EMBEDDING RIGHT GHAIN RINGS IN CHAIN RINGS

H. H. BRUNGS AND G. TÖRNER

1. Introduction. The following problem was the starting point for this investigation: Can every desarguesian affine Hjelmslev plane be embedded into a desarguesian projective Hjelmslev plane [8]? An affine Hjelmslev plane is called desarguesian if it can be coordinatized by a right chain ring R with a maximal ideal $J(R)$ consisting of two-sided zero divisors. A projective Hjemslev plane is called desarguesian if the coordinate ring is in addition a left chain ring, i.e. a chain ring. This leads to the algebraic version of the above problem, namely the embedding of right chain rings into suitable chain rings. We can prove the following result.

Let R be a right chain ring of type (2) or (3) (the definitions are given in the next section) with finitely generated maximal ideal $J(R)=m R$. If we assume further that the characteristic of R is different from the characteristic of $R / J(R)$ then R is a chain ring. On the other hand, if we assume that there exists a ring monomorphism σ from R to R_{2} with $r m=m \sigma(r), \sigma(m)=m$, where R_{2} is a subring of R, then R can be embedded into a chain ring whose lattice of right ideals is isomorphic to its lattice of left ideals and is isomorphic to the lattice of right ideals of R. This result is used to solve the above extension problem in case R contains a division ring of representatives of $R / J(R)$ and satisfies some additional condition.
2. Definitions and preliminaries. All rings considered in this paper have a unit element. A right (left) chain ring is a ring with a linearly ordered lattice of right (left) ideals. A ring which is a right and left chain ring is called a chain ring. If every element in $J=J(R)$, the maximal ideal of a (right) chain ring, is a two-sided zero divisor, R is called a (affine) projective Hjelmslev ring, for short ($A H-$) PH-ring. We write $U(R)$ for the group of units of R. A ring is said to be right invariant (invariant) if $R a \leqq a R(R a=a R)$ holds for all a in R. More details about the incidence structures mentioned in the introduction can be found in [1] and [11].

Our problem can be formulated as follows: Let R be a right chain ring. Does there exist a ring extension S of R which is a chain ring and satisfies the

[^0]following condition (1)?
(1) $\quad U(S) \cap R=U(R)$; and for any a in S there exists an s in $U(S)$ with as in R.

This condition will guarantee that the lattices of right ideals of R and S respectively are isomorphic. If R is a right noetherian right chain ring with at least two nonzero prime ideals $R>x R>y R \neq(0)$ we have $x y R=y R$, but $R y \nsupseteq R y x \nsupseteq R y$. This implies that for such a ring R no extension in the above sense exists (see [4]).

We therefore consider the following two types of right chain rings.
(2) $\quad J(R)$ is the only prime ideal of R;
(3) $\quad J(R)$ and (0) are the only prime ideals in R.
3. The case: $\boldsymbol{\operatorname { c h a r }}(\boldsymbol{R}) \neq \operatorname{char}(\boldsymbol{R} / \boldsymbol{J})$. We assume in this section that R is a right chain ring of type (2) or (3) satisfying
(4) $\operatorname{char}(R) \neq \operatorname{char}(R / J)$.

This property implies the existence of a central element $z \neq 0$ in R, contained in $J(R)$.
3.1. Theorem. Every right chain ring R with (4) of type (2) or (3) is right invariant.

Proof. If R is of type (2) it follows that the elements in $J(R)$ are nilpotent and this together with the assumption that R is a right chain ring implies that R is right invariant. Now let (0) and J be the only prime ideals of R and let z be a nonzero element in J with $z R=R z$. If $J=z R$ it follows that $R, z^{\imath} R$, $i=1, \ldots$ and (0) are the only right ideals of R and R is right invariant. Otherwise we form the intersection L of all two-sided nonzero ideals of R. Two-sided ideals $Z \neq(0)$ lead to right chain rings R / Z of type (2) and this implies that every right ideal $I \supseteq L$ is a two-sided ideal in R. We are therefore left with the case $L \neq(0)$. It follows that L is not a prime ideal and elements a, b not in L exist with $a b$ in L and $a R b \neq(0)$. We obtain $L=a b R$, since $a b R$ is a two-sided ideal, and since $a b J$ is a two-sided nonzero ideal as well, $L=a b R=a b J$ follows. This implies $L=(0)$, a contradiction, and proves the theorem. (See [5] for related problems and results.)
3.2. Corollary. A prime right chain ring satisfying (3) and (4) has no zero divisors.

We need the result that the semigroup H of principal right ideals of a right chain ring R of type (2) is commutative (see also [3;7]). H is a linearly ordered semigroup and $h_{1} \leqq h_{2}$ holds for elements $h_{1}=a R, h_{2}=b R$ if and only if $a R \geqq b R$. H has a unit element $e=R$ and a largest element $0=(0)$.

It follows that $h_{1} \leqq h_{2}$ holds if and only if there exists an element h_{3} in H with $h_{1} h_{3}=h_{2}$. In addition, the cancellation laws hold in the following form:
(i) $h_{1} h_{2}=h_{1} h_{3} \neq 0$ implies $h_{2}=h_{3}$, and
(ii) $h_{2} h_{1}=h_{3} h_{1} \neq 0$ implies $h_{2}=h_{3}$.

To prove this let $h_{1}=a R, h_{2}=b R$ and $h_{3}=c R$ and assume $b=c d$ for d in $J(R)$. This leads to the contradiction $a c d R=a c R$ in the case (i). In the case (ii) one obtains $c d a R=c a R$ and using (i), $d a R=a R$ follows. The ideal $I=$ $\{r \in R ; r a R \subsetneq a R\}$ is a prime ideal different from $J(R)$ and (0) and this contradiction proves (ii).
3.3. Lemma. The semigroup H of a right chain ring of type (3) is commutative.

Proof. The result is obvious if $H^{\prime}=H \backslash\{e\{$ contains a least element. We can assume that H^{\prime} does not have a smallest element. Let h_{1}, h_{2} be two elements with $h_{1} h_{2} \neq h_{2} h_{1}$. If we assume $h_{1} h_{2}<h_{2} h_{1} \neq 0$ we proceed as follows: $h_{2} h_{1}=$ $h_{1} h_{2} c ; c$ in H^{\prime}. There exists an element z in H^{\prime} with $z^{2} \leqq c, z \leqq h_{1}, z \leqq h_{2}$ and integers m, n with $z^{m} \leqq h_{1}<z^{m+1}$ and $z^{n} \leqq h_{2}<z^{n+1}$. We obtain $h_{2} h_{1}=h_{1} h_{2} c$ $\geqq z^{m+n+2}>h_{2} h_{1}$, a contradiction. If we assume $h_{1} h_{2}<h_{2} h_{1}=0$ we consider first the case $h_{2}<h_{1}$. Then there exists $k \geqq 1$ with $h_{2}{ }^{k}<h_{1} \leqq h_{2}{ }^{k+1}$ and $h_{1}=$ $h_{2}{ }^{k} h$ for some h in H^{\prime}. We get $h \leqq h_{2}$, and $h_{2} h \leqq h_{1}<0$ and $h h_{2} \leqq h_{1} h_{2}<0$ follows. Application of the first part shows that h and h_{2} and therefore h_{2} and h_{1} commute. It remains to consider the case $h_{1} h_{2}<h_{2} h_{1}=0$ and $h_{1}<h_{2}$. As before we obtain an integer $k \geqq 1$ and an element h in H^{\prime} with $h_{1}{ }^{k}<h_{2} \leqq$ $h_{1}{ }^{k+1}$ and $h_{2}=h_{1}{ }^{k} h$, and as before, $h \leqq h_{1}$. We see that $h_{1} h \neq 0$ and if $h h_{1}=0$ we apply the previous argument with $h<h_{1}$ to prove that h_{1} and h commute.

We can now prove the main result of this section.
3.4. Theorem. Let R be a right chain ring of type (2) or (3) with finitely generated maximal ideal $J=m R$ and char $(R) \neq \operatorname{char}(R / J)$. Then R is a chain ring.

It is sufficient to prove this result for chain rings of type (2). The next lemma leads immediately to the proof of the theorem and can actually be used to prove the above result for a larger class of right chain rings (see Remark 3.6).
3.5. Lemma, Let R be a chain ring of type (2). We assume further that there exists an element m in J with $0 \neq R m^{k}=m^{k} R$ for some $k \geqq 1$ and that

$$
\begin{equation*}
\left(m^{k}\right)^{r}=\left\{a \in R: m^{k} a=0\right\} \leqq m R \tag{5}
\end{equation*}
$$

Then $m R=R m$.
Proof. We define a sequence of subrings R_{i} of R in the following fashion:

$$
R=R_{1}, \quad R_{i+1}=\left\{b \text { in } R ; \exists a \text { in } R_{i} \text { with } a m=m b\right\} .
$$

It follows that the R_{i} form a descending chain:

$$
R \geqq R_{1} \geqq R_{2} \geqq \ldots \geqq R_{i} \geqq R_{i+1} \geqq \ldots
$$

The associated semigroup H of all the principal right ideals of R is commutative. This implies that elements a, b in R with $a b=0$ commute. In particular $a m=0$ implies $m a=0$ and a is contained in $\cap R_{i}$ together with the element m. Let n be the nilpotency index of m, i.e. $m^{n}=0, m^{n-1} \neq 0$. Using the above notation we have $R m^{k}=m^{k} R_{k+1}=m^{k} R$. For each a in R exists therefore an element b in R_{k+1} with $m^{k} a=m^{k} b$ and $a-b$ in $\left(m^{k}\right)^{r} \leqq m R$ follows.

We prove, using induction on j, that $m^{j} R \leqq R_{k+1}$ holds for $j=n-1, \ldots$, 1,0 .

The containment $m^{n-1} R \leqq R_{k+1}$ is trivial. We assume $m^{j+1} R \leqq R_{k+1}$. Let $r=m^{j} a$ be an element in $m^{j} R$. Then there exists an element b in R_{k+1} with $a-b$ in $m R$, say $a-b=m c$ for some c in R. This leads to $r=m^{j} b+m^{j+1} c$ which is an element in R_{k+1} using induction. We conclude that $R=R_{k+1}=R_{2}$ and $R m=m R$ follows.
3.6. Remark. The statement in Theorem 3.4 remains true for right chain rings of type (2) or (3) satisfying (4) as long as the associated semigroup of principal right ideals is isomorphic to one of the following semigroups:
(i) $(Q,+)$;
(ii) $(Q,+) \cap[0,1]$;
(iii) $(Q,+) \cap[0,1]) \cup\{\infty\}$.

In addition, it must be assumed that the principal ideal generated by the central element (whose existence is guaranteed by (4)) is not the upper neighbour of the zero ideal. Condition (5) in Lemma 3.4 will then be satisfied and an abritrary principal right ideal $a R$ can be obtained from $m R$ by either "taking roots" $\left((a R)^{n}=b R\right)$ or by using powers of certain right ideals. One obtains $a R=R a$ for arbitrary a in R.
4. Two embedding theorems. We can now restrict ourselves to the case in which

```
char (R) = char (R/J)
```

is satisfied.
We begin with the solution of our problem for right invariant right chain rings of type (3). We need the result, that the semigroup of nonzero principal right ideals of such a ring R is commutative (Lemma 3.3 and [3]). It is obvious that R is an integral domain and embeddable in a division ring of quotients $Q(R)$.
4.1. Theorem. Let R be a right invariant right chain ring of type (3). Then $S=\cup R_{a}, 0 \neq a$ in $J(R), R_{a}=a R a^{-1}$, is a chain ring extension of R and the lattices of right ideals in R and S respectively are isomorphic.

Proof. Since R is right invariant, $R a \leqq a R$ follows for every element a in R. But, the multiplication of principal right ideals is commutative which implies that $J(R) a \leqq a J(R)$. From this we conclude that $U(S) \cap R=U(R)$ holds; otherwise there exist nonzero elements x, a in $J(R)$ with x^{-1} in R_{a}. This leads
to $x^{-1}=a r a^{-1}$ and $a=x a r=a x^{\prime} r$ for some x^{\prime} in $J(R), r$ in R, and the contradiction $a=0$, To prove the second part of condition (1) (Section 2) for S let $y=b x b^{-1}$ be an element in S for some x in R, b in $J(R)$. Then there exist a unit t in R with $x b=b x t$ and $y\left(b t b^{-1}\right)=x$ for the unit $b t b^{-1}$ in S. One checks, by computing it directly, that $S y \leqq y S \leqq S y$ for all y in S, and it follows that S is an invariant chain ring, satisfying condition (1).

The first example of an $A H$-ring which is not a $P H$-ring was probably given by Baer in [2] using an idea of Ore in [9]:

Let F be a commutative field with a monomorphism σ which is not an isomorphism. The vector space $F \oplus F$ can be made into a ring E using the multiplication $(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, a^{\sigma} b^{\prime}+b a^{\prime}\right)$. The right ideals of E are $E \supset I=\{(0, b) ; b \in F\} \supset(0)$ and E is a right chain ring, but $E(0, b) \nsupseteq$ $E\left(0, b^{\sigma}\right) \nsupseteq E(0, b)$ for b in $F \backslash F^{\sigma}$.

The next result gives a solution to our problem for right chain rings of type (2) (or (3)) if the maximal ideal is a principal right ideal and an additional condition is satisfied:
4.2. Theorem. Let R be a right chain ring of type (2) (or (3)) with finitely generated maximal right ideal $J=m R$. We assume further:
(7) There exists a monomorphism σ from R into R with $\sigma(m)=m$ and $r m=$ $m \sigma(r)$.

Then there exists a chain ring S satisyfing condition (1) and solving our embedding problem.

Proof. If $R=R^{\sigma}$ we can take $S=R$. Otherwise we consider a set S_{1} which is the disjoint union of the set R and a set T with $T=\left\{t_{k} ; k \in R \backslash R^{\sigma}\right\}$. We can extend the mapping σ to a one to one and onto mapping σ_{1} from S_{1} to R by mapping t_{k} in S_{1} to k in R. This mapping can be used to define a ring structure on S_{1} and σ_{1} is then an isomorphism between S_{1} and R, and S_{1} contains R as a subring. This process is repeated and we obtain a sequence of rings

$$
R=S_{0} \subset S_{1} \subset S_{2} \subset \ldots
$$

with isomorphisms σ_{i} from S_{i} to S_{i-1} with $\sigma_{0}=\sigma$ and σ_{i+1} is an extension of σ_{i}. The lattice of right ideals in S_{i} is still of the form

$$
\begin{aligned}
& S_{i} \supset m S_{i} \supset \ldots \supset m^{n} S_{i} \supset m^{n+1} S_{i} \supset \ldots \supset(0) \text { and } \\
& r m=m \sigma_{i}(r) \text { holds for } r \text { in } S_{i} .
\end{aligned}
$$

This last statement is proved by induction on i :

$$
r m=\sigma_{i}^{-1}\left(\sigma_{i}(r) m\right)=\sigma_{i}^{-1}\left(m \sigma_{\imath-1}\left(\sigma_{i}(r)\right)=m \sigma_{i}(r) .\right.
$$

We form the ring $S=\cup S_{n} \supset R$. This ring is a local ring with maximal ideal $m S$. For an element r in S there exists an index i and an element q in S_{i+1} with
$\sigma_{i+1}(q)=r$ in S_{i}. This implies $S m=m S$ and it follows that S is a chain ring containing R and satisfying condition (1).

This result can be applied immediately to the following situation:
4.3. Corollary. Assume R is a right chain ring of type (2) with finitely generated maximal ideal $J=m R$. If R contains a division ring D of representatives of R / J and $d m=m \sigma(d)$ holds for any element d in D, with $\sigma(d)$ in D also, then R is embeddable in a chain ring S satisfying (1).

Let R be a right chain ring as in Corollary 4.3 without the special condition that $\sigma(d)$ is again in D. We will then have the more general equation $d m=$ $m\left(d_{1}+m d_{2}+\ldots+m^{n-2} d_{n-1}\right)$ with d_{j} in D for $j=1, \ldots, n-1$ where n is the nilpotency index of m. This case will be treated in the next section.
5. $A H$-rings as skew polynomial rings. In this section the following assumptions are made: R is an $A H$-ring of type (2), R contains a skew field D of representatives of R / J and $J=m R$ is finitely generated as a right ideal. Finally, let n be the nilpotency index of m.

The multiplication in R is determined by

$$
\begin{equation*}
d m=m d^{\delta_{1}}+m^{2} d^{\delta_{2}}+\ldots+m^{n-1} d^{\delta_{n-1}} \tag{8}
\end{equation*}
$$

where the δ_{i} are mappings from D into D. Since R is a right vector space with basis $\left\{1, m, \ldots, m^{n-1}\right\}$, it is obvious that the δ_{i} 's are endomorphisms of the additive group of $D ; \delta_{1}$ is a monomorphism from D into D. We will use the notation and some arguments from [10]. If we put $a^{\delta_{i}}=a_{i}$ and

$$
a_{(k, t)}=\sum_{\substack{j_{1}+i+j_{k}=1 \\ j_{i}=1, \ldots, n-1}} a_{j_{1} j_{2} \ldots j_{k}} \quad\left(a_{(k, t)}=0 \text { for } k>t\right)
$$

one obtains

$$
\begin{equation*}
(a b)_{i}=\sum_{k=1}^{i} a_{(k, i)} b_{k} \quad \text { for } i=1, \ldots, n-1, a, b \text { in } D . \tag{9}
\end{equation*}
$$

The following identity, needed later, can be easily checked:

$$
\begin{equation*}
\sum_{i=0}^{n-1} a_{i+1(w, n-1-i)}=a_{(w+1, n)} \quad \text { for } w=1,2, \ldots \tag{10}
\end{equation*}
$$

We would like to apply Theorem 4.2 to solve our embedding problem for a ring R satisfying the assumptions listed at the beginning of this section.

This means that a monomorphism σ from R into a subring S_{1} of R must be found with $\sigma(m)=m$ and $r m=m \sigma(r)$ for r in R.

This we could do under an additional assumption on the mappings δ_{1} :

Assuming (11) one checks that the following identity is true:

$$
\begin{equation*}
a_{1(k, t-1)}+a_{(k+1, i-1)}=a_{(k+1, i)}, \quad a \text { in } D . \tag{12}
\end{equation*}
$$

Given an element A in R. Then A can be written as

$$
A=a(0)+m a(1)+\ldots+m^{n-1} a(n-1) \quad \text { with } a(i) \text { in } D .
$$

We have $A m=m B$ for some element B in R and $B=\sum_{i=0}^{n-1} m^{i} b(i)$, but only the $b(i)$'s for $i=0, \ldots, n-2$ are uniquely determined by A :

$$
\begin{equation*}
b(i)=a(i)_{1}+a(i-1)_{2}+\ldots+a(0)_{i+1} \quad(0 \leqq i \leqq n-2) . \tag{13}
\end{equation*}
$$

In order to make (13) a valid equation for $n-1$ as well, we define a mapping δ_{n} from D into D by

$$
\delta_{n}=\delta^{n-1} \delta_{1} .
$$

It is now possible to prove (9) for $i=n$ and a monomorphism σ from R to R with $r m=m \sigma(r)$ can be given.

We have:

$$
\begin{align*}
(a b)_{n} & =(a b)^{\delta_{\delta_{n-1}}}=(a b)^{\delta_{2} \delta_{1}-1} \delta_{n-1} \tag{14}\\
& =\left(a_{2} b_{1}+a_{11} b_{2}\right)^{\delta_{1}-\delta_{n-1}} \quad \text { (using (9)) } \\
& =\left(a^{\delta} b+a_{1} b^{\delta}\right)^{\delta_{n-1}} \quad \text { (using (11))) } \\
& =\sum_{k=1}^{n-1} a^{\delta}{ }_{(k, n-1)} b_{k}+\sum_{k=1}^{n-1} a_{1(k, n-1)} b_{k}^{\delta} \quad \text { (using (9)) } \\
& =\sum_{k=1}^{n} a_{(k, n)} b_{k} \quad \text { (using (11) and (12)) }
\end{align*}
$$

We claim that

$$
\begin{equation*}
\sigma\left(m^{i} a\right)=m^{i} a_{1}+m^{i+1} a_{2}+\ldots+m^{n-1} a_{n-i} ; \quad i=0, \ldots, n-1 \tag{15}
\end{equation*}
$$

defines a monomorphism from R to R with $\sigma(m)=m, r m=m \sigma(r)$.
Let a, b be elements in D. We will show that $\sigma(a b)=\sigma(a) \sigma(b)$. It is enough to prove that $(a b)_{n}$ equals the coefficient of m^{n-1} in $\sigma(a) \sigma(b)$.

Let

$$
\sigma(a)=\sum_{v=0}^{n-1} m^{v} a_{v+1} \quad \text { and } \quad \sigma(b)=\sum_{w=0}^{n-1} m^{w} b_{w+1}
$$

Using (9) we obtain

$$
\sigma(a) \sigma(b)=\sum_{v=0}^{n-1} m^{v} \sum_{w=0}^{n-1} \sum_{s=0}^{n-1} m^{s} a_{v+1(w, s)} b_{w+1} .
$$

The coefficient of m^{n-1} is therefore equal to

$$
\sum_{w=0}^{n-1} \sum_{v=0}^{n-1} a_{v+1(w, n-1-v)} b_{w+1},
$$

since $v+s=n+1$. If we apply (10) we see that this expression is equal to

$$
\sum_{w=0}^{n-1} a_{(w+1, n)} b_{w+1}=\sum_{w=1}^{n} a_{(w, n)} b_{w}=(a b)_{n} .
$$

The mapping σ defined by (15) is therefore a homomorphism from R into R with $\sigma(m)=m, r m=m \sigma(r)$. That σ is also a one-to-one mapping is obvious. We obtain therefore the following result:
5.1. Theorem. Let R be an $A H$-ring of type (2) containing a skew field D of representatives of R / J, where $J=m R$ is the maximal ideal of R. Let

$$
a m=m a^{\delta_{1}}+m^{2} a^{\delta_{2}}+\ldots+m^{n-1} a^{\delta_{n-1}} \text { for a in } D
$$

and assume that $D^{\delta_{2}} \subseteq D^{\delta_{1}}$ and $\delta_{i}=\delta^{i-1} \delta_{1}$ holds for $\delta=\delta_{2} \delta_{1}{ }^{-1}$ and $i=1, \ldots$, $n-1$. Then R can be embedded into a chain ring S satisfying (1).
5.2. Remark. The assumption $\delta_{i}=\delta^{i-1} \delta_{1}$ is always true if the nilpotency index n of m is equal to 3 .
5.3. Remark. Let R be given as in the beginning of this section. Then $R / m^{n-1} R$ is embeddable in a chain ring.

Example [6; p. 38]. Let $K[y ; \alpha, \delta]$ be a skew polynomial ring over a (skew) field K with monomorphism α and an α-derivation δ. Let $y a=a^{\alpha} y+a^{\delta}$. In the quotient field $K(y ; \alpha, \delta)$ consider the subring generated by K and y^{-1}. We obtain with $x=y^{-1}$ the following:

$$
a x=x a^{\alpha}+x a^{\delta} x=x a^{\alpha}+x^{2} s^{\delta \alpha}+x^{2} a^{\delta^{2}} x=\ldots
$$

We see that $K[x] /\left(x^{n}\right)=R$ provides us with an example of a ring R satisfying the conditions of Theorem 5.1.

References

1. B. Artmann, Desarguessche Hjelmslev-Ebenen n-ter Stufe, Mitt. Math. Sem. Giessen 91 (1971), 1-19.
2. R. Baer, A unified theory of projective spaces and finite abelian groups, Trans. Amer. Math. Soc. 52 (1942), 283-343.
3. R. T. Botto-Mura, H. H. Brungs, and J. L. Fisher, Chain rings and valuation semigroups, to appear in Comm. Alg.
4. H. H. Brungs, Generalized discrete valuation rings, Can. J. Math. 21 (1969), 1404-1408.
5. H. H. Brungs and G. Törner, Chain rings and prime ideals, Archiv Math. 27 (1976), 253-260.
6. P. M. Cohn, Free rings and their relations (Academic Press, London, 1971).
7. L. Fuchs, Partially ordered algebraic systems (Oxford, London, 1963).
8. J. W. Lorimer and N. D. Lane, Desarguesian affine Hjelmslev planes, J. Reine Angew. Math. 278/9 (1975), 336-352.
9. O. Ore, Theory of non-commutative polynomials, Ann. Math. 34 (1933), 480-508.
10. T. H. M. Smits, Skew polynomial rings, Indag. Math. 30 (1968), 209-224.
11. G. Törner, Eine Klassifizierung von Hjelmslev-Ringen und Hjelmslev-Ebenen, Mitt. Math. Sem. Giessen. 107 (1974).

University of Alberta,
Edmonton, Alberta;
Technische Hochschule,
Darmstadt, West Germany

[^0]: Received June 8, 1977 and in revised form April 13, 1978.
 The first author was supported in part by the National Research Council of Canada under Grant No. A-7254. The second author wishes to thank the Deutsche Forschungsgemeinschaft and the University of Alberta for partial support.

