ON CONFORMALLY RECURRENT SPACES OF SECOND ORDER

M. C. CHAKI and A. N. ROY CHOWDHURY

(Received 6 December 1967)

Introduction

In a recent paper [1] Adati and Miyazawa studied conformally recurrent spaces, that is, Riemannian spaces defined by $C_{ijk,l}^{\hbar} = \lambda_l C_{ijk}^{\hbar}$ where C_{ijk}^{\hbar} is the conformal curvature tensor:

(1)

$$C_{ijk}^{h} = R_{ijk}^{h} - \frac{1}{n-2} \left(R_{k}^{h} g_{ij} - R_{j}^{h} g_{ik} + R_{ij} \delta_{k}^{h} - R_{ik} \delta_{jj}^{h} \right) + \frac{R}{(n-1)(n-2)} \left(\delta_{k}^{h} g_{ij} - \delta_{j}^{h} g_{ik} \right),$$

 λ_i is a non-zero vector and comma denotes covariant differentiation with respect to the metric tensor g_{ij} . The present paper is concerned with non-flat Riemannian spaces $V_n(n > 3)$ defined by

(2)
$$C^{h}_{ijk,\,lm} = a_{lm}C^{h}_{ijk}$$

where a_{lm} is a tensor not identically zero. We shall call a Riemannian space defined by (2) a conformally recurrent space of second order and shall denote an *n*-space of this kind by $C({}^{2}K_{n})$. A Riemannian space whose curvature tensor satisfies $R_{ijk,lm}^{\hbar} = \bar{a}_{lm}R_{ijk}^{\hbar}$ was called a Recurrent space of second order by A. Lichnerowicz [2]. Such an *n*-space shall be denoted by ${}^{2}K_{n}$. Evidently every ${}^{2}K_{n}$ is a $C({}^{2}K_{n})$ but the converse is not necessarily true. Sections 2 and 3 of this paper deal with Einstein and 2-Ricci-recurrent $C({}^{2}K_{n})$ respectively while section 4 deals with $C({}^{2}K_{n})$ admitting a parallel vector field. In the last section it will be shown that a Riemannian space satisfying $W_{ijk,lm}^{\hbar} = a'_{lm}W_{ijk}^{\hbar}$ where W_{ijk}^{\hbar} is Weyl's projective curvature tensor is a $C({}^{2}K_{n})$.

1. Tensor of recurrence in a $C(^{2}K_{n})$

We have

$$(C_{hijk}C^{hijk})_{,lm} = 2C_{hijk} _{lm}C^{hijk} + 2C^{hijk}_{,l}C_{hijk,m}$$

Therefore, in a $C({}^{2}K_{n})$

155

$$(C_{hijk}C^{hijk})_{,lm} = 2a_{lm}C_{hijk}C^{hijk} + 2C^{hijk}_{,l}C_{hijk,m}$$

Hence

$$2(a_{lm}-a_{ml})C_{hijk}C^{hijk}=0$$

So either

- (i) $C_{hijk}C^{hijk} = 0$ or
- (ii) $a_{lm} = a_{ml}$

If the space is of positive definite metric and not conformally flat, then (i) cannot hold and therefore a_{lm} is symmetric.

Again, if in a $C({}^{2}K_{n})$, $R_{ij} = 0$, then from (1) and (2) it follows that $R_{ijk, lm}^{h} = a_{lm}R_{ijk}^{h}$, that is, the space is a ${}^{2}K_{n}$. It is already known that for a ${}^{2}K_{n}$ the tensor of recurrence is symmetric. Hence if for a $C({}^{2}K_{n})$, $R_{ij} = 0$, then its tensor of recurrence is symmetric. We can therefore state the following theorems:

THEOREM 1. If a $C({}^{2}K_{n})$ with positive definite metric is not conformally flat, then its tensor of recurrence is symmetric.

THEOREM 2. If for a $C({}^{2}K_{n})$ the Ricci tensor is a zero tensor, then its tensor of recurrence is symmetric.

2. Einstein $C(^{2}K_{n})$

If a $C({}^{2}K_{n})$ is an Einstein space, defined by $R_{ij} = (R/n)g_{ij}$, then (2.1) $R_{ij,lm} = 0$

Let us suppose that an Einstein $C({}^{2}K_{n})$ is a ${}^{2}K_{n}$. Then $R_{ijk,lm}^{\hbar} = d_{lm}R_{ijk}^{\hbar}$ for a non-zero tensor d_{lm} . Consequently $R_{ij,lm} = d_{lm}R_{ij}$. Therefore in virtue of (2.1) $R_{ij} = 0$, because $d_{lm} \neq 0$. Hence R = 0.

Again, if in an Einstein $C({}^{2}K_{n})$, R = 0 then $R_{ij} = 0$ and therefore the space is a ${}^{2}K_{n}$. In an Einstein $C({}^{2}K_{n})$ of zero scalar curvature

Making use of (2.2) and the Bianchi identity we get

(2.3)
$$a_{lm}R^{h}_{ijk} + a_{jm}R^{h}_{ikl} + a_{km}R^{h}_{ilj} = 0$$

Multiplying (2.3) by a_t^l where $a_t^l = g^{lp} a_{pt}$ we have

(2.4)
$$a_{i}^{l}a_{lm}R_{ijk}^{h} + a_{i}^{l}a_{jm}R_{ikl}^{h} + a_{i}^{l}a_{km}R_{ilj}^{h} = 0$$

 $R_{ij} = 0$ implies $a_{hm} R_{ijk}^{h} = 0$ by contracting h and k in (2.3). Hence $a_{m}^{t} R_{kit}^{p} = 0$. Using this (2.4) reduces to $a_{i}^{t} a_{im} R_{ijk}^{h} = 0$. Since the space is not flat, $a_{i}^{t} a_{im} = 0$. Thus we have the following theorems:

[2]

THEOREM 3. A necessary and sufficient condition that an Einstein $C({}^{2}K_{n})$ may be a ${}^{2}K_{n}$ is that its scalar curvature is zero.

THEOREM 4. In an Einstein $C({}^{2}K_{n})$ of zero scalar curvature $a_{i}^{1}a_{im} = 0$. We now consider an Einstein $C({}^{2}K_{n})$ of non-zero scalar curvature. From (2.1) as well as (1) and (2) we have

$$(2.5) R_{hijk, lm} = a_{lm} T_{hijk}$$

where

$$T_{hijk} = R_{hijk} - \frac{R}{n(n-1)} \left(g_{hk} g_{ij} - g_{hj} g_{ik} \right)$$

Using (2.5) Walker's Lemma 1 [3], namely

$$(2.6) \qquad R_{hijk,lm} - R_{hijk,ml} + R_{jklm,hi} - R_{jklm,ih} + R_{lmhi,jk} - R_{lmhi,kj} = 0$$

reduces to

$$(2.7) b_{lm}T_{hijk} + b_{hi}T_{jklm} + b_{jk}T_{lmhi} = 0$$

where

$$(2.8) b_{lm} = a_{lm} - a_{ml}.$$

Since $T_{hijk} = T_{jkhi}$, by Walker's Lemma 2 [3] we have from (2.7) either $b_{lm} = 0$ or $T_{hijk} = 0$. Hence we have the following theorem:

THEOREM 5. If a $C({}^{2}K_{n})$ is an Einstein space of non-zero scalar curvature, then either its tensor of recurrence is symmetric or it is a space of constant curvature.

3. 2-Ricci-recurrent $C(^{2}K_{n})$

In a previous paper [4] we called a non-flat Riemannian space a Ricci-recurrent space of second order, or briefly a 2-Ricci-recurrent space if its Ricci tensor satisfies

and $R_{ij} \neq 0$ for a non-zero tensor a_{kl}^* .

We put

(3.2)
$$\Pi_{ij} = \frac{1}{n-2} \left[R_{ij} - \frac{R}{2(n-1)} g_{ij} \right]$$

and

$$(3.3) D^h_{ijk} = \Pi^h_k g_{ij} - \Pi^h_j g_{ik} + \Pi_{ij} \delta^h_k - \Pi_{ik} \delta^h_j$$

where $\Pi_k^h = g^{ht} \Pi_{tk}$. Then

158 M. C. Chaki and A. N. Roy Chowdhury

Moreover,

(3.5)
$$\Pi = g^{ij} \Pi_{ij} = \frac{R}{2(n-1)}$$

and

$$D_{hijk} = -D_{ihjk} = -D_{hikj} = D_{jkhi}$$

where $D_{hijk} = g_{ht}D_{ijk}^t$. Let us suppose that Π_{ij} is a non-zero tensor satisfying

$$(3.6) \Pi_{ij,kl} = a_{kl}^* \Pi_{ij}$$

where a_{kl}^* is a non-zero tensor. Then $\Pi_{,kl} = a_{kl}^* \Pi$ or,

From (3.2) we have

$$\Pi_{ij,kl} = \frac{1}{n-2} \left[R_{ij,kl} - \frac{R_{kl}}{2(n-1)} g_{ij} \right]$$

Therefore

$$\frac{1}{n-2} R_{ij,kl} = a_{kl}^* \left[\Pi_{ij} + \frac{R}{2(n-1)(n-2)} g_{ij} \right] = a_{kl}^* \frac{1}{n-2} R_{ij}$$

Hence

$$(3.8) R_{ij,\,kl} = a_{kl}^* R_{ij}$$

Conversely, if (3.8) holds, then

$$\Pi_{ij,kl} = a_{kl}^* \Pi_{ij}$$

We can therefore state the following lemma:

LEMMA. If in a Riemannian space, the tensor Π_{ij} , defined by (3.2), is a non-zero tensor, then the space is 2-Ricci-recurrent if and only if $\Pi_{ij,kl} = a_{kl}^* \Pi_{ij}$ for a non-zero tensor a_{kl}^* .

We now suppose that in a $C({}^{2}K_{n})$, (3.6) holds. Differentiating (3.3) covariantly we have

$$D^{h}_{ijk,lm} = \Pi^{h}_{k,lm}g_{ij} - \Pi^{h}_{j,lm}g_{ik} + \Pi_{ij,lm}\delta^{h}_{k} - \Pi_{ik,lm}\delta^{h}_{j}$$

Using (3.6) we get

(3.9)

$$D^{h}_{ijk,lm} = a^{*}_{lm} D^{h}_{ijk}.$$

From (3.4) we have

$$egin{aligned} R^{h}_{ijk,\,lm} &= C^{h}_{ijk,\,lm} + D^{h}_{ijk,\,lm} \ &= a_{lm}C^{h}_{ijk} + a^{*}_{lm}D^{h}_{ijk}. \end{aligned}$$

[4]

Therefore

$$(3.10) R_{hijk, lm} - R_{hijk, ml} = b_{lm} C_{hijk} + c'_{lm} D_{hijk}$$

where b_{im} is given by (2.8) and $c'_{im} = a^*_{im} - a^*_{mi}$. Now using (3.10) Walker's lemma (2.6) can be written as

(3.11)
$$b_{lm}C_{hijk} + b_{hi}C_{jklm} + b_{jk}C_{lmhi} + c'_{lm}D_{hijk} + c'_{hi}D_{jklm} + c'_{jk}D_{lmhi} = 0$$

Let us suppose that a_{im} is symmetric. Then $b_{im} = 0$. Hence (3.11) reduces to

(3.12)
$$c'_{lm}D_{hijk}+c'_{hi}D_{jklm}+c'_{jk}D_{lmhi}=0.$$

Since

$$C_{ij} = 0, \quad \Pi_{ij} = \frac{1}{n-2} \left[D_{ij} - \frac{D}{2(n-1)} g_{ij} \right].$$

Hence $\Pi_{ij} \neq 0$ implies $D_{ijkl} \neq 0$. Also $D_{hijk} = D_{jkhi}$. Hence applying Walker's Lemma 2 to (3.12) we have $c'_{lm} = 0$. Hence a^*_{lm} is symmetric. Next, we suppose that a^*_{lm} is symmetric. Then $c'_{lm} = 0$ and it follows from (3.11) that

$$(3.13) b_{lm}C_{hijk}+b_{hi}C_{jklm}+b_{jk}C_{lmhi}=0.$$

Hence if $C_{hijk} \neq 0$, it follows from (3.13) that $b_{lm} = 0$ whence a_{lm} is symmetric.

We can therefore state the following theorems:

THEOREM 6. If a $C({}^{2}K_{n})$ which is not conformally flat is a 2-Riccirecurrent space, then its tensor of recurrence is symmetric if and only if the tensor of 2-Ricci-recurrence is symmetric.

THEOREM 7. If a $C({}^{2}K_{n})$ is a 2-Ricci-recurrent space, then the tensor of 2-Ricci-recurrence is symmetric if the tensor of recurrence of $C({}^{2}K_{n})$ is so.

4. $C({}^{2}K_{n})$ admitting a parallel vector field

Let us assume that there exists a parallel vector field v^i in a $C({}^{2}K_n)$. Then $v_{i,l}^{i} = 0$. Therefore $v_{i,lm}^{i} - v_{i,ml}^{i} = 0$. Hence using the Ricci identity and the Bianchi identity we have

$$v^t R^h_{tlm} = 0, \qquad v^t R_{tl} = 0$$

 $v^t R^h_{tlm,n} = 0, \qquad v^t R_{tl,n} = 0.$

Therefore,

(4.1)
$$v^t R^h_{ijk,t} = 0, \quad v^t R_{ij,t} = 0, \quad v^t R_{i,t} = 0.$$

From (2) we have $v^{l}C_{ijk,lm}^{h} = v^{l}a_{lm}C_{ijk}^{h}$ or,

(4.2)
$$v^{l} \left[R_{ijk,lm}^{h} - \frac{1}{n-2} \left(R_{k,lm}^{h} g_{ij} - R_{j,lm}^{h} g_{ik} + R_{ij,lm} \delta_{k}^{h} - R_{ik,lm} \delta_{j}^{h} \right) + \frac{1}{(n-1)(n-2)} R_{,lm} \left(\delta_{k}^{h} g_{ij} - \delta_{j}^{h} g_{ik} \right) \right] = v^{l} a_{lm} C_{ijk}^{h}.$$

Using (4.1) the left hand side of (4.2) reduces to zero. Hence $v^{l}a_{lm}C_{ijk}^{h} = 0$. Thus we have the following theorem:

THEOREM 8. If a $C({}^{2}K_{n})$ admits a parallel vector field v^{i} , then either the space is conformally flat or $v^{i}a_{im} = 0$.

5. Projective recurrent spaces of second order

A. Riemannian space V_n $(n \ge 3)$ satisfying

$$(5.1) W^h_{ijk,\,lm} = a'_{lm} W^h_{ijk}$$

for a non-zero tensor a'_{im} where W^h_{ijk} is Weyl's projective curvature tensor

(5.2)
$$W_{ijk}^{h} = R_{ijk}^{h} - \frac{1}{n-1} \left(\delta_{k}^{h} R_{ij} - \delta_{j}^{h} R_{ik} \right)$$

shall be called a projective recurrent space of second order.

From (5.2) we have

(5.3)
$$W_{ijk,lm}^{h} = R_{ijk,lm}^{h} - \frac{1}{n-1} \left(\delta_{k}^{h} R_{ij,lm} - \delta_{j}^{h} R_{ik,lm} \right).$$

Substituting (5.2) and (5.3) in (5.1) we get

(5.4)
$$R_{ijk,lm}^{h} - \frac{1}{n-1} \left(\delta_{k}^{h} R_{ij,lm} - \delta_{j}^{h} R_{ik,lm} \right) \\= a_{lm}' \left[R_{ijk}^{h} - \frac{1}{n-1} \left(\delta_{k}^{h} R_{ij} - \delta_{j}^{h} R_{ik} \right) \right].$$

Therefore,

(5.5)
$$R_{k,lm}^{h} = a_{lm}' R_{k}^{h} + \frac{1}{n} (R_{,lm} - a_{lm}' R) \delta_{k}^{h}$$

and

(5.6)
$$R_{ij,lm} = a'_{lm}R_{ij} + \frac{1}{n} (R_{,lm} - a'_{lm}R)g_{ij}$$

Again from (1) we have

(5.7)

$$C_{ijk,lm}^{h} = R_{ijk,lm}^{h} - \frac{1}{n-2} \left(R_{k,lm}^{h} g_{ij} - R_{j,lm}^{h} g_{ik} + R_{ij,lm} \delta_{k}^{h} - R_{ik,lm} \delta_{j}^{h} \right) + \frac{1}{(n-1)(n-2)} R_{,lm} \left(\delta_{k}^{h} g_{ij} - \delta_{j}^{h} g_{ik} \right).$$

Making use of (5.4), (5.5) and (5.6) we have from (5.7)

$$C^h_{ijk,lm} = a'_{lm} C^h_{ijk}.$$

Hence we have the following theorem:

THEOREM 9. Every n-dimensional (n > 3) projective recurrent space of second order is a $C({}^{2}K_{n})$.

References

- [1] T. Adati and T. Miyazawa, 'On a Riemannian space with recurrent conformal curvature', Tensor N.S., 18 (1967), 348-354.
- [2] A. Lichnerowicz, 'Courbure, nombres de Betti, et espaces symétriques', Proc. Int. Cong. of Math. 2 (1960), 216-222.
- [3] A. G. Walker, 'On Ruse's spaces of recurrent curvature', Proc. Lond. Math. Soc. (2) 52 (1950), 36-34.
- [4] M. C. Chaki and A. N. Roy Chowdhury, 'On Ricci recurrent spaces of Second Order', Indian. J. Math. 9 (1967).

Department of Pure Mathematics

University of Calcutta

and

Department of Mathematics

Durgapur Engineering College

[7]

161