lecture,

Zurich, 27 June 2004. URL http://www.bis.org/events/agm2004/sp040627.htm.

GRACeFUL. (2015–2018) Global systems rapid assessment tools through constraint

functional Languages [online]. Accessed December 30, 2015. Available at:

https://www.graceful-project.eu/.

GSDP (2010–2013) Global systems dynamics and policy [online]. Accessed December 30,

2015. Available at: http://www.gsdp.eu/

Hardin, G. (1968) The tragedy of the commons. Science 162(3859), 1243–1248.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

52 N. Botta et al.

Heitzig, J. (2012) Bottom-up strategic linking of carbon markets: Which climate

coalitions would farsighted players form?, URL http://papers.ssrn.com/sol3/

papers.cfm?abstract id=2119219.

Helm, C. (2003) International emissions trading with endogenous allowance choices. J. Public

Econ. 87, 2737–2747.

Holtsmark, B. & Sommervoll, D. E. (2012) International emissions trading: Good or bad?

Econ. Lett. 117, 362–364.

Ionescu, C. (2009) Vulnerability Modelling and Monadic Dynamical Systems. PhD thesis, Freie

Universität Berlin.

Kydland, F. E. & Prescott, E. C. (June 1977) Rules rather than discretion: The inconsistency

of optimal plans. J. Political Econ. 85(3), 473–91. URL https://ideas.repec.

org/a/ucp/jpolec/v85y1977i3p473-91.html.

Mandel, A., Fürst, S., Lass, W., Meissner, F. & Jaeger, C. (2009) Lagom generiC: An agent-

based model of growing economies. ECF working paper, 1.

Moggi, E. (1991) Notions of computation and monads. Inform. Comput. 93(1), 55–92.

Mu, S.-C., Ko, H.-S. & Jansson, P. (2009) Algebra of programming in Agda: Dependent types

for relational program derivation. J. Funct. Program. 19, 545–579.

Otto, F. E. L. & Levermann, A. (2011) Levity — a concept for comple-

menting climate policy strategies. URL http://www.osti.gov/eprints/topicpages/

documents/record/666/1527922.html.

Peyton Young, H. (1993) The evolution of conventions. Econometrica 61, 57–84.

Peyton Young, H. (2001) Individual Strategy and Social Structure: An Evolutionary Theory of

Institutions. Princeton University Press.

Raven, P., Bierbaum, R. & Holdren, J. (2007) Confronting climate change: Avoiding the

unmanageable and managing the unavoidable. UN-Sigma Xi Climate Change Report.

URL https://www.sigmaxi.org/programs/critical-issues-in-science/un-sigma-

xi-climate-change-report.

Research Domain III, PIK. ReMIND-R. ReMIND-R is a global multi-regional model incor-

porating the economy, the climate system and a detailed representation of the energy sector.

http://www.pik-potsdam.de/research/sustainable-solutions/models/remind.

Sandler, T. & Enders, W. (2004) An economic perspective on transnational terrorism. Eur. J.

Political Econ. 20, 301–316.

Sandler, T. & G. Arce M., D. (2002) A conceptual framework for understanding global and

transnational public goods for health. Fiscal Stud. 23, 195–222.

Schellnhuber, H. J. (1998) Discourse: Earth system analysis – The scope of the challenge. In

Earth System Analysis: Integrating Science for Sustainability, Schellnhuber, H. & Wenzel,

V. (eds). Berlin/Heidelberg: Springer, pp. 3–195.

Spivey, M. (1990) A functional theory of exceptions. Sci. Comput. Program. 14(1), 25–42.

Webster, M. D. (2000) The Curious Role of “Learning” in Climate Policy: Should We Wait for

More Data? Technical Report, MIT Joint Program on the Science and Policy of Global

Change, Report No. 67.

Webster, M. D. (2008) Incorporating path dependency into decision-analytic methods: An

application to global climate-change policy. Decis. Anal. 5(2), 60–75.

https://doi.org/10.1017/S0956796817000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000156

