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ON THE AFFINE DIAMETER OF
CLOSED CONVEX HYPERSURFACES

WEIMIN SHENG AND NEIL S. TRUDINGER

In this paper we prove that the affine diameter of any closed uniformly convex
hypersurface in Euclidean space enclosing finite volume is bounded from above.

1. INTRODUCTION

In this paper we establish an upper bound for the affine diameter of a closed
convex hypersurface in Euclidean space. Let F be a closed, smooth, uniformly convex
hypersurface in Rn+1, n ^ 1, and E the domain in Rn+1 enveloped by F. Here we call
a hypersurface F in i?n + 1 uniformly convex if the principal curvatures at each point
of F with respect to its inner normal vector are positive. Suppose the volume of E is
equal to 1. If g is a Riemannian metric denned on F, then the diameter of F is denned
as

diam(F) := sup d(p, q),
p.ger

where d(-, •) denotes the distance function of the metric g, that is

d(p,q) = inf{i(7) | 7 is any curve on F which connects p and q}.

Here £(7) is the arc-length of 7 with respect to the metric g. In affine geometry we
consider the affine metric (or Berwald-Blaschke metric) on F, given by

where K is the Gauss curvature and / / is the second fundamental form of F (see [1,
5, 6]). The hypersurface F becomes a Riemannian manifold under this metric. In this
paper we prove the following theorem.
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THEOREM 1 . Let T be a closed, smooth, uniformly convex hypersurface in Rn+l,

n ^ 1, and let E be the domain in Rn+l enveloped by F . Suppose Vol(E) = 1. Then

there exists a constant C(n) depending only on n such that the affine diameter of F ,
diam (F), satisfies diam (F) < C{n).

In Euclidean geometry it is well known that the diameter of F, diam (F), under
the Euclidean metric is bounded from below by a constant C(n) which depends only
on n, and diam (F) = C(n) holds if and only if F is an Euclidean sphere Sn in Rn+1.

REMARKS.

(i) We have not got the best upper bound of the affine diameter in this paper.
It is reasonable to believe that the best upper bound C(n) exists and
diam (F) = C(n) holds if and only if F is an ellipsoid. In fact, if n = 1,
the affine isoperimetric inequality (see [1, 5]) implies diam(F) ^ n2/3

and the equality holds if and only if F is an ellipsoid.
(ii) If F is a closed locally uniformly convex hypersurface in Euclidean space,

it must be uniformly convex [4, 7, 9]. Thus the same statement is true in
this case.

2. PROOF OF THEOREM 1

At first we make use of the fact ([3]) that for any bounded convex domain E
C Rn+1, there exists a unique ellipsoid E, called the minimum ellipsoid of E, which
attains the minimum volume among all ellipsoids concentric with and containing E,
and a positive constant an, depending only on n, such that

anE CT.CE

where anE is the an dilation of E with respect to its centre. Let T be an equi-affine
transformation that normalises E (see [2]), T{E) = B(0,rn), where rn is a constant
depending only on n and Vol(E) = Vol(£(0,rn)). Then

B ( 0 , a n r n ) c T ( E ) c B ( 0 , r B ) .

Here B(x,t) denotes the Euclidean ball with centre x and radius t. Since the affine
distance is affine invariant, we only need to estimate the affine diameter of T(F).

Now since T(T) is closed and uniformly convex, the Gauss map G : T(F) —> Sn is
a diffeomorphism from T(F) onto Sn. We divide Sn into several pieces

f = {(xu ...,Xi,... ,xn+1) € Rn+1 | Xi > ( l /4n)} n Sn,

r = {(xlt...,Xi,..., xn+1) e Rn+1 | Xi < - ( l / 4 n ) } n Sn,
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i = 1,2,. . . , n + 1. Then {U^,... ,U*+1} is an open covering of Sn which is an
Euclidean sphere of radius 1 and {G" 1 (U*) | i = l , . . . , n + l } i s a n open covering of
T(r). Each G-1^) or G"1^") can be expressed as a graph

Xi = u?(xu ... ,£i,... ,xn+1) on fit C Bn(rn) C Rn

or

H = u~{xu ... ,xt,... , xn+1) on fir c Bn(rn) c Rn,

and we set fit* = £>u+(fi+) and fi~* = £>u,~(fi~). We only need to prove that on
each open set G~1(f7i

±), the affine distance of any two points p, q € G~1(f/i
±) is

bounded. Then by the triangle inequality we can prove the affine distance of any two
points on T(F) is bounded.

Now we denote U :— U~+1, fi := fi~+1 and consider G~l{U) C T(T) as a graph
defined on fi, given by

(1) xn+i = u ( x i , . . . ,xn), z = (x i , . . . ,xn) €f i .

The affine metric on the graph can be written as puXiX.dxidxj, where

Then the affine arc-length of a curve 7 on the graph is given by

(2) L( 7 )= f(puu)1/2ds
Ji

where / is the projection of 7 on {xn+i = 0}, s is the (Euclidean) arc-length parameter
on /, £ = (£1,. . . ,£„) is the unit tangent vector on I and u^ = 'E£i£jUXiXj.

Let peG~l(U) and G(p) = -en+1 = (0, . . . , 0 , - 1 ) . For each point qeG'^U),

there is a unique geodesic 7 from p to q such that G(7) is a geodesic line on the south

hemisphere. Let I be the projection of 7 on {xn+i = 0}. Then Du(l) is a line segment

in fi*. fi* is the spherical projection on {xn+i = — 1} of U, which is a ball in Rn.

Let u* be the Legendre transformation of u, given by

(3) xf{y) = x-y-u{x), y € fi*,

where x € fi is chosen such that Du(x) = y ( z is unique in this way). Then u* is a
convex function and u is the Legendre transformation of u* such that x = Du* (y) and

(4) det D2u{x) • det D2u" (y) = 1.
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By the Legendre transformation, a curve 7 on the graph of u corresponds to a curve
7* of the graph of u* such that a point (x,u(x)) E 7 corresponds to a point (y, u*(y))

E 7*, where y — Du(x), and vice versa. The projection of 7 in fi, I, then corresponds
to the projection of 7* in fl*, /*, with / = Du*(l*). Then the affine arc-length of the
curve 7 can be expressed as (see [8])

(5) L--

where s is the arc-length parameter of I* and p* =

Let Sg = ^ " - ^ { x i > cos0} and Se(r) = rSg, where 9 E (O.TT/ 2 ) , r > 0. For any

point y E Sg(r), let I* — I* be the (open) line segment joining the origin to y and Cg(r)

the union of the line segments i* for all y E S$(r). Cg is a cone with vertex at the origin,

radius r, aperture 9 and axial direction e\ — (1 ,0 , . . . ,0) . Cg = Cg D {xi < cos#}.

Then for each y E Sg(r), there exists a unique point y E P — {x E Rn \ x\ = cos#}

such that y is on the line segment I*. More generally, for z E Rn, r > 0, £ E Sn,

9 E (0, TT/2), we let Cg — C(z,r,£) denote the congruent cone with vertex at z, radius

r , aperture 9 and axial direction £, and S9 = Sg(z,r,9) = Cg n {|x - z\ = r } . We

also denote Cg = Cg(z,r,£) = Cg(z,r,£)n {x | (x - z - rcos9£)£ < 0}, Pg(z,r,£) = {x

E Rn I (x - z - r cos <?£)£ = 0} and Pe(z, r,0 = Pg(z, r, £) n Cg.

LEMMA. Suppose Cg = Cg(z,r,£) C ^n+i- Then there exists a constant Co(n)
depending only on n such that for any fixed k > 0, the measure of the set

> X * ) 1 / 2 d * > (Co(n)k)/(29),yEPe(z,r,O,

-p= r = cos a, -9 < a < 9 \

\v-*\ >
satisfies \Q\ < (20)/k.

PROOF: For any y E Pg(z,r,£) satisfying (y — z)/(_\y — z\ = cos a and — 9 < a

< 9, there exists a unique point y € Sg, such that y E I* and l~ C I*. Then we have

by (5)

where TJ = (y — z)/\y — z\. The second integral is less than u*(j/) - u^(z) ^ C. Here

the constant C depends only on n because T(T) is located in a bounded domain of

Rn+1. Since

https://doi.org/10.1017/S0004972700037837 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037837


[5] Closed convex hypersurfaces 435

we have following estimate, using the spherical polar coordinates,

1/2

ISg

dy

f Lydy^C f ( TP*) dy
JSg JSg \J0 /

f / rr \ l/2(n+2)

= C / I / s"'1 det D2u* ds \ dy

/ r xl/2(n+2)

^C\ / / s"-1 detD2u*dsdy\

a \ l/2(n+2)

det£)V]

l/2(n+2)
- c(\Du*(Ce)\)

Since Ce<z9. and £>u*(fi*) = f2 C Bn(rn), we have

= C|Q|1/2(n+2)

(6)

Then for any k > 0,

This proves the Lemma. U

By the above Lemma, we have

COROLLARY. For any fixed 6 G (0, TT/2) , there exists a constant C{n, 0) depend-
ing only on n and 8, such that the measure of the set

satisfies \Q\ > (4/3)0.

PROOF: In fact, we can take fc = 3 and C(n,6) = (3Co(n))/0. Then by (7), we

have \Q\2 20-\Q\> (40)/3. D
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Now we take a fixed 9 € (0, n/2). For any two points p and q in G~1(Z7) C T(T),
p = (xp,u(xp)), q = (xq,u(xq)), xp, xq e ft, let x* = Du(xp), x* - Du(xg) e ft*.
We denote

which is a (n - 1)-plane in Rn. Then we get two cones Cg (x*, rp, £p) and Cg (x*, rq, £q)

in Rn with the same base on plane P(p,q), and rp = rq, £p = x*xq/\XpXq\ — -£q.

We consider the parts of these two cones in Q.*, C'e(j>) — Ce(xp,rp,£p) n fi* and C'e(q)

= Cg(x*,rq,€q)nQ*. We also denote P'B — P(p,q)n£l*. Since Q* is a ball, the measure

of the set

Qi(p) = {a | Ia is a line segment from x*p to some point of P'e

and the angle between la and £p equals to a}

satisfies 6 29. On C'g(p), by the same argument as (6) and (7), we have

f
Jp

L
p'e

and

\Qi

The fact 9 ^ \Qi(p)\ ^ 29 implies

Q={a\L~*:C(n,9),yePg; p^p = cosa, -9 < a < 9}

Here we recall C{n,9) = 3C0(n)/9. Therefore

(8)

In the same way, we can prove that (8) holds on C'g(q). Then there exists at least one
point z € P'g such that L(x*,z) ^ C(n,9) and L(x*,z) ^ C(n,9), where £(-,•) is the
affine distance on T(T) in the sense of (5). Then by the triangle inequality, we have
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The same conclusion holds on any G"1 (£/*)(» = 1,... , n + 1) for any two points
on G~1(U^). If p and q belong to two neighbouring sets G~l{Ui) and G~l{Uj),

and G~l(Ui) D G~l{Uj) # 0 , we can pick any point w € G~l{Ui) n G " 1 ^ ) . t h e n

d(Pi 9) ^ d(Pi *") + d(w, q) < 4C(n, 0). In general, for any two points p and q in
T(r) , since {G-x(Uf),i = 1,.. . ,n + 1} is a covering of T(r) , there exist finite
sets {G'^l/jjJ.fc = 1,. . . ,m}(m ^ 2(n + l)) such that the intersection of any two
neighbouring sets G-l{Uik) and G~x{Uik+1) is nonempty, and G'1^) = G'^Ui),

G~l(Uim) = G~l{Uj). Then d(p,q) ^ 4(n+l)C(n,0). Now we take 6 = TT/4 and
C(ri) = 4(n + l)C(n, TT/4) , then Theorem 1 follows immediately from the above discus-
sion. This finishes the proof of Theorem 1. D
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