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Abstract

A group is called quasihamiltonian if all its subgroups are permutable, and we say that a subgroup Q of a
group G is permutably embedded in G if 〈Q, g〉 is quasihamiltonian for each element g of G. It is proved
here that if a group G contains a permutably embedded normal subgroup Q such that G/Q is Černikov, then
G has a quasihamiltonian subgroup of finite index; moreover, if G is periodic, then it contains a Černikov
normal subgroup N such that G/N is quasihamiltonian. This result should be compared with theorems of
Černikov and Schlette stating that if a group G is Černikov over its centre, then G is abelian-by-finite and
its commutator subgroup is Černikov.
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1. Introduction

A classical theorem of Schur [14] states that if the centre ζ(G) of a group G has finite
index, then the commutator subgroup G′ is finite. Several results of Schur type were
later proved by replacing the finiteness of the index |G : ζ(G)|with a suitable restriction
on the factor group G/ζ(G). It is known for instance that if G is a group such that
G/ζ(G) is Černikov, then also G′ is a Černikov group, that is, an abelian-by-finite group
satisfying the minimal condition on subgroups. This latter result has been often, and
erroneously, attributed to Polovickiı̆ (see for instance [6, 8] and [10, Part 1, Theorem
4.23]); actually, it was due to Černikov [1], and Polovickiı̆ himself wrote in [9]: ‘This
proposition is easily obtained from our Lemma 1, in view of the result proved in [1]
which states the extremality of the commutator subgroup of any central extension by
an extremal group’. A proof of Černikov’s theorem can also be found in a paper of
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Schlette [12], where she also proved that if G is a group such that G/ζ(G) is Černikov,
then G is abelian-by-finite.

A different approach to Schur’s theorem was adopted in [2] by replacing the centre
by a normal subgroup with a suitable embedding property. Obviously, a subgroup C of
a group G is contained in ζ(G) if and only if 〈g, C〉 is abelian for all g ∈ G, and we say
that a subgroup Q is permutably embedded in G if 〈g, Q〉 is quasihamiltonian for all
g ∈ G; here a group is called quasihamiltonian if XY = YX for all its subgroups X and
Y. It was proved in [2] that if a group G contains a permutably embedded subgroup
of finite index, then there exists a finite normal subgroup N of G such that the factor
group G/N is quasihamiltonian.

The aim of this paper is to look at groups which are Černikov over a permutably
embedded normal subgroup and so our first main result should be compared with the
above quoted theorem of Schlette; recall here that a group is Černikov if and only if it
contains a subgroup of finite index which is the direct product of finitely many Prüfer
subgroups.

THEOREM 1.1. Let G be a group containing a permutably embedded normal subgroup
Q such that G/Q is a Černikov group and let J/Q be the largest divisible subgroup of
G/Q. Then J is quasihamiltonian and, in particular, G is quasihamiltonian-by-finite.

Our second main result shows that in the periodic case, a satisfactory translation of
Černikov’s theorem in terms of permutability holds.

THEOREM 1.2. Let G be a periodic group containing a permutably embedded normal
subgroup Q such that G/Q is a Černikov group. Then G has a Černikov normal
subgroup N such that G/N is quasihamiltonian.

Our notation is mostly standard and can be found in [10].

2. Preliminaries

A modular lattice L is called permodular if for all elements a and b of L such that
b ≤ a, the interval [a/b] = {x ∈ L | b ≤ x ≤ a} is finite whenever it has finite length.
Moreover, if G is a group and L(G) is the lattice of all subgroups of G, a modular
element M of L(G) is said to be permodular in G if the index |〈M, g〉 : Y | is finite
for all elements g and for all subgroups Y of G such that M ≤ Y ≤ 〈M, g〉 and the
interval [〈M, g〉/Y] is finite. Since cyclic subgroups and subgroups of finite index can
be detected within the lattice of subgroups, permodular subgroups are recognisable
by means of purely lattice theoretic concepts. Actually, it is known that a group
has a permodular subgroup lattice if and only if all its subgroups are permodular
(see [13, Theorem 6.4.3]). Notice here that every finite modular lattice is obviously
permodular, but, for instance, the subgroup lattice of a Tarski group (that is, an infinite
simple group whose proper nontrivial subgroups have prime order) is modular but not
permodular.
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Recall also that a subgroup X of a group G is said to be permutable in G if
XY = YX for all subgroups Y of G. Thus, a group is quasihamiltonian if and only
if all its subgroups are permutable. Since a subgroup is permutable if and only if it
is modular and ascendant (see for instance [13, Theorem 6.2.10]), it follows that a
group is quasihamiltonian if and only if it is locally nilpotent and its subgroup lattice
is modular. Thus, the study of periodic quasihamiltonian groups reduces to that of
primary quasihamiltonian groups, and these latter are known to be either abelian or
nilpotent of finite exponent (see [13, Theorem 2.4.14]). The structure of nonperiodic
quasihamiltonian groups is described by the following result (see [13, Theorem
2.4.11]); it shows in particular that the commutator subgroup of any quasihamiltonian
group is locally finite.

LEMMA 2.1. Let G be a quasihamiltonian group which is neither periodic nor abelian.
Then the subgroup T of all elements of finite order of G is abelian and the torsion-free
group G/T is locally cyclic. Moreover, all subgroups of T are normal in G and each
element of G whose order is either a prime or 4 belongs to ζ(G).

We refer to the monograph [13, Chs. 5 and 6] for further results concerning the
behaviour of permutable and permodular subgroups of infinite groups that can be
useful for our considerations. We only note here that if Q is a permutably embedded
subgroup of a group G, then Q is permutable in G and quasihamiltonian.

3. Proof of Theorem 1.1

Let G be a group and let X be a subgroup of G. We say that the interval [G/X]
of L(G) is Černikov if it satisfies the minimal condition and there exists a permodular
subgroup P of G containing X such that the index |G : P| is finite and the lattice [P/X] is
permodular. Since periodic groups with a permodular subgroup lattice are locally finite
(see [13, Theorem 2.4.16]) and locally finite groups satisfying the minimal condition
are Černikov groups by an important theorem of Šunkov (see for instance [4, Theorem
1.6.15]), a group G is Černikov if and only if L(G) = [G/{1}] is a Černikov lattice.

It is well known that a group is locally cyclic if and only if it has a distributive
subgroup lattice (see [13, Theorem 1.2.3]), and so our first lemma may be considered
as a translation of the elementary fact that a group G is abelian when the factor group
G/ζ(G) is locally cyclic.

LEMMA 3.1. Let G be a group containing a permutably embedded subgroup Q such
that the interval [G/Q] is a distributive lattice. Then G is quasihamiltonian.

PROOF. Let E be any finitely generated subgroup of G. Then

[E/E ∩ Q] � [〈E, Q〉/Q]

is a distributive lattice, and so, in particular, the finitely generated group E/(E ∩ Q)E is
cyclic. Moreover, the index |(E ∩ Q)E : E ∩ Q| is finite because E ∩ Q is permutable in
G (see [13, Lemma 6.2.8]). Thus, the lattice [E/E ∩ Q] satisfies the maximal condition
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so that there exists an element x such that E = 〈x, E ∩ Q〉 (see [3, Corollary 2.4]) and
hence E is quasihamiltonian. Since the property of being quasihamiltonian is local, it
follows that G is also a quasihamiltonian group. �

LEMMA 3.2. Let G be a group and let N be a periodic normal subgroup of G. If N
is contained in the hypercentre of G and G/CG(N) has no proper subgroups of finite
index, then N ≤ ζ(G).

PROOF. Assume for a contradiction that N is not contained in ζ(G) so that N ∩ ζ(G) is
a proper subgroup of N ∩ ζ2(G). Consider an element a of

(
N ∩ ζ2(G)

) \ ζ(G) and let k
be the order of a. Since the map g 	→ [a, g] is an epimorphism from G onto [a, G] with
kernel CG(a), the nontrivial subgroup [a, G] is a homomorphic image of G/CG(N),
which is impossible because [a, G]k = [ak, G] = {1}. �

LEMMA 3.3. Let G be a group containing a permutably embedded nonperiodic
subgroup Q such that the interval [G/Q] is a Černikov lattice. Then the elements of
finite order of G form a locally finite subgroup T containing G′ and Q ∩ T ≤ ζ(T).
Moreover, all periodic subgroups of Q are normal in G and each element of Q whose
order is either a prime or 4 belongs to ζ(G).

PROOF. By Schlette’s result, we may suppose that Q is not contained in ζ(G) so that
there is a g ∈ G such that [Q, g] � {1}. Since the subgroup 〈g, Q〉 is quasihamiltonian, it
follows from Lemma 2.1 that Q has torsion-free rank 1. Let E be any finitely generated
subgroup of G and put X = 〈Q, E〉 and Y = QX . Then X/Y is finitely generated and
L(X/Y) is a Černikov lattice so that X/Y is finite. Moreover, the index |Y : Q| is
finite (see [13, Lemma 6.2.8]) and hence Q has finite index in X. It follows now
from [2, Theorem 3.5] that X contains a finite normal subgroup L such that X/L is
quasihamiltonian. Thus, X′ is locally finite so the arbitrary choice of E yields that
G′ is locally finite and hence the elements of finite order of G form a locally finite
subgroup T containing G′. If x is any element of T, the nonperiodic subgroup 〈x, Q〉 is
quasihamiltonian so that 〈x, Q ∩ T〉 is abelian by Lemma 2.1 and hence Q ∩ T ≤ ζ(T).

Let a be any element of infinite order of G. Then 〈a, Q〉 is quasihamiltonian so that
a normalises all subgroups of Q ∩ T and centralises each element of Q which has order
either a prime or 4 (see [13, Theorem 2.4.11]). Since G is generated by its elements of
infinite order, the proof is complete. �

PROOF OF THEOREM 1.1 Since G/Q is Černikov, the subgroup J has finite index in G
and so it is enough to prove that J is quasihamiltonian. Thus without loss of generality,
we may assume that G/Q is a direct product of r ≥ 1 Prüfer subgroups. Suppose first
r = 1 so that G/Q is a group of type q∞ for some prime number q and hence the
subgroup lattice of G/Q is distributive. In this case, the group G is quasihamiltonian
by Lemma 3.1. Assume now r > 1. Let p be any prime in the set π = π(G/Q) and P/Q
any subgroup of type p∞ of G/Q. Thus,

G/Q = P/Q × V/Q,
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where V/Q is the direct product of r − 1 Prüfer subgroups so that P is quasihamiltonian
by the first part of the proof, while V is quasihamiltonian by induction on r. In
particular, P and V are hypercentral and hence G = PV is also a hypercentral group
(see [10, Part 1, page 51]).

Suppose that G is periodic and write P = P1 × P2, where P1 is a p-subgroup and P2
is a p′-subgroup. Since P1 has infinite exponent, it is abelian (see [13, Theorem 2.4.14])
and so P1 ≤ ζ(P). Thus, Q ≤ CG(P1) and hence G/CG(P1) is divisible. Application of
Lemma 3.2 yields that P1 is contained in ζ(G). It follows that the largest π-subgroup
Oπ(G) of G lies in ζ(G). However, the largest π′-subgroup Oπ′(G) of G is contained in
Q and hence G = Oπ(G) × Oπ′(G) is quasihamiltonian.

Assume finally that G is not periodic so that Q is not periodic. It follows from
Lemma 3.3 that G′ is locally finite, whence the elements of finite order of G form
a locally finite subgroup T and G′ ≤ Q ∩ T ≤ ζ(T). Let x be any element of T and
put C = CG(x). Then G′ ≤ C and so C is normal in G. Since 〈x, Q〉 is a nonperiodic
quasihamiltonian group, the subgroup 〈x〉 is normalised by Q so that NG(〈x〉) is normal
in G and G/NG(〈x〉) is a Černikov group. It follows that G/C is also Černikov. If R/C
is the largest divisible subgroup of G/C, Lemma 3.2 yields that R centralises x and
so x has only finitely many conjugates in G. Thus, G/C is finite so that G = QC and
〈x〉 is normal in G. Moreover, by Lemma 2.1, [x, Q] = {1} whenever the order of x is
a prime or 4 and so [x, G] = {1} under the same assumption. Therefore the group G is
quasihamiltonian (see [13, Theorem 2.4.11]) and the proof is complete. �

4. Proof of Theorem 1.2

The first result of this section is an elementary lemma concerning divisible
homomorphic images of abelian groups.

LEMMA 4.1. Let A be an abelian group and let B be a subgroup of A of finite
exponent e. If A/B is divisible, then Ae is the largest divisible subgroup of A. Moreover,
if A/B is a group of type p∞ for some prime number p, then Ae is also of type p∞.

PROOF. The map a 	−→ ae defines an epimorphism of A onto Ae whose kernel contains
B so that Ae is divisible and hence A = Ae × C for a suitable subgroup C. Obviously,
C has finite exponent and so Ae is the largest divisible subgroup of A. If A/B is a
group of type p∞ for some prime p, then Ae is also of type p∞ since it is a nontrivial
homomorphic image of A/B. �

LEMMA 4.2. Let G be a periodic group and let Q be a permutably embedded
p-subgroup of G, where p is a prime number. Then Q is contained in ζk(G) for some
nonnegative integer k.

PROOF. Of course, it can be assumed that [Q, g] � {1} for a suitable element g of G.
Since the subgroup 〈Q, g〉 is quasihamiltonian, it follows from [13, Theorem 2.4.14]
that Q has finite exponent e. Let x be an element of Q of order p and let y be an arbitrary
element of G. Then 〈y〉 is a permutable subgroup of 〈Q, y〉 and so, in particular,
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〈y〉x = 〈y〉. Thus, x normalises all subgroups of G and hence it belongs to ζ2(G) (see
for instance [11]). Therefore, Qζ2(G)/ζ2(G) has exponent strictly smaller than e and so
by induction Q is contained in some term of the upper central series of G with finite
ordinal type. �

COROLLARY 4.3. Let G be a periodic group and let Q be a permutably embedded
subgroup of G. Then Q is contained in ζω(G).

PROOF. Each primary subgroup of Q is permutably embedded in G and so by
Lemma 4.2, it is contained in some term with finite ordinal type of the upper central
series of G. Therefore, Q ≤ ζω(G). �

In relation to the above statement, we notice that a permutably embedded subgroup
Q of a periodic group G need not be contained in some term with finite ordinal type
of the upper central series of G, even if [G/Q] is a Černikov lattice. To see this, it is
enough to observe that for each prime p, there exists a quasihamiltonian p-group Gp of
class p and consider the direct product G = Drp Gp, which is quasihamiltonian but not
nilpotent. However, it can be proved that if a permutably embedded subgroup Q of a
periodic group G determines a Černikov interval of L(G), then it is always subnormal
in G and it lies in some term with finite ordinal type of the upper central series of G
provided that it is core-free. To see this, we need the following result.

LEMMA 4.4. Let G be a periodic locally nilpotent group and let X be a subgroup of G
such that the interval [G/X] is a Černikov lattice. Then X contains all but finitely many
Sylow subgroups of G.

PROOF. Let p1 < p2 < · · · < pn < pn+1 < · · · be the sequence of all prime numbers.
For each positive integer n, let Pn be the unique Sylow pn-subgroup of G and put
Gn = Drk≥n Pk. Then,

G = G1 = XG1 ≥ XG2 ≥ · · · ≥ XGn ≥ XGn+1 ≥ · · ·

is a descending sequence of subgroups of G containing X and so there exists m such
that XGn = XGn+1 for all n ≥ m. If Xn is the unique Sylow pn-subgroup of X, we
have [Xn, Gn+1] = {1} so that Xn is normal in XGn+1 and XGn+1/Xn has no elements
of order pn. Thus, Pn = Xn ≤ X for all n ≥ m and hence Gm is contained in X. �

THEOREM 4.5. Let G be a periodic group and let Q be a permutably embedded
subgroup of G such that the interval [G/Q] is a Černikov lattice. Then Q/QG is
contained in ζk(G/QG) for some nonnegative integer k. In particular, Q is subnormal
in G.

PROOF. By Corollary 4.3, the subgroup Q is contained in Z = ζω(G). Thus, the
subgroup lattice of G/Z is Černikov and so G/Z is a Černikov group. Let J/Z be
the largest divisible subgroup of G/Z. Then G/J is finite and J is hypercentral so that
it follows from Lemma 4.4 that there exists a finite set π of prime numbers such that
π(G/J) ⊆ π and Q contains the π′-component Jπ′ of J. Then Qπ′ = Jπ′ is normal in

https://doi.org/10.1017/S0004972722000648 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000648


282 M. De Falco, F. de Giovanni and C. Musella [7]

G and G/Qπ′ is a π-group. Application of Lemma 4.2 to each primary component of
Q/Qπ′ yields that Q/Qπ′ ≤ ζk(G/Qπ′) for a suitable nonnegative integer k, and hence
Q/QG lies in ζk(G/QG). �

PROOF OF THEOREM 1.2 The subgroup Q is contained in ζω(G) by Corollary 4.3 so
that G/ζω(G) is a Černikov group and hence there exists a Černikov normal subgroup
W of G such that G/W is hypercentral (see [5, Corollary B4]). Since the hypotheses
are inherited by homomorphic images, we may replace G by G/W and assume that
G is hypercentral. In particular, G is the direct product of its Sylow subgroups. Put
π = π(G/Q). Then the largest π′-subgroup Gπ′ of G is contained in Q and hence it is
quasihamiltonian. Clearly, the set π is finite and G = Gπ × Gπ′ so that it is enough to
prove that the statement is true for every Sylow subgroup of G. Thus, we may suppose
that G is a p-group for some prime number p.

Since Q is quasihamiltonian, it is abelian-by-finite (see [13, Theorem 2.4.14]) and
so it contains an abelian characteristic subgroup A of finite index (see for instance
[7, Lemma 21.1.4]). Then A is a permutably embedded normal subgroup of G and
G/A is Černikov so that Q can be replaced by A and we may assume that Q is
abelian. Moreover, by the results of Černikov and Schlette, we may also suppose that
Q is not contained in ζ(G). Thus there exists g ∈ G such that 〈g, Q〉 is a nonabelian
quasihamiltonian group, whence Q must have finite exponent. It follows from Lemma
4.2 that Q ≤ ζk(G) for some nonnegative integer k so that the factor group G/ζk(G)
is Černikov. Therefore, γk+1(G) is also a Černikov group (see [10, Part 1, Corollary 2
to Theorem 4.21]) and hence it is enough to prove the statement for the factor group
G/γk+1(G). Thus, we may assume without loss of generality that G is nilpotent.

Let J/Q be the largest divisible subgroup of the Černikov group G/Q. Then Q is
contained in ζ(J) by Lemma 3.2 so that J′ is Černikov, and again we may replace G by
G/J′ and assume that J is abelian. Write

J/Q = J1/Q × · · · × Jt/Q,

where each Ji/Q is a group of type p∞. It follows from Lemma 4.1 that Ji = Pi × Bi,
where Pi is a group of type p∞ and Bi has finite exponent i (i = 1, . . . , t). Since G
is nilpotent, J/Q lies in ζ(G/Q) so that each Ji is normal in G and hence also Pi is
normal in G for every i = 1, . . . , t. It follows that P = 〈P1, . . . , Pt〉 is a Černikov normal
subgroup of G. Moreover, J/P has finite exponent and so J = PQ. Therefore, J/P is a
permutably embedded subgroup of finite index of G/P and hence G/P contains a finite
normal subgroup N/P such that G/N is quasihamiltonian (see [2, Theorem 3.5]). Since
N is Černikov, the proof is complete. �
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