“Dark Winter,” I will discuss how to properly respond in the event of an outbreak. In the “Dark Winter” exercise, numerous deficiencies were found in current response methods and training of providers, which would ultimately lead to a large-scale epidemic with the potential to infect people globally.

Results: This discussion is only hypothetical in nature, and its ideas will only be put into practice in the event of an outbreak. However, by drawing from the deficiencies found in the outbreak exercise “Dark Winter,” changes are suggested in the response and training of medical personnel to better identify the disease and roll out a vaccination plan.

Conclusion: Through more thorough training, medical providers can be better prepared for the possibility of a biological attack involving smallpox. If an attack did occur, there would most certainly be chaos and civil unrest, tied with a public frightened from the disease. By employing lessons learned from previous outbreaks, and tying in modern ideas, the chances of a global pandemic forming can be reduced if applied appropriately and quickly.

Prehosp Disaster Med 2017;32(Suppl. 1):s6-s7
doi:10.1017/S1049023X17000486

Bio-Weapons Testing: History, Ethics, and Values
Leonard Cole
Emergency Medicine, Rutgers New Jersey Medical School, Ridgewood/United States of America

Study/Objective: An inquiry into open-air testing of biological weapons, by the United States and the United Kingdom, and the changed understanding of the propriety of such tests.

Background: During World War II and the Cold War, US and UK military authorities conducted hundreds of open-air tests with pathogens, and also with less dangerous microbes described as “simulant” agents. The causative agents of diseases including anthrax, plague, and brucellosis were released in largely populated areas to assess their effects on test animals. Simulants, including Serratia marcescens and Bacillus globigii (Bacillus subtilis) were released in population centers to study the dispersal patterns of potential warfare agents in a human population.

Methods: included development of information, based on past open-air biological weapons tests, review of current relevant literature, and of the evolution of ethics and values regarding human subject research.

Results: Besides providing information about the efficacy of biological weapons, the open-air programs left a legacy of unintended consequences, including lawsuits against the government for concealing information about the tests and their possible dangers. The simulants, S marcescens and B globigii, previously considered by some to be harmless, are now deemed human pathogens.

Conclusion: Western political culture has changed since the early days of the American and British testing programs. People have become less reluctant to question authority, and institutional review boards must now pre-approve research involving human subjects. Further, the heightened stringency of laboratory containment has accentuated the safety gap between a confined test space and one without physical boundaries. All this makes it less likely that masses of people would again be unwittingly subjected to secret, open-air, biological warfare tests.

Prehosp Disaster Med 2017;32(Suppl. 1):s7
doi:10.1017/S1049023X17000474

Improvements that FP7 European Projects Provide to CBRN SOPs and Responder Protection
Catherine Bertrand (Presenter), E Lecarpentier
Hopital Henri Mondor, AP-HP SAMU 94, Creteil/France

April 2017
Prehospital and Disaster Medicine

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 14 Mar 2019 at 09:55:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1049023X17000486
Study/Objective: The aim of this presentation is to select key results learned from FP7 funded European projects on security research on the CBRNE field.

Background: International events remind us that Chemical, Biological, Radiologic, Nuclear, and Explosive (CBRNe) events can have multiple facets and can concern the civilian population. Our goal is to take care of victims and to keep the First Responders (FRs) safe while they perform their tasks at the scene and in hospitals. Recent events in Paris have impacted our way of understanding the suitability of our current countermeasures and demonstrated the accuracy of securing and increasing the FRs’s protection.

Methods: Several European projects, such as Extension Disaster Education Network (EDEN) and IFREACT, that we have been working on offered the opportunity to compare standard operational procedures (SOPs) in large field exercises and to test FRs’s protection means. In this presentation, EU project’s innovations are highlighted in a medical aspect, in particular, the medical response in a CBRNE environment, from decision making on the scene to the care of victims in the hospitals.

Results: In all CBRNE situations, anticipation, adaptability, flexibility, and interoperability are the key goals to achieve. They rely on a doctrine which firstly implies situational awareness and information sharing between all the stakeholders. Secondly, it also includes safety measures and security issues for FRs with the adapted equipment and PPE (personal protective equipment) enabling decontamination procedures in a contaminated area. And thirdly, it provides safe health procedures with fast medical triage and treatment on the scene and in hospitals.

Conclusion: Increasing technology efficiency with user-friendly communication and detection tools, increasing the FR’s safety and training with non-bulky PPE, and educating the population are key factors to improve SOPs and human behavior.

Mass Exposure to Hydrofluoric Acid and Response: The Green Island Fire, New York

David Kassel1, Gregory P. Wu1, Michael W. Dailey2, Kevin P. Collins1, Molly Boyd3
1. Department Of Emergency Medicine, Albany Medical Center, Albany/NY/United States of America
2. Division Of Emergency Medical Services, Albany Medical Center, Albany/NY/United States of America
3. Division Of Medical Toxicology, Albany Medical Center, Albany/NY/United States of America

Study/Objective: This case study will evaluate a mass casualty disaster caused by Hydrofluoric Acid (HFA), as well as the importance of interdisciplinary coordination in dealing with such an event.

Background: HFA is an extremely toxic and widely used solvent in industry. Upon exposure, profound hypocalcemia, arrhythmias and multisystem failure can occur. In high concentrations of HFA, as little as 2.5% BSA exposure can be lethal. On November 3, 2015 during an industrial fire in Green Island, New York, 33 firefighters and employees were accidentally exposed to high concentration HFA when it was accidentally aerosolized in the process of extinguishing the fire.

Methods: Not Applicable

Results: Upon identification of the HFA exposure disaster protocols were initiated. Local emergency departments were notified, and the on scene physicians established an on-site command center. Decontamination sites were established on scene and at a nearby fire headquarters. Local providers were in close communication with all local hospitals involved. Numerous measures were performed to ensure readiness. This included clearing the Emergency Department of existing patients, assistance from hospitalists and trauma surgery, and triaging in the ED. Ad hoc standardized treatment protocols and order sets, were written for rapid patient evaluation and treatment. Pharmacy staff compounded calcium compounds for topical and intravenous administration. Patients underwent various interventions in the ED for their exposure.