INTEGRALS ALLIED TO AIRY'S INTEGRALS
 by T. M. MACROBERT
 (Received 13th February, 1956)

1. Introductory. Airy's integrals

$$
\int_{0}^{\infty} \cos \left(\lambda^{3} \pm x \lambda\right) d \lambda
$$

can be expressed ([1], [2]) in terms of Bessel functions. In this paper integrals of the types

$$
\int_{0}^{\infty} \cos \left(\lambda^{n} \pm x \lambda^{l}\right) \lambda^{k-1} d \lambda
$$

are discussed. Various subsidiary formulae are given in § 2, some integrals of the type

$$
\int_{0}^{\infty} \exp \left(-\lambda^{n}\right) f\left(\lambda^{l}\right) \lambda^{k-1} d \lambda
$$

are evaluated in § 3, and from these the integrals of the Airy type are derived in § 4.
2. Formulae required in the proof. The first of these is the Gamma function formula

$$
\begin{equation*}
\Gamma(z) \Gamma\left(z+\frac{1}{m}\right) \ldots \Gamma\left(z+\frac{m-1}{m}\right)=(2 \pi)^{\frac{1}{m-t} m^{t-m z}} \Gamma(m z) . \tag{1}
\end{equation*}
$$

The second is Ragab's formula ([2], p. 406, ex. 27, [3])

$$
\begin{equation*}
K_{\mu}(z) K_{\nu}(z)=\frac{1}{4 z \sqrt{ } \pi} \sum_{i,-i} \frac{1}{i} E\left(\frac{1+\mu+\nu}{2}, \frac{1+\mu-\nu}{2}, \frac{1-\mu+\nu}{2}, \frac{1-\mu-\nu}{2}: \frac{1}{2}: e^{i \pi z^{2}}\right) . \tag{2}
\end{equation*}
$$

The following two formulae are also required.
If m is a positive integer and if $R(k)>0$, ([2], p. 406, ex. 30),

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\lambda} \lambda^{k-1} E\left(p ; \alpha_{r}: q ;!\rho_{s}: z / \lambda^{m}\right) d \lambda=m^{k-\frac{z}{2}}(2 \pi)^{\frac{t}{-k} m} E\left(p+m ; \alpha_{r}: q ; \rho_{s}: z / m^{m}\right) \tag{3}
\end{equation*}
$$

where $\alpha_{p+\nu+1}=(k+\nu) / m, \nu=0,1,2, \ldots, m-1$.
If m is a positive integer and if $|\operatorname{amp} z|<\pi$, ([2], p. 407, ex. 32),

$$
\begin{equation*}
\frac{1}{2 \pi i} \int e^{\iota \zeta-\rho} E\left(p ; \alpha_{r}: q ; \rho_{s}: \zeta^{m z}\right) d \zeta=m^{t-\rho}(2 \pi)^{m-\frac{1}{m}} E\left(p ; \alpha_{\tau}: q+m ; \rho_{s}: z m^{m}\right) \tag{4}
\end{equation*}
$$

where the contour starts at $-\infty$ on the real axis, passes round the origin in the positive direction, and returns to $-\infty$, and $\rho_{a+\nu+1}=(\rho+\nu) / m, \nu=0,1,2, \ldots, m-1$.
3. Some infinite integrals. Consider the integral

$$
\int_{0}^{\infty} \exp \left(-\lambda^{n}+z \lambda^{l}\right) \lambda^{k-1} d \lambda,
$$

where n and l are positive integers such that $l<n$, and $R(k)>0$. On expanding $\exp \left(z \lambda^{l}\right)$ in powers of z and putting $\lambda=\mu^{1 / n}$, this becomes

$$
\frac{1}{n} \sum_{r=0}^{\infty} \frac{z^{r}}{r!} \Gamma\left(\frac{k+r l}{n}\right)
$$

and therefore

$$
\begin{align*}
\int_{0}^{\infty} \exp & \left(-\lambda^{n}+z \lambda^{l}\right) \lambda^{k-1} d \lambda \\
& =\frac{1}{n} \sum_{t=0}^{n-1} \Gamma\left(\frac{k+t l}{n}\right) \frac{z^{t}}{t!} F\left\{\begin{array}{c}
\frac{k+t l}{n l}, \frac{k+t l+n}{n}, \ldots, \frac{k+t l+(l-1) n}{n l}: l^{l}\left(\frac{z}{n}\right)^{n} \\
\frac{t+1}{n}, \frac{t+2}{n}, \ldots * \ldots, \frac{t+n}{n}
\end{array}\right\},
\end{align*}
$$

the asterisk indicating that the parameter n / n is omitted.
Now assume that n is odd, replace z by $-1 / z$, and apply (1) with $(k+t l) /(n l)$ for z and l for m and also with $(t+1) / n$ for z and n for m; then the equation can be written

$$
\begin{align*}
& \int_{0}^{\infty} \exp \left(-\lambda^{n}\right) E\left(:: z / \lambda^{l}\right) \lambda^{k-1} d \lambda \\
= & n^{-3 / 2 l-t+k / n}(2 \pi)^{t^{n-t} l^{n}} \sum_{t=0}^{n-1}\left(-n l^{-l / n} z\right)^{-t} E\left\{\begin{array}{c}
\frac{k+t l}{n l}, \frac{k+t l+n}{n l}, \ldots, \frac{k+t l+(l-1) n}{n l}: l^{-l}(n z)^{n} \\
\frac{t+1}{n}, \frac{t+2}{n}, \ldots * \ldots, \frac{t+n}{n}
\end{array}\right\} . \tag{6}
\end{align*}
$$

On generalising, using (3) and (4), it is found that, if n and l are positive integers such that n is odd and $l<n$, and if $R(k)>0$,

$$
\begin{align*}
& \exp \left(-\lambda^{n}\right) E\left(p ; \alpha_{r}: q ; \rho_{s}: z / \lambda^{l}\right) \lambda^{k-1} d \lambda \\
& =n^{\Sigma \alpha_{r}-\Sigma \rho_{s}-\frac{1}{2} p+\frac{1}{2} q-3 / 2 l-\frac{1}{2}+k / n}(2 \pi)^{\left(t-\frac{1}{l} n\right)(p-q)+\frac{1}{2} n-\frac{1}{2} l} \\
& \times \sum_{t=0}^{n-1}\left(-l^{-l / n} n^{q-p+1} z\right)^{-t} E\left\{\begin{array}{l}
\frac{k+t l}{n l}, \ldots, \frac{k+t l+(l-1) n}{n l}, \frac{\alpha_{1}+t}{n}, \ldots, \frac{\alpha_{p}+t+n-1}{n}: l^{-l}\left(n^{q-p+1} z\right)^{n} \\
\frac{t+1}{n}, \ldots * \ldots, \frac{t+n}{n}, \frac{\rho_{1}+t}{n}, \ldots, \frac{\rho_{q}+t+n-1}{n}
\end{array}\right\} . \tag{7}
\end{align*}
$$

Note. If n is even the argument of the E-function should be multiplied by $e^{ \pm i \pi}$.
For example, on applying formula (2) it is found that

$$
\begin{align*}
& \int_{0}^{\infty} \exp \left(-\lambda^{n}\right) K_{\mu}\left(z / \lambda^{l}\right) K_{\nu}(z / \lambda l) \lambda^{k-1} d \lambda \\
&=(2 \sqrt{ } 2 z)^{-1} n^{-3 / 2}(2 l)^{-\frac{1}{2}+(k+l) / n(2 \pi)^{1-n-l} \sum_{i,-i} \frac{1}{i} \sum_{t=0}^{n-1}\left\{(2 l)^{-2 l / n} n^{-2} z^{2}\right\}^{-t}} \\
& \times E\left\{\begin{array}{l}
\frac{k+l+2 t l}{2 n l}, \ldots, \frac{k+l+2 t l+(2 l-1) n}{2 n l}, \frac{1+\mu+\nu+2 t}{2 n}, \ldots, \\
\frac{t+1}{n}, \ldots * \ldots, \frac{t+n}{n}, \frac{1+2 t}{2 n}, \ldots, \frac{1+2 t+2 n-2}{2 n}
\end{array}\right. \tag{8}
\end{align*}
$$

where n and l are positive integers such that n is odd and $n>2 l$, and $R(k)>-l$.
4. Integrals of the Airy type. In formula (5) swing the line of integration through a positive angle $\pi /(2 n)$, so that λ becomes $\eta e^{i \pi /(2 n)}$, and let $z= \pm x e^{i(n-l) \pi /(2 n)}$, where x is real and positive ; then

$$
\begin{align*}
& \int_{0}^{\infty} \exp \left(-i \eta^{n} \pm i x \eta^{l}\right) \eta^{k-1} d \eta=\frac{1}{n} e^{-i k \pi /(2 n)} \sum_{t=0}^{n-1} \Gamma\left(\frac{k+t l}{n}\right) \frac{(\pm x)^{t}}{t!} \\
& \quad \times e^{i t(n-l) \pi /(2 n)} F\left\{\begin{array}{l}
\frac{k+t l}{n l}, \frac{k+t l+n}{n l}, \ldots, \frac{k+t l+(l-1) n}{n l} ; e^{i(n-l) \pi / 2} l l\left(\frac{ \pm x}{n}\right)^{n} \\
\frac{t+1}{n}, \frac{t+2}{n}, \ldots * \ldots, \frac{t+n}{n}
\end{array}\right\}, \ldots \ldots(9) \tag{9}
\end{align*}
$$

where $n>R(k)>0$ and $n>l$.
On putting $n=3, l=1, k=1$, and equating real parts, Airy's integrals are obtained.
The same method may be applied for other values of n and l.
For instance, if $n=5, l=3$, and if k is real and such that $0<k<5, x$ real and positive,

$$
\begin{align*}
& \int_{0}^{\infty} \cos \left(\eta^{5} \pm x \eta^{3}\right) \eta^{k-1} d \eta=\frac{1}{5} \sum_{t=0}^{4} \Gamma\left(\frac{k+3 t}{5}\right) \frac{\cos }{\sin }\left(\frac{k-2 t}{10} \pi\right) \frac{(\mp x)^{t}}{t!} \\
& \times F\left\{\begin{array}{l}
\frac{k+3 t}{15}, \frac{k+3 t+5}{15}, \frac{k+3 t+10}{15} ; \pm 27\left(\frac{x}{5}\right)^{5} \\
\frac{t+1}{5}, \frac{t+2}{5}, \ldots * \ldots, \frac{t+5}{5}
\end{array}\right\} . \tag{10}
\end{align*}
$$

Note. From these formulae numerous others can be deduced. For instance, if the cosines with arguments $\pm x$ on the left of (10) are added, integrals of the type

$$
\int_{0}^{\infty} \cos \eta^{5} \cos \left(x \eta^{3}\right) \eta^{k-1} d \eta
$$

are obtained. The second cosine and the functions on the right can then be expressed as E-functions and generalised.

REFERENCES

1. Watson, G. N., A treatise on the theory of Bessel functions (2nd edition, Cambridge, 1944), 188-190.
2. MacRobert, T. M., Functions of a complex variable (4th edition, London, 1954), 402-403.
3. Ragab, F. M. A product of two E-functions expressed as a sum of two E-functions, Proc. Glasgow Math. Assoc. 2 (1955), 125.

The University

Glasgow

