(c) Canadian Mathematical Society 2011

Linear Forms in Monic Integer Polynomials

Artūras Dubickas

Abstract. We prove a necessary and sufficient condition on the list of nonzero integers u_{1}, \ldots, u_{k}, $k \geqslant 2$, under which a monic polynomial $f \in \mathbb{Z}[x]$ is expressible by a linear form $u_{1} f_{1}+\cdots+u_{k} f_{k}$ in monic polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$. This condition is independent of f. We also show that if this condition holds, then the monic polynomials f_{1}, \ldots, f_{k} can be chosen to be irreducible in $\mathbb{Z}[x]$.

1 Representations by a Linear Form

In 1965, Hayes [4] proved that every polynomial in $\mathbb{Z}[x]$ of degree $d \geqslant 1$ is expressible as the sum of two irreducible polynomials in $\mathbb{Z}[x]$, each of degree d. This result was later rediscovered by Rattan and Stewart in [8], and its various generalizations and specializations (for monic polynomials, for polynomials in the ring $R[x]$, where R is not necessarily \mathbb{Z}, for matrices, etc.) have been given in [1,3,5,7,11-13]. In particular, for a monic polynomial f in the ring $\mathbb{Z}[x]$, there is an asymptotical formula for the number of representations of f by the sum of several irreducible monic polynomials, each of height at most T (see $[2,6,9]$).

To give a more complete treatment of the subject, we shall investigate the representations of a monic polynomial $f \in \mathbb{Z}[x]$ of degree $d \geqslant 2$ by a linear form

$$
\begin{equation*}
f(x)=u_{1} f_{1}(x)+u_{2} f_{2}(x)+\cdots+u_{k} f_{k}(x) \tag{1.1}
\end{equation*}
$$

in monic irreducible polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x], k \geqslant 2$, each of height at most T, where $u_{i}, i=1, \ldots, k$, are some fixed nonzero integers. The cases $k=2, u_{1}=$ $u_{2}=1$, and $k \geqslant 2, u_{1}=\cdots=u_{k}=1$, have been considered in $[2,6,9]$. It is shown that then there are asymptotically $c_{k, d} T^{(k-1)(d-1)}$ of such representations as $T \rightarrow \infty$, where $d=\operatorname{deg} f \geqslant 2$ and $c_{k, d}>0$ is a constant independent of T.

Obviously, for some collections u_{1}, \ldots, u_{k}, there are no representations (1.1) in monic polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$. For instance, if there is an integer $s>1$ that divides all the numbers u_{1}, \ldots, u_{k} then the right hand side of (1.1) is a polynomial whose coefficients are all divisible by s, so no monic polynomial f can be represented by (1.1). The same is true if, for instance, $k=2, u_{1}=5, u_{2}=-2$. Then no polynomial of the form $5 f_{1}-2 f_{2}$ is a monic polynomial provided that f_{1}, f_{2} are monic, because the leading coefficient of $5 f_{1}-2 f_{2}$ is in the set $\{-2,3,5\}$.

However, if, for instance, $k=3, u_{1}=5, u_{2}=-2, u_{3}=-3$, then one can prove that every monic polynomial $f \in \mathbb{Z}[x]$ of degree at least 1 can be represented by the linear form (1.1). Selecting, e.g., $f(x)=x^{3}-x-3$, we see that

$$
x^{3}-x-3=5 \cdot\left(x^{m}+2 x^{3}-2 x+2\right)-2 \cdot\left(x^{m}+2\right)-3 \cdot\left(x^{m}+3 x^{3}-3 x+3\right)
$$

[^0]for every $m \geqslant 4$. Moreover, the polynomials $x^{m}+2 x^{3}-2 x+2, x^{m}+2$ and $x^{m}+3 x^{3}-3 x+$ 3 , where $m \geqslant 4$, are irreducible by Eisenstein's criterion. Thus, for the polynomial $f(x)=x^{3}-x-3$, there are infinitely many of representations $f=5 f_{1}-2 f_{2}-3 f_{3}$ in monic integer polynomials f_{1}, f_{2}, f_{3} of height at most 3 .

In this note we shall investigate the following natural questions:

- Given a monic polynomial $f \in \mathbb{Z}[x]$ of degree $d \geqslant 1$ and an integer $k \geqslant 2$, find all collections $u_{1}, \ldots, u_{k} \in \mathbb{Z}^{*}$ such that f can be represented by the linear form (1.1) in monic integer polynomials f_{1}, \ldots, f_{k}.
- In the case when such a representation is possible, determine whether there is a positive integer T_{0} such that for $T=T_{0}$ (and so for each $T \geqslant T_{0}$) there are infinitely many of such representations in monic integer irreducible polynomials of height at most T.
The answers to those questions are nontrivial, and we need some definitions before stating them. In particular, we remark that the answers given in Theorem 1.1 do not depend on the choice of f.

For every finite collection of nonzero integers $u_{j_{1}}, \ldots, u_{j_{s}}$ with $J=\left\{j_{1}, \ldots, j_{s}\right\} \subseteq$ $\{1, \ldots, k\}$, we denote the greatest common divisor of its elements by

$$
\operatorname{gcd}\left(u_{j}: j \in J\right)=\operatorname{gcd}\left(u_{j_{1}}, \ldots, u_{j_{s}}\right)
$$

Recall that it is the largest positive integer dividing each of the numbers $u_{j_{1}}, \ldots, u_{j_{s}}$. In case $J=\{j\}, j \in\{1, \ldots, k\}$, we have $\operatorname{gcd}\left(u_{j}\right)=\left|u_{j}\right|$.

We say that the list of nonzero integers $u_{1}, \ldots, u_{k}, k \geqslant 2$, satisfies condition $\left(C_{0}\right)$ if there are some nonempty sets of indices $J_{0}, \ldots, J_{\ell}, \ell \geqslant 1, J_{s} \neq J_{t}$ (except perhaps for $J_{\ell-1}=J_{\ell}$),

$$
\varnothing \subset J_{0} \subset J_{1} \subset \cdots \subset J_{\ell-1} \subseteq J_{\ell} \subseteq\{1,2, \ldots, k\}
$$

such that

$$
\begin{gather*}
\sum_{j \in J_{0}} u_{j}=0 \tag{1.2}\\
\operatorname{gcd}\left(u_{j}: j \in J_{t}\right) \mid \sum_{j \in J_{t+1} \backslash J_{t}} u_{j} \tag{1.3}
\end{gather*}
$$

for every $t=0, \ldots, \ell-2$ (if $\ell \geqslant 2$), and

$$
\begin{equation*}
\operatorname{gcd}\left(u_{j}: j \in J_{\ell-1}\right) \mid\left(-1+\sum_{j \in J_{\ell} \backslash J_{\ell-1}} u_{j}\right) \tag{1.4}
\end{equation*}
$$

(Throughout, the sum over the empty set is assumed to be zero.) In particular, for $\ell=1$, we have only two sets of indices J_{0} and J_{1} satisfying $\varnothing \subset J_{0} \subseteq J_{1} \subseteq\{1, \ldots, k\}$ and there are no conditions (1.3), but only (1.2) and (1.4), i.e.,

$$
\begin{equation*}
\sum_{j \in J_{0}} u_{j}=0 \quad \text { and } \quad \operatorname{gcd}\left(u_{j}: j \in J_{0}\right) \mid\left(-1+\sum_{j \in J_{1} \backslash J_{0}} u_{j}\right) \tag{1.5}
\end{equation*}
$$

It may happen that no set $J_{0} \neq \varnothing$ for which (1.2) holds exists, for instance, when all of the u_{i} are positive integers. In this case (when there is no set $J_{0} \neq \varnothing$ for which (1.2) holds), we say that the list of nonzero integers u_{1}, \ldots, u_{k} satisfies condition (C_{1}) if there is a nonempty set $J_{1} \subseteq\{1, \ldots, k\}$ for which

$$
\begin{equation*}
\sum_{j \in J_{1}} u_{j}=1 \tag{1.6}
\end{equation*}
$$

The above set $u_{1}=5, u_{2}=-2, u_{3}=-3$ satisfies (1.5) with $J_{0}=J_{1}=\{1,2,3\}$, because $5-2-3=0$ and $\operatorname{gcd}(5,-2,-3)=1$, so it satisfies condition $\left(C_{0}\right)$. The set

$$
u_{1}=10, \quad u_{2}=-10, \quad u_{3}=-20, \quad u_{4}=-19
$$

satisfies condition $\left(C_{0}\right)$ with $J_{0}=\{1,2\}\left(u_{1}+u_{2}=10-10=0\right.$, so (1.2) holds), $J_{1}=$ $\{1,2,3\}\left(\operatorname{gcd}(10,-10)=10\right.$ divides $u_{3}=-20$, so (1.3) holds), and $J_{2}=\{1,2,3,4\}$ $\left(\operatorname{gcd}(10,-10,-20)=10\right.$ divides $u_{4}-1=-20$, so (1.4) holds). The set

$$
\begin{equation*}
u_{1}=10, \quad u_{2}=-10, \quad u_{3}=3, \quad u_{4}=2 \tag{1.7}
\end{equation*}
$$

does not satisfy condition $\left(C_{0}\right)$. Indeed, if the set (1.7) satisfies $\left(C_{0}\right)$, then J_{0} must be $\{1,2\}$, and it is impossible to choose J_{1} for which (1.3) or (1.4) holds, because $J_{1} \neq J_{0}$ and the number $\operatorname{gcd}(10,-10)=10$ does not divide any of the numbers in the list $u_{3}, u_{4}, u_{3}+u_{4}, u_{3}-1, u_{4}-1, u_{3}+u_{4}-1$. The set (1.7) does not satisfy condition $\left(C_{1}\right)$ either, by the definition of $\left(C_{1}\right)$. Similarly, the set $6,-6,12,-36,7$ satisfies condition $\left(C_{0}\right)$, but the set $6,-6,12,-36,5$ does not satisfy condition $\left(C_{0}\right)$.

The aim of this paper is to prove the following theorem:
Theorem 1.1 Let $f \in \mathbb{Z}[x]$ be a monic polynomial of degree $d \geqslant 1$, and let $k \geqslant 2$, u_{1}, \ldots, u_{k} be nonzero integers.
(a) Then f can be represented by the linear form (1.1) in some monic polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$ if and only if the list of integers u_{1}, \ldots, u_{k} satisfies one of the conditions $\left(C_{0}\right)$ or $\left(C_{1}\right)$.
(b) Moreover, for fixed $T \in \mathbb{N}$, there are only finitely many such representations in monic polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$ of height at most T if and only if the list u_{1}, \ldots, u_{k} satisfies condition $\left(C_{1}\right)$.
(c) Finally, if the list of integers u_{1}, \ldots, u_{k} satisfies condition $\left(C_{0}\right)$, then there is a positive integer T_{0} such that for each $T \geqslant T_{0}$ there are infinitely many representations (1.1) in monic irreducible polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$ of height at most T.

It is well known that if a_{1}, \ldots, a_{s} are some fixed nonzero integers, then $a \in \mathbb{Z}$ is expressible in the form $a_{1} \mathbb{Z}+\cdots+a_{s} \mathbb{Z}$ if and only if $\operatorname{gcd}\left(a_{1}, \ldots, a_{s}\right) \mid a$. Therefore, we can write condition (1.3) in the equivalent form

$$
\begin{equation*}
\sum_{j \in J_{t}} u_{j} z_{j, t}+\sum_{j \in J_{t+1} \backslash J_{t}} u_{j}=0 \tag{1.8}
\end{equation*}
$$

where $t=0, \ldots, \ell-2$ (if $\ell \geqslant 2$) and $z_{j, t} \in \mathbb{Z}$. Analogously, condition (1.4) can be written in the equivalent form

$$
\begin{equation*}
\sum_{j \in J_{\ell-1}} u_{j} z_{j, \ell-1}+\sum_{j \in J_{\ell} \backslash J_{\ell-1}} u_{j}=1 \tag{1.9}
\end{equation*}
$$

for some integers $z_{j, \ell-1}$.
Note that if the collection of nonzero integers u_{1}, \ldots, u_{k} satisfies condition $\left(C_{0}\right)$ (resp. $\left(C_{1}\right)$), then (1.9) (resp. (1.6)) implies

$$
\begin{equation*}
\operatorname{gcd}\left(u_{1}, \ldots, u_{k}\right)=1 \tag{1.10}
\end{equation*}
$$

The example (1.7) shows that the converse of this statement is false.

2 Proof of Part (c) and Sufficiency of Part (a)

For the proof of the theorem we need the following elementary lemma.
Lemma 2.1 Let b_{1}, \ldots, b_{m} be nonzero integers $b \in \mathbb{Z}, t \in \mathbb{N}, m \geqslant 2$, and $t \leqslant m$. Suppose that p_{1}, \ldots, p_{t} are any distinct prime numbers greater than $\max \left(\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right)$. If

$$
\begin{equation*}
b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{m} y_{m}=b \tag{2.1}
\end{equation*}
$$

is solvable in integers y_{1}, \ldots, y_{m}, then one can choose y_{1}, \ldots, y_{t} so that each $y_{i}(i=$ $1, \ldots, t$) is divisible by p_{i} but not by p_{i}^{2}.
Proof of the lemma Set $g:=\operatorname{gcd}\left(b_{1}, \ldots, b_{m}\right)$. As we remarked above, the linear equation (2.1) is solvable in integers if and only if $g \mid b$. Assume that $p_{1}, \ldots, p_{t}>$ $\max \left(\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right)$ and select $y_{i}=p_{i}^{2} z_{i}+p_{i}, z_{i} \in \mathbb{Z}$, for $i=1, \ldots, t$. Then y_{i} is a multiple of p_{i} but not a multiple of p_{i}^{2}. It remains to show that the linear equation

$$
\begin{equation*}
b_{1} p_{1}^{2} z_{1}+\cdots+b_{t} p_{t}^{2} z_{t}+b_{t+1} y_{t+1}+\cdots+b_{m} y_{m}=b-b_{1} p_{1}-\cdots-b_{t} p_{t} \tag{2.2}
\end{equation*}
$$

is solvable in integers $z_{1}, \ldots, z_{t}, y_{t+1}, \ldots, y_{m}$. This is indeed the case, because, by the choice of p_{i}, we have

$$
\operatorname{gcd}\left(b_{1} p_{1}^{2}, b_{2} p_{2}^{2}, \ldots, b_{t} p_{t}^{2}, b_{t+1}, \ldots, b_{m}\right)=g
$$

Furthermore, g divides b and b_{1}, \ldots, b_{m}, so g also divides the right-hand side of (2.2).

Now, we will prove part (c) of the theorem. Assume that the list u_{1}, \ldots, u_{k} satisfies condition $\left(C_{0}\right)$. Without restriction of generality (by changing the indices of the integers in the list u_{1}, \ldots, u_{k} if necessary) we may assume that there exist the indices $i_{t}, t=0, \ldots, \ell$, satisfying $2 \leqslant i_{0}<i_{1}<\cdots<i_{\ell-1} \leqslant i_{\ell} \leqslant k$ such that

$$
J_{0}=\left\{1, \ldots, i_{0}\right\}, \quad J_{1}=\left\{1, \ldots, i_{1}\right\}, \ldots, \quad J_{\ell}=\left\{1, \ldots, i_{\ell}\right\}
$$

Set also $J_{\ell+1}:=\{1, \ldots, k\}$ and $J_{-1}:=\varnothing$. Clearly, $J_{\ell+1}=J_{\ell}$ when $i_{\ell}=k$. Fix some integers

$$
N_{\ell+1}:=d-1<N_{\ell}:=d<N_{\ell-1}<\cdots<N_{0}
$$

For each index $i \in\{1, \ldots, k\}$ that belongs to the set $J_{t} \backslash J_{t-1}$, where $t=0,1, \ldots, \ell+1$, we will construct a monic polynomial $f_{i} \in \mathbb{Z}[x]$ whose degree will be equal to N_{t}.

Observe that in the case $i_{\ell}<k$, we can take any $k-i_{\ell}$ irreducible monic polynomials $f_{i_{\ell}+1}, \ldots, f_{k} \in \mathbb{Z}[x]$ (say, of degree $N_{\ell+1}=d-1$ each), and apply the argument to the polynomial $f-\sum_{i=i_{\ell}+1}^{k} u_{i} f_{i}$ instead of f and $i_{\ell}\left(i_{\ell} \geqslant i_{0} \geqslant 2\right)$ instead of k. So assume from now on that $i_{\ell}=k$. Then $J_{\ell}=J_{\ell+1}=\{1, \ldots, k\}$, and all the polynomials f_{1}, \ldots, f_{k} will be of degree at least d. Note that the set $J_{\ell} \backslash J_{\ell-1}$ can be empty, so it may happen that there are no polynomials of degree $N_{\ell}=d$.

We shall construct the polynomials f_{1}, \ldots, f_{k} in the form of a matrix \mathcal{M} with $N_{0}+1$ columns and k rows, where the i-th row of the matrix \mathcal{M} is composed from the coefficients of $f_{i}(x):=\sum_{j=0}^{N_{0}} m(j, i) x^{j}$, written as

$$
\left(m\left(N_{0}, i\right), m\left(N_{0}-1, i\right), \ldots, m(0, i)\right)
$$

To prove the irreducibility of the monic polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$, we fix k distinct prime numbers p_{1}, \ldots, p_{k} greater than $\max \left(\left|u_{1}\right|, \ldots,\left|u_{k}\right|\right)$. It will be shown that the polynomial $f_{i}, i=1, \ldots, k$, is irreducible by Eisenstein's criterion with respect to the prime number p_{i}.

Let

$$
f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}
$$

Clearly, (1.1) holds if the coefficients $m(j, i)$ are chosen so that

$$
\sum_{i=1}^{k} u_{i} m(j, i)= \begin{cases}0 & \text { for } j>d \tag{2.3}\\ 1 & \text { for } j=d \\ a_{j} & \text { for } 0 \leqslant j<d\end{cases}
$$

To ensure that the first i_{0} polynomials are monic, we must take

$$
m\left(N_{0}, 1\right)=\cdots=m\left(N_{0}, i_{0}\right)=1
$$

The first column of \mathcal{M} is completed by zeros $m\left(N_{0}, i_{0}+1\right)=\cdots=m\left(N_{0}, k\right)=$ 0 , because $\operatorname{deg} f_{i}<N_{0}$ for $i>i_{0}$. In view of (1.2) this gives $\sum_{i=1}^{k} u_{i} m\left(N_{0}, i\right)=$ $\sum_{i=1}^{i_{0}} u_{i}=\sum_{j \in J_{0}} u_{j}=0$, which corresponds to the first line in (2.3).

We also select the coefficients for x^{j}, where $N_{1}+1 \leqslant j<N_{0}$, to be zeros, namely,

$$
m(j, 1)=\cdots=m(j, k)=0 \quad \text { for } \quad N_{1}+1 \leqslant j<N_{0}
$$

This gives $\sum_{i=1}^{k} u_{i} m(j, i)=0$ for $N_{1}+1 \leqslant j<N_{0}$, which checks the next $N_{0}-N_{1}-1$ lines in (2.3).

By Lemma 2.1, we may select the integers $z_{j, t}, t=0, \ldots, \ell-1$ that appear in (1.8) and (1.9) so that, for each $j \in J_{t}$, the number $z_{j, t}$ is divisible by p_{j}, i.e.,

$$
p_{j} \mid z_{j, t} \quad \text { for } \quad j \in J_{t}, t=0, \ldots, \ell-1 .
$$

In order to use (1.8) for $t=0$ (this step applies only if $\ell \geqslant 2$), we select

$$
\begin{aligned}
m\left(N_{1}, i\right) & =z_{i, 0} \quad \text { for } \quad 1 \leqslant i \leqslant i_{0} \\
m\left(N_{1}, i_{0}+1\right) & =\cdots=m\left(N_{1}, i_{1}\right)=1
\end{aligned}
$$

and $m\left(N_{1}, i\right)=0$ for $i>i_{1}$. Then by (1.8),

$$
\sum_{i=1}^{k} u_{i} m\left(N_{1}, i\right)=\sum_{i=1}^{i_{0}} u_{i} z_{i, 0}+\sum_{i=i_{0}+1}^{i_{1}} u_{i}=0
$$

In the same way, for each $j=N_{t+1}$, where $0 \leqslant t \leqslant \ell-1$, we take

$$
\begin{align*}
m\left(N_{t+1}, i\right) & =z_{i, t} \quad \text { for } \quad 1 \leqslant i \leqslant i_{t} \tag{2.4}\\
m\left(N_{t+1}, i_{t}+1\right) & =\cdots=m\left(N_{t+1}, i_{t+1}\right)=1 \tag{2.5}
\end{align*}
$$

and $m\left(N_{t+1}, i\right)=0$ for $i>i_{t+1}$. For $N_{t+1}+1 \leqslant j<N_{t}, t=0, \ldots, \ell-1$, we take the coefficients for x^{j} to be zeros, i.e.,

$$
\begin{equation*}
m(j, 1)=\cdots=m(j, k)=0 \quad \text { for } \quad N_{t+1}+1 \leqslant j<N_{t} \tag{2.6}
\end{equation*}
$$

Now, by (2.4)-(2.6), in view of (1.8) (resp. (1.9)), as above we obtain

$$
\sum_{i=1}^{k} u_{i} m(j, i)=0
$$

for each j greater than d (resp.

$$
\sum_{i=1}^{k} u_{i} m(d, i)=\sum_{i=1}^{k} u_{i} m\left(N_{\ell}, i\right)=\sum_{i=1}^{i_{\ell-1}} u_{i} z_{i, \ell-1}+\sum_{i=i_{\ell-1}+1}^{i_{\ell}} u_{i}=1
$$

for $j=N_{\ell}=d$). This verifies the first $N_{0}-d+1$ lines in (2.3). It remains to choose $m(j, i)$ for $j \leqslant d-1$ and to check the last d lines of (2.3).

In case $d \geqslant 2$, using Lemma 2.1, for every j in the range $1 \leqslant j \leqslant d-1$, we can select some $m(j, i) \in \mathbb{Z}$ divisible by $p_{i}, i=1, \ldots, k$ such that

$$
\sum_{i=1}^{k} u_{i} m(j, i)=a_{j}
$$

because, by (1.10), $\operatorname{gcd}\left(u_{1}, \ldots, u_{k}\right)=1$. (For $d=1$ we just do not use this step.) This checks that all of the equalities in (2.3) hold except perhaps for the last equality. As for the last equality, we will use the full statement of Lemma 2.1; namely, we take $m(0, i) \in \mathbb{Z}$ divisible by p_{i}, not divisible by p_{i}^{2}, such that

$$
\sum_{i=1}^{k} u_{i} m(0, i)=a_{0}
$$

This completes the construction of the matrix \mathcal{M} with the property (2.3).
In this way, for $i=1, \ldots, k$, we obtain k monic polynomials

$$
f_{i}(x)=\sum_{j=0}^{N_{0}} m(j, i) x^{j}
$$

$i=1, \ldots, k$, of degrees $N_{0}, N_{1}, \ldots, N_{\ell-1}$ and possibly $N_{\ell}=d$ (when $\left.J_{\ell-1} \neq J_{\ell}\right)$ satisfying (1.1). Moreover, by Eisenstein's criterion with respect to the prime number p_{i}, the polynomial $f_{i}, i=1, \ldots, k$ is irreducible in $\mathbb{Z}[x]$.

Set $T_{0}:=\max _{0 \leqslant j \leqslant N_{0}, 1 \leqslant i \leqslant k}|m(j, i)|$. Since N_{0} can be arbitrarily large and its selection does not change the number T_{0}, we obtain infinitely many collections of monic irreducible polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$, each of height at most T_{0}, for which (1.1) holds. This completes the proof of Theorem 1.1(c).

In order to complete the proof of sufficiency in part (a), assume that condition $\left(C_{1}\right)$ holds. Without restriction of generality we may assume that the set J_{1} satisfying (1.6) is $J_{1}=\{1, \ldots, s\}$, where $1 \leqslant s \leqslant k$. Suppose first that $s \geqslant 2$. Fix any monic irreducible polynomials $f_{s+1}, \ldots, f_{k} \in \mathbb{Z}[x]$ of degrees at most $d-1$. We claim that the polynomial

$$
f(x)-u_{s+1} f_{s+1}(x)-\cdots-u_{k} f_{k}(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}
$$

can be written in the form $\sum_{i=1}^{s} u_{i} f_{i}(x)$ with monic irreducible polynomials $f_{1}, \ldots, f_{s} \in \mathbb{Z}[x]$. To do this we take

$$
f_{i}(x)=x^{d}+m(d-1, i) x^{d-1}+\cdots+m(0, i) \in \mathbb{Z}[x], \quad i=1, \ldots, s,
$$

where

$$
\begin{equation*}
\sum_{i=1}^{s} u_{i} m(j, i)=a_{j} \tag{2.7}
\end{equation*}
$$

for $j=0, \ldots, d-1$. As above, using (1.6), we see that the leading coefficient of the polynomial $u_{1} f_{1}+\cdots+u_{s} f_{s}$ is equal to $\sum_{i=1}^{s} u_{i}=1$. This yields $\operatorname{gcd}\left(u_{1}, \ldots, u_{s}\right)=1$. Now, using this condition and Lemma 2.1, for every $i=1, \ldots, s$, we may choose $m(j, i)$ in (2.7) divisible by p_{i} for $j=1, \ldots, d-1$ and also $m(0, i)$ divisible by p_{i} and not by p_{i}^{2}. Consequently, the polynomials f_{1}, \ldots, f_{s} are irreducible.

Assume next that $s=1$. Then $u_{1}=1$. Take $f_{3}(x)=\cdots=f_{k}(x)=1$ and $f_{2}(x)=x+t$, where $t \in \mathbb{N}$ will be chosen later. Then (1.1) holds for the polynomial

$$
f_{1}(x):=f(x)-u_{2} x-\sum_{j=3}^{k} u_{j}-u_{2} t .
$$

By Hilbert's irreducibility theorem (see, e.g., [10, p. 298]), there are infinitely many $t \in \mathbb{N}$ for which the polynomial f_{1} is irreducible in $\mathbb{Z}[x]$, i.e., no polynomials $g_{1}, g_{2} \in$ $\mathbb{Z}[x]$ of degrees strictly less than $\operatorname{deg} f_{1}$ exist for which $f_{1}=g_{1} g_{2}$. Taking one of those t we obtain the required representation (1.1) and so complete the proof in case $s=1$.

This proves that if condition $\left(C_{0}\right)$ or $\left(C_{1}\right)$ holds, then every monic polynomial $f \in \mathbb{Z}[x]$ of degree $d \geqslant 1$ can be represented by the linear form (1.1) in some monic irreducible polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$.

3 Proof of Necessity of Part (a) and of Part (b)

Assume that we have some representation (1.1) in monic polynomials $f_{1}, \ldots, f_{k} \in$ $\mathbb{Z}[x]$. There are two cases: first, when in (1.1) at least one f_{i} has degree greater than d and, second, when there is no representation as in the first case but there is a representation when all the polynomials f_{i} are of degree at most d. We claim that in the first (resp. second) case the list of integers u_{1}, \ldots, u_{k} satisfies condition (C_{0}) (resp. $\left(C_{1}\right)$).

In the first case we must have a subset of indices $J_{0} \subseteq\{1, \ldots, k\}$ for which (1.2) holds, namely, $\sum_{j \in J_{0}} u_{j}=0$. This set consists of indices of polynomials f_{i} of the largest degree, say, $N_{0}>d$. Suppose we also have the degrees $N_{1}>\cdots>N_{\ell-1}$ $(\ell \geqslant 1)$ greater than d in the list of degrees $\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{k}$. More precisely, let

$$
I_{j}:=\left\{1 \leqslant i \leqslant k: \operatorname{deg} f_{i}=N_{j}\right\}
$$

for $j=0, \ldots, \ell-1$, so that $J_{0}=I_{0}$. Put $J_{j}:=\bigcup_{l=0}^{j} I_{l}$ for $j=0, \ldots, \ell-1$.
Consider the coefficient for $x^{N_{1}}$ in the left-hand side of (1.1) if $\ell \geqslant 2$. Since $\operatorname{deg} f<N_{\ell-1}$, it must be zero. Assuming that the coefficients of $f_{j}, j \in J_{0}$, for $x^{N_{1}}$ are $z_{j, 0}$ we obtain $\sum_{j \in J_{0}} u_{j} z_{j, 0}+\sum_{j \in J_{1} \backslash J_{0}} u_{j}=0$, i.e., the first equality in (1.8). Similarly, for every $t=1, \ldots, \ell-2$, assuming that the coefficients of $f_{j}, j \in J_{t}$, for $x^{N_{t+1}}$ are $z_{j, t}$, we obtain $\sum_{j \in J_{t}} u_{j} z_{j, t}+\sum_{j \in J_{t+1} \backslash J_{t}} u_{j}=0$, i.e., the equality in (1.8) corresponding to t.

Assume now that the coefficients for x^{d} in f_{j}, where $j \in J_{\ell-1}$, are $z_{j, \ell-1}$. The coefficient of the left hand side of (1.1) for x^{d} is equal to 1 , hence the coefficient of the right hand side of (1.1) for x^{d} must be 1 too. It follows that there exists a set J_{ℓ} such that $J_{\ell-1} \subseteq J_{\ell} \subseteq\{1, \ldots, k\}$ for which

$$
\sum_{j \in J_{\ell-1}} u_{j} z_{j, \ell-1}+\sum_{j \in J_{\ell} \backslash J_{\ell-1}} u_{j}=1
$$

i.e., (1.9) holds. This proves that the list u_{1}, \ldots, u_{k} satisfies condition $\left(C_{0}\right)$.

In the second case, when there is no representation (1.1) as in the first case, but there is a representation (1.1) with $\operatorname{deg} f_{i} \leqslant d$ for $i=1, \ldots, k$ there must be a set $J_{1} \subseteq\{1, \ldots, k\}$ for which (1.6) holds. In order to prove that the list u_{1}, \ldots, u_{k} satisfies condition $\left(C_{1}\right)$ it remains to show that no nonempty set $J_{0} \subseteq\{1, \ldots, k\}$ exists for which (1.2) holds. For a contradiction, assume that there is such a set J_{0}. Then $\sum_{j \in J_{0}} u_{j}=0$ and $\sum_{j \in J_{1}} u_{j}=1$. This implies that the conditions (1.2) and (1.9) are satisfied for $\ell=1$ and the first two sets J_{0} and $J_{0} \cup J_{1}$, with $z_{j, 0}=1$ for $j \in J_{0}$. Indeed, then $\left(J_{0} \cup J_{1}\right) \backslash J_{0}=J_{1}$, so that

$$
\sum_{j \in J_{0}} u_{j} z_{j, 0}+\sum_{j \in J_{1}} u_{j}=\sum_{j \in J_{0}} u_{j}+\sum_{j \in J_{1}} u_{j}=0+1=1
$$

Therefore, the list u_{1}, \ldots, u_{k} satisfies condition $\left(C_{0}\right)$. Hence, by sufficiency of part (a), we have infinitely many representations (1.1) in monic polynomials of bounded height, where some degrees of f_{1}, \ldots, f_{k} are greater than d, a contradiction. This completes the proof of necessity of (a).

Finally, let us prove part (b) Assume that the list of integers u_{1}, \ldots, u_{k} satisfies condition $\left(C_{1}\right)$. The results of Section 2 imply that there exist monic (even irreducible) polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$ for which (1.1) holds. In order to prove that there are only finitely many representations (1.1) in polynomials f_{1}, \ldots, f_{k} of height at most T we shall use the fact that there is no nonempty set of indices $J_{0} \subseteq\{1, \ldots, k\}$ for which (1.2) holds (by the definition of $\left(C_{1}\right)$). In particular, this implies that the degree of each f_{i} does not exceed d. Obviously, there are only finitely many polynomials of bounded degree and height, so there are only finitely many collections of monic polynomials f_{1}, \ldots, f_{k} satisfying $\operatorname{deg} f_{i} \leqslant d, H\left(f_{i}\right) \leqslant T, i=1, \ldots, k$ and (1.1). (In fact, by the same method as in [2], one can show that for each monic f of degree $d \geqslant 2$ there are asymptotically $c T^{(d-1)(k-1)}$ of such representations as $T \rightarrow \infty$, with some positive constant $c=c\left(u_{1}, \ldots, u_{k}, d\right)$ independent of T.)

On the other hand, assume that there are only finitely many representations (1.1) in monic polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$ of height at most T. If there is at least one set of indices J_{0} for which (1.2) holds, then, by the necessity of part (a), the list of integers u_{1}, \ldots, u_{k} satisfies condition $\left(C_{0}\right)$. However, then there are infinitely many of such representations by part (c), a contradiction. So there is no such set of indices J_{0}. Thus, by part (a), if there is at least one such representation, then the list u_{1}, \ldots, u_{k} must satisfy condition $\left(C_{1}\right)$. This completes the proof of Theorem 1.1(b).

References

[1] C. Betts, Additive and subtractive irreducible monic decompositions in $\mathbb{Z}[x]$. C. R. Math. Acad. Sci. Soc. R. Can. 20(1998), no. 3, 86-90.
[2] A. Dubickas, Polynomials expressible by sums of monic integer irreducible polynomials Bull. Math. Soc. Sci. Math. Roumanie 54(102)(2011), no. 1, 65-81.
[3] G. W. Effinger and D. R. Hayes, A complete solution to the polynomial 3-primes problem. Bull. Amer. Math. Soc. (N.S.) 24(1991), no. 2, 363-369. http://dx.doi.org/10.1090/S0273-0979-1991-16035-0
[4] D. R. Hayes, A Goldbach theorem for polynomials with integer coefficients. Amer. Math. Monthly, 72(1965), 45-46. http://dx.doi.org/10.2307/2312999
[5] , The expression of a polynomial as a sum of three irreducibles. Acta Arith. 11(1966), 461-488.
[6] M. Kozek, An asymptotic formula for Goldbach's conjecture with monic polynomials. Amer. Math. Monthly 117(2010), no. 4, 365-369. http://dx.doi.org/10.4169/000298910X480856
[7] P. Pollack, On polynomial rings with a Goldbach property. Amer. Math. Monthly, 118(2011), no. 1, 71-77.
[8] A. Rattan and C. Stewart, Goldbach's conjecture for $\mathbb{Z}[x]$. C. R. Math. Acad. Sci. Soc. R. Can. 20(1998), no. 3, 83-85.
[9] F. Saidak, On Goldbach's conjecture for integer polynomials. Amer. Math. Monthly 113(2006), no. 6, 541-545. http://dx.doi.org/10.2307/27641978
[10] A. Schinzel, Polynomials with special regard to irreducibility. Encyclopedia of Mathematics and its Applications, 77, Cambridge University Press, Cambridge, 2000.
[11] L. N. Vaserstein, Noncommutative number theory. In: Algebraic K-theory and algebraic number theory (Honolulu, Haway, 1987), Contemp. Math., 83, American Mathematical Society, Providence, RI, 1989, pp. 445-449.
[12] J. Wang, Goldbach's problem in the ring $M_{n}(\mathbf{Z})$, Amer. Math. Monthly 99(1992), no. 9, 856-857. http://dx.doi.org/10.2307/2324122
[13] S. Wang, The Goldbach 3-primes property for polynomial rings over certain infinite fields. Chinese Sci. Bull. 43(1998), no. 15, 1256-1260. http://dx.doi.org/10.1007/BF02884136

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225,
Lithuania
and
Institute of Mathematics and Informatics, Vilnius University, Akademijos 4, Vilnius LT-08663, Lithuania e-mail: arturas.dubickas@mif.vu.lt

[^0]: Received by the editors January 4, 2011.
 Published electronically September 15, 2011.
 AMS subject classification: 11R09, 11C08, 11B83.
 Keywords: irreducible polynomial, height, linear form in polynomials, Eisenstein's criterion.

