
JFP 22 (3): 275–299, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000111 First published online 8 May 2012

275

Manipulating accumulative functions
by swapping call-time and
return-time computations�

AKIMASA MORIHATA

Tohoku University, Sendai, Japan

(e-mail:)morihata@riec.tohoku.ac.jp)

KAZUHIKO KAKEHI

University of Tokyo, Tokyo, Japan

ZHENJ IANG HU

National Institute of Informatics, Chiyoda, Tokyo, Japan

MASATO TAKEICHI

National Institution for Academic Degrees and University Evaluation, Kodaira-shi, Tokyo, Japan

Abstract

Functional languages are suitable for transformational developments of programs. However,

accumulative functions, or in particular tail-recursive functions, are known to be less suitable

for manipulation. In this paper, we propose a program transformation named “IO swapping”

that swaps call-time and return-time computations. It moves computations in accumulative

parameters to results and thereby enables interesting transformations. We demonstrate

effectiveness of IO swapping by several applications: deforestation, higher order removal,

program inversion, and manipulation of circular programs.

1 Introduction

It is well recognized that functional languages are suitable for transformational

developments of programs. Nontrivial programs can be derived from simple ones

by applying semantic-preserving transformations. For example, consider deforesta-

tion (Wadler, 1990). Given the following standard map and lrev functions

map f [] = []

map f (a : x) = f a : map f x

lrev x = aux lrev x []

where aux lrev [] h = h

aux lrev (a : x) h= aux lrev x (a : h),

� A preliminary report of this work was published in Morihata, A., Kakehi, K., Hu, Z. & Takeichi, M.
(2006) Swapping arguments and results of recursive functions. In Proceedings of the 8th International
Conference on Mathematics of Program Construction (MPC 2006), Kuressaare, Estonia. Lecture Notes
in Computer Science, vol. 4014. New York, USA: Springer-Verlag, pp. 379–396.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

276 A. Morihata et al.

we may reverse a given list after applying some function to each element.

lrev (map f x)

This program is clear and simple, but not very efficient because of the intermediate

list passed between map and lrev . We remove it by the classic unfolding–folding

method (Burstall & Darlington, 1977), in which we develop programs by repeatedly

unfolding function calls to their bodies and folding expressions into corresponding

function calls. We introduce a new function that denotes the composition of map

and lrev

revMap f x = lrev (map f x)

and try to simplify this equation as follows.

revMap f x= { unfolding revMap }
lrev (map f x)

= { unfolding lrev }
aux lrev (map f x) []

The obtained program, revMap f x = aux lrev (map f x) [], is not satisfactory. The

intermediate list between aux lrev and map still exists. As before, we introduce a new

function that corresponds to the composition of aux lrev and map

auxrevMap f x h = aux lrev (map f x) h

Then we work out its recursive definition. Since map and aux lrev are defined based

on pattern-matching, we perform a case analysis,

auxrevMap f [] h= { unfolding auxrevMap }
aux lrev (map f []) h

= { unfolding map and aux lrev }
h

auxrevMap f (a : x) h= { unfolding auxrevMap }
aux lrev (map f (a : x)) h

= { unfolding map and aux lrev }
aux lrev (map f x) (f a : h)

= { folding auxrevMap }
auxrevMap f x (f a : h)

In summary, we have developed the following program:

revMap f x= auxrevMap f x []

where auxrevMap f [] h = h

auxrevMap f (a : x) h= auxrevMap f x (f a : h)

We have succeeded in eliminating the intermediate list.

We would like to develop many programs in such a transformational way.

However, it is known that in general deforestation for accumulative functions is

difficult (Chin, 1994; Kühnemann, 1999). In particular, naive unfolding–folding fails

to eliminate intermediate structures constructed in accumulative parameters.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 277

To see the difficulty, consider the following slightly different program,

map f (lrev x)

We expect that map f (lrev x) = revMap f x holds. To confirm this intuition, let

us develop a recursive definition of revMap ′ f x = map f (lrev x) and see whether

revMap ′ = revMap holds,

revMap ′ f x= { unfolding revMap ′ }
map f (lrev x)

= { unfolding lrev }
map f (aux lrev x [])

We have encountered another composition that consists of map and aux lrev , and

therefore we introduce another auxiliary function:

auxrevMap ′ f x h = map f (aux lrev x h).

We go on with the derivation,

auxrevMap ′ f [] h= { unfolding auxrevMap ′ }
map f (aux lrev [] h)

= { unfolding aux lrev }
map f h

auxrevMap ′ f (a : x) h= { unfolding auxrevMap ′ }
map f (aux lrev (a : x) h)

= { unfolding aux lrev }
map f (aux lrev x (a : h))

= { folding auxrevMap ′ }
auxrevMap ′ f x (a : h)

We have developed the following program:

revMap ′ f x= auxrevMap ′ f x []

where auxrevMap ′ f [] h = map f h

auxrevMap ′ f (a : x) h= auxrevMap ′ f x (a : h)

The derived revMap ′ is different from revMap. In particular, it still uses an

intermediate list that is accumulated by auxrevMap ′ and then consumed by map f.

As seen, deforestation for accumulative functions is nontrivial. Several solutions

have been proposed (Kühnemann, 1998; Correnson et al., 1999; Nishimura, 2004;

Voigtländer, 2004; Voigtländer & Kühnemann, 2004; Katsumata & Nishimura,

2008). Here we introduce another method. It is based on a new program transfor-

mation named IO swapping. From lrev , IO swapping yields another but equivalent

function, lrev�.

lrev� x = let (r, []) = aux�
lrev x x in r

where aux�
lrev [] x = ([], x)

aux�
lrev (: y) x= let (r, a : x′) = aux�

lrev y x

in (a : r, x′)

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

278 A. Morihata et al.

The auxiliary function, aux�, is in the there-and-back-again style (Danvy & Goldberg,

2005): It traverses the input list at call time, and then it traverses the input list again

at return time. In the definition of lrev , the result is accumulated at call time. In the

definition of lrev�, the result is accumulated at return time.

Now compare lrev� to lrev carefully. In lrev , each list element is shifted to the

accumulative parameter, h, on each call of aux lrev . In lrev�, each element is shifted

to r, the first component of the result, on each return of aux�
lrev . Here lies the essence

of IO swapping: It swaps call-time and return-time computations.

Function lrev� leads to a successful deforestation because it constructs the list

not in an accumulative parameter but in a return value. We confirm it by developing

revMap� f x = map f (lrev� x). The main part is to work out the following function,

aux�
revMap f y x = let (r, x′) = aux� y x in (map f r, x′),

and it is achieved as follows:

aux�
revMap f [] x= { unfolding aux�

revMap }
let (r, x′) = aux�

lrev [] x in (map f r, x′)

= { unfolding aux�
lrev }

(map f [], x)

= { unfolding map f }
([], x)

aux�
revMap f (: y) x= { unfolding aux�

revMap }
let (r, x′) = aux�

lrev (: y) x in (map f r, x′)

= { unfolding aux�
lrev }

let (r′, a : x′) = aux�
lrev y x in (map f (a : r′), x′)

= { unfolding map f }
let (r′, a : x′) = aux�

lrev y x in (f a : map f r′, x′)

= { folding aux�
revMap }

let (r′′, a : x′) = aux�
revMap y x in (f a : r′′, x′)

We have obtained the following program:

revMap� f x = let (r, []) = aux�
revMap f x x in r

where aux�
revMap f [] x = ([], x)

aux�
revMap f (: y) x= let (r, a : x′) = aux�

revMap f y x

in (f a : r, x′)

The revMap� function does not contain construction of intermediate lists; moreover,

by applying IO swapping backward to it, we indeed obtain revMap.

We have considered deforestation of accumulative functions. In fact, for several

kinds of manipulations besides deforestation, it has been pointed out that accumu-

lative functions are difficult to manipulate. Nontrivial methods have been proposed

for dealing with them, including those for automatic theorem proving (Boyer &

Moore, 1975; Boyer et al., 1976; Giesl, 2000; Giesl et al., 2007), those for higher

order removal (Nishimura, 2003; Katsumata & Nishimura, 2008), and those for

program inversion (Glück & Kawabe, 2005; Mogensen, 2006; Matsuda et al., 2010).

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 279

[]++y = y
(a : x)++ y = a : (x++ y)

reverse [] = []
reverse (a : x) = reverse x++[a]

take 0 x = []
take n [] = []
take (n+1) (a : x) = a : take n x

drop 0 x = x
drop n [] = []
drop (n+1) (a : x) = drop n x

foldr f e [] = e
foldr f e (a : x) = f a (foldr f e x)

foldl f e [] = e
foldl f e (a : x) = foldl f (f e a) x

unfoldr ψ v = case ψ v of Nothing → []
Just (a,v) → a : unfoldr ψ v

Fig. 1. Definitions of some standard functions.

We show that IO swapping, which we introduce in Section 3, could reduce the

difficulty of manipulating accumulative programs. We demonstrate effectiveness of

IO swapping through several examples: deforestation (Sections 4 and 7), higher

order removal (Section 5), and program inversion (Section 6). In addition, we show

manipulation of tree-operating functions in Section 7, and discuss a relationship to

circular programs (Bird, 1984) in Section 8. It is worth noting that existing methods

are usually stronger than IO swapping. They can deal with most examples presented

here; moreover, they may be simpler and may be able to deal with examples that

cannot be dome by IO swapping. A distinctive feature of IO swapping is that it can

be used for several kinds of manipulations.

2 Preliminaries

2.1 Basic definitions

We use Haskell (Peyton Jones, 2003) for describing programs. We do not consider

undefined values and nonterminating computations. Some standard functions we

use are summarized in Figure 1.

We call computations in arguments “call-time computations” and those in

return values “return-time computations.” Since we consider lazy semantics, these

terminologies may sound slightly odd – all computations are to be performed by

need. We will revisit this issue after introducing an IO swapping rule, Theorem 5.

2.2 Shortcut deforestation

Deforestation (Wadler, 1990) (also called fusion) is a method of eliminating interme-

diate structures that are used for combining functions. Here we introduce shortcut

deforestation devised by Gill (1996) and Gill et al. (1993).

Theorem 1 (foldr/build (Gill et al., 1993))

The following equation holds:

foldr f e (build g) = g f e,

where build :: (∀β. (A → β → β) → β → β) → [A] is defined by build g = g (:) [].

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

280 A. Morihata et al.

Since we know that foldr f e replaces list constructors (:) and [] by parameters f

and e, respectively, we can avoid producing the intermediate list once the constructors

appearing in the intermediate list are specified. Function build certainly captures the

constructors, as its polymorphic type guarantees.

There is the dual of the foldr/build rule, called the destroy/unfoldr rule. It is firstly

formulated by Takano and Meijer (1995) and later rephrased by Svenningsson (2002).

Theorem 2 (destroy/unfoldr (Svenningsson, 2002))

The following equation holds:

destroy g (unfoldr ψ e) = g ψ e

where destroy :: (∀α. (α → Maybe (B, α)) → α → C) → [B] → C is defined below.

destroy g x = g out x

where out [] = Nothing

out (a : x) = Just (a, x)

Function destroy specifies how the intermediate list will be consumed. The

polymorphic type of g guarantees that out destructs the intermediate lists. Then,

since unfoldr regularly generates a list, we can directly calculate the final result from

values supplied by ψ.

3 IO swapping

IO swapping is a transformation that turns call-time computations into return-time

computations and vice versa. We introduce IO swapping rules for four kinds of

functions: foldl , tail-recursive functions, foldr , and list-hylomorphisms (Meijer et al.,

1991; Backhouse et al., 1999). We demonstrate their use in the following sections.

We recommend those who are interested in examples to go to the next section and

refer to this section by need.

The simplest IO swapping rule is that for foldl .

Theorem 3 (IO swapping for foldl)

The following function foldl� is equivalent to foldl .

foldl� f e x = let (r, []) = aux�
foldl x x in r

where aux�
foldl [] x = (e, x)

aux�
foldl (: y) x= let (r, a : x′) = aux�

foldl y x

in (f r a, x′)

Proof

It is sufficient to confirm that the following equation holds for any list y that is not

strictly longer than x, where |y| denotes the length of list y.

aux�
foldl y x = (foldl f e (take |y| x), drop |y| x)

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 281

lrev (1 : 2 : [])

1 : 2 : []

[]

1 : 2 : [] 1

1 : []

2 : [] 2

2 : 1 : []

2 : 1 : []

[]

lrev (1 : 2 : [])

1 : 2 : []

[]

2 : 1 : []

1 : 2 : [] 2 : 1 : []
2 : []

2

2 : []
1 : 2 : []

1

1 : []

[] 1 : 2 : [] []

Fig. 2. Outlines of the processes of evaluating lrev (1 : 2 : []) and lrev� (1 : 2 : []): each

broken-lined box stands for a computation at a recursive step.

We prove it by induction. It is obvious when y is []. When y is b : z and is not

longer than x, we reason as follows:

aux�
foldl (b : z) x= { definition of aux�

foldl }
let (r, a : x′) = aux�

foldl z x in (f r a, x′)

= { induction hypothesis (note that z is not longer than x) }
let (a : x′) = drop |z| x

r = foldl f e (take |z| x)
in (f r a, x′)

= { claim: foldl f e (x++ [a]) = f (foldl f e x) a }
let (a : x′) = drop |z| x
in (foldl f e (take |z| x++ [a]), x′)

= { definitions of take and drop }
(foldl f e (take |b : z| x), drop |b : z| x)

The claim, foldl f e (x ++ [a]) = f (foldl f e x) a, can be straightforwardly proved

by structural induction over x. �

Theorem 3 introduces foldl�, that is foldl in the There And Back Again (TABA)

pattern (Danvy & Goldberg, 2005). TABA is a programming pattern in which a

recursive function traverses a data structure in its call time (to get there) and then

performs another traversal in its return time (to back again).

For example, recall the linear-time reverse function, lrev . Since lrev is an instance

of foldl , namely lrev = foldl (λr a → a : r) [], Theorem 3 is applicable and results

in lrev� as discussed in the Introduction if we inline parameter functions.

Figure 2 depicts the processes of evaluating lrev (1 : 2 : []) and lrev� (1 : 2 : []).

The broken-lined boxes stand for a computation at a recursive step, and the

whole figures outline stack frames constructed through recursive calls. Down

and up arrows denote data flows for accumulative arguments and return values,

respectively. It might be helpful to regard these figures as data-flow graphs of

attribute grammars. From this viewpoint, down and up arrows, i.e., call-time

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

282 A. Morihata et al.

and return-time computations, could be, respectively, understood as inherited and

synthesized attributes.

Note that the down arrows for lrev exactly correspond to the up arrows in

lrev�. This shows the main idea of IO swapping. IO swapping is a transformation

that swaps call-time computations (down arrows) and return-time computation (up

arrows) by reversing stack frames. A technical issue is the estimation of the depth

of recursive calls. Since a function usually starts its computation from the top of

the recursion, its IO-swapped variant should start from the bottom of the recursion.

For this purpose, we adopt the TABA pattern: We traverse the first argument and

start computation when it is fully destructed.

IO swapping can be extended to tail-recursive functions. We consider the higher

order function loop as a general form of tail-recursive functions. It takes five

arguments, k, p, f, e, and v, and until p v holds, it continues the iteration with

updating iteration variable v and result e to k v and f e v, respectively. For example,

lrev is an instance of loop: lrev x = loop (λ(: x) → x) null (λh (a :) → a : h) [] x,

where null returns True if the given list is empty.

Theorem 4 (IO swapping for tail-recursive functions)

The following two functions loop and loop� are equivalent:

loop :: (a → a) → (a → Bool) → (b → a → b) → b → a → b

loop k p f e v = if p v then e else loop k p f (f e v) (k v)

loop� :: (a → a) → (a → Bool) → (b → a → b) → b → a → b

loop� k p f e v = let (r,) = aux�
loop v v in r

where aux�
loop w v = if p w then (e, v)

else let (r, v′) = aux�
loop (k w) v

in (f r v′, k v′)

Proof

Consider function pk v = if p v then Nothing else Just (v, k v). We prove the theorem

by confirming the following two claims:

loop k p f e v = { claim 1 }
foldl f e (unfoldr pk v)

= { Theorem 3 }
foldl� f e (unfoldr pk v)

= { claim 2 }
loop� k p f e v

Both claims can be proved by Theorem 2. We show the latter in detail because it is

more complex.

In order to use Theorem 2, we work out a destroy-form of foldl�. This is not

difficult. It is sufficient to abstract out all the destruction (i.e., pattern-matching in

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 283

this case) of the input. Then we obtain the following function foldlD�.

foldlD� f e ψ x = let (r, x′) = aux x x in case ψ x′ of Nothing → r

where aux y x= case ψ y of Nothing → (e, x)

Just (, y′) → let (r, x′′) = aux y′ x

Just (a, x′) = ψ x′′

in (f r a, x′)

Note that destroy (foldlD� f e) x yields the following after inlining the parameters.

destroy (foldlD� f e) x = let (r, x′) = aux x x in case x′ of [] → r

where aux y x= case y of [] → (e, x)

(: y′) → let (r, x′′) = aux y′ x

a : x′ = x′′

in (f r a, x′)

Therefore, foldl� f e x = destroy (foldlD� f e) x holds. Moreover, foldlD� f e has

the polymorphic type that Theorem 2 requires. Thus, Theorem 2 is applicable,

foldl� f e (unfoldr pk v)

= { destroy form }
destroy (foldlD� f e) (unfoldr pk v)

= { Theorem 2 }
let (r, v′) = aux v v in case p v′ of True → r

where aux w v = case p w of True → (e, v)

False → let (r, v′) = aux (k w) v

in case p v′ of False → (f r v′, k v′)

Now it is sufficient to confirm that the underlined pattern-matching always succeeds.

Let k0 v = v and kn+1 v = kn (k v). Assume that aux above performs n recursive

calls. From the definition, p (kn−1 v) = True and p (km v) = False for all 0 � m < n−1.

Now observe the second component of the return value. Starting from the input,

v, we repeatedly apply k to it, with confirming that it does not satisfy p, and after

n−1 times of applications of k, it reaches the top of the recursion and confirms that

it satisfies p. This observation proves that all of the underlined pattern-matching

succeeds. �

Although the auxiliary function, aux�
loop , is not in the TABA pattern, the essence

of Theorem 4 is very similar to Theorem 3. aux�
loop uses its first argument for moving

to the bottom of the recursion, and then it simulates the computation of loop in its

return-time computation.

We have seen that call-time computations can be simulated by return-time

computations. The following theorem shows that the converse also holds.

Theorem 5 (IO swapping for foldr)
The following function foldr� is equivalent to foldr .

foldr� f e x = let (r, []) = aux�
foldr x x e in r

where aux�
foldr [] x h = (h, x)

aux�
foldr (: y) x h= let (r, a : x′) = aux�

foldr y x (f a h)

in (r, x′)

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

284 A. Morihata et al.

Proof

First, note that foldr f e x is equivalent to foldl (flip f) e (reverse x), where

flip f x y = f y x. Bird and Wadler (1988) call it the third duality theorem. Now

we reason as follows:

foldr f e x= { third duality theorem }
foldl (flip f) e (reverse x)

= { reverse = lrev = lrev� }
foldl (flip f) e (lrev� x)

= { definition of lrev� }
let (r, []) = aux�

lrev x x in foldl (flip f) e r

= {claim: (let (r, x′) = aux�
lrev y x in (foldl (flip f) h r, x′))

= aux�
foldr y x h } foldr� f e x

We prove the claim by structural induction over y. The claim obviously holds when

y is []. When y = : z, we reason as follows:

aux�
foldr (: z) x h = { definition of aux�

foldr }
let (r, a : x′) = aux�

foldr z x (f a h) in (r, x′)

= { induction hypothesis }
let (r′, a : x′) = aux�

lrev z x in (foldl (flip f) (f a h) r′, x′)

= { definitions of foldl and flip }
let (r′, a : x′) = aux�

lrev z x in (foldl (flip f) h (a : r′), x′)

= { definition of aux�
lrev }

let (a : r′, x′) = aux�
lrev (: z) x in (foldl (flip f) h (a : r′), x′)

Finally, we confirm the termination of foldr�. Note that aux�
foldr is a circular

program (Bird, 1984): It uses a part of the second component of its result, a, for

computing its third argument. Circularity may lead to nontermination in general,

but it is not harmful in this case, because the second component of the result can

be calculated without knowing the third argument. �

Like foldl�, the auxiliary function of foldr� uses the TABA pattern: It moves to

the bottom of the recursion by using the first argument, and then it starts consuming

the input lists and accumulates its result in its third argument.

Because foldr� is a circular program, we should take much care of how their

computations go so as to avoid nontermination (Bird, 1984). Yet, now that we know

that foldr� terminates, it is safe to see the effect of IO swapping from the perspective

of attribute grammars, as shown in Figure 3.

Figure 3 compares two identity functions, foldr (:) [] and foldr� (:) []. The left

picture is standard, and the right one describes the data flow that foldr� (:) []

composes. Note that down and up arrows correspond to call-time and return-time

computations, respectively. Actually, we have so defined “call-time” and “return-

time” that they are functional synonyms of “inherited” and “synthesized” in attribute

grammars.

Now, like the case of Figure 2, we could find a correspondence between two

pictures: The down and up arrows in the left picture, respectively, correspond to the

up and down arrows in the center of the right picture; the order of the broken-lined

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 285

foldr (:) [] (1 : 2 : [])

1 : 2 : [] 1 : 2 : []

1 : 2 : [] 1
1 : 2 : []

2 : [] 2
2 : []

[] []

foldr (:) [] (1 : 2 : [])

1 : 2 : []

[] []

1 : 2 : []

1 : 2 : []
2 : []

2 : []
2

2 : []
1 : 2 : []

1 : 2 : []
1

[] 1 : 2 : []

Fig. 3. Outlines of the processes of evaluating foldr (:) [] (1 : 2 : []) and foldr� (:) [] (1 : 2 : []):

each broken-lined box stands for a set of data-flow dependencies that a recursive step

imposes.

boxes are reverted. Therefore, we can see that foldr� simulates the computation of

foldr in its call-time.

Like an extension from Theorem 3 to Theorem 4, we can generalize Theorem 5.

We consider functions called list-hylomorphisms (Meijer et al., 1991; Backhouse

et al., 1999). List hylomorphisms are captured by the following function hylo

that takes five arguments: k, p, f, e, and v. Their roles are similar to those of

loop. k, p, and v take charge of the iteration, and f and e calculate the final

result.

Theorem 6 (IO swapping for list-hylomorphisms)

The following two functions hylo and hylo� are equivalent.

hylo :: (a → a) → (a → Bool) → (a → b → b) → b → a → b

hylo k p f e v = if p v then e else f v (hylo k p f e (k v))

hylo� :: (a → a) → (a → Bool) → (a → b → b) → b → a → b

hylo� k p f e v = let (r,) = aux v v e in r

where aux w v h= if p w then (h, v)

else let (r, v′) = aux (k w) v (f v′ h)

in (r, k v′)

Proof

The proof is very similar to that of Theorem 4: We split hylo into foldr and unfoldr ,

introduce foldr� by Theorem 5, apply the destroy/unfoldr-rule, and confirm that

constraints introduced by pattern-matching hold. In addition, we note that aux is

terminating, although it is circular. �

As with Theorem 5, Theorem 6 derives a function that simulates return-time

computations at call time by using circularity.

On one hand, Theorems 3 and 4 derive nonaccumulative functions from foldl

and loop that are accumulative, and thus possibly improve manipulability. We

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

286 A. Morihata et al.

demonstrate their effect in Sections 4–7. On the other hand, foldr� and hylo�

introduced in Theorems 5 and 6 seem not suitable for manipulation because they

are accumulative and moreover have circularity. Therefore, we use them backward,

i.e., we derive foldr or hylo from their IO-swapped variants, in Section 8.

We remark on the computational costs of functions IO-swapping derives. As

Figures 2 and 3 indicate, the IO-swapped variant does very similar computation

to the original, and therefore, their asymptotic time complexities are usually the

same.1 For example, if f and e can be evaluated in constant time, foldl� f e x

runs in time proportional to the length of x. However, IO-swapped variants are

usually slower and consume more spaces. They may be non-tail-recursive, although

the original ones are tail-recursive. They do multiple traversals over the input; in

particular, Theorems 4 and 6 derive functions that invoke k twice as many as the

original, which could make the IO-swapped variant twice as slow when k is very

costly. Moreover, they are slower because of the additional accumulative parameters

and/or return values, and the circularity.

4 Deforesting accumulative functions

Gray code (reflected binary code) is a representation of binary numbers. It is useful

for reducing signal errors because two successive numbers differ in only one bit. For

example, by three-bits Gray codes, integers from 0 to 7 are respectively represented

as 000, 001, 011, 010, 110, 111, 101, and 100.

Consider encoding natural numbers to Gray code. We can naturally develop a

function, say itog , for this purpose by composing two functions itoa and grayCode:

itoa calculates the binary representation of a given natural number with the highest

bit first and the lowest bit last; grayCode transforms it to Gray code by taking

exclusive disjunctions between each bit and its previous bit (the bit preceding the

first bit is 0). In the resulting list, the initial occurrences of 0s are omitted. Therefore,

applying itog to 0, 1, 2, 3, 4, 5, 6, and 7 yields [], [1], [1, 1], [1, 0], [1, 1, 0], [1, 1, 1],

[1, 0, 1], and [1, 0, 0], respectively.

itog n = grayCode (itoa n)

where itoa v = i2a v []

i2a v s = if v ≡ 0 then s else i2a (div v 2) (mod v 2 : s)

grayCode s = gc s 0

gc [] = []

gc (a : s) f = xor a f : gc s a

Here xor calculates an exclusive disjunction, and div and mod respectively calculate

the quotient and the remainder of the integer division.

1 Their asymptotic time complexities can be different. For instance, the head function written by foldr
runs in O(1) time by virtue of the lazy evaluation, but its IO-swapped variant requires time proportional
to the length of the input list.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 287

Our goal is to deforest the intermediate list passed between itoa and grayCode.

However, naive unfolding–folding cannot deforest it

itog n= { unfolding itog and itoa }
grayCode (i2a n [])

= { let i2g∗ v s = grayCode (i2a v s), and folding i2g∗ }
i2g∗ n []

i2g∗ v s= { unfolding i2g∗ and i2a }
grayCode (if v ≡ 0 then s else i2a (div v 2) (mod v 2 : s))

= { distributing grayCode to each branch }
if v ≡ 0 then grayCode s else grayCode (i2a (div v 2) (mod v 2 : s))

= { folding i2g∗ }
if v ≡ 0 then grayCode s else i2g∗ (div v 2) (mod v 2 : s)

We have got the following program. The intermediate list still remains,

itog n = i2g∗ n []

where i2g∗ v s= if v ≡ 0 then grayCode s else i2g∗ (div v 2) (mod v 2 : s)

The situation is similar to revMap ′ in the Introduction. Though several methods

have been proposed for this problem (Kühnemann, 1998; Correnson et al., 1999;

Nishimura, 2004; Voigtländer, 2004; Voigtländer & Kühnemann, 2004; Katsumata

& Nishimura, 2008), we use IO swapping. We apply Theorem 4 to itoa and obtain

its IO-swapped variant, say itoa�.

itoa� v = let (r,) = i2a� v v in r

where i2a� w v = if w ≡ 0 then ([], v)

else let (r, v′) = i2a� (div w 2) v

in (mod v′ 2 : r, div v′ 2)

IO swapping moves the list construction from the call-time to the return-time; then

we can deforest it by unfolding–folding,

itog n= { unfolding itog }
grayCode (itoa n)

= { Theorem 4 }
grayCode (itoa� n)

= { unfolding grayCode and itoa� }
gc (let (r,) = i2a� n n in r) 0

= { let i2g w v f = let (r, v′) = i2a� w v in (gc r f, v′), and folding i2g }
let (r,) = i2g n n 0 in r

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

288 A. Morihata et al.

i2g w v f = { unfolding i2g and i2a� }
if w ≡ 0 then (gc [] f, v)

else let (r, v′) = i2a� (div w 2) v in (gc (mod v′ 2 : r) f, div v′ 2)

= { unfolding gc }
if w ≡ 0 then ([], v)

else let (r, v′) = i2a� (div w 2) v

in (xor (mod v′ 2) f : gc r (mod v′ 2), div v′ 2)

= { folding i2g }
if w ≡ 0 then ([], v)

else let (r′, v′) = i2g (div w 2) v (mod v′ 2)

in (xor (mod v′ 2) f : r′, div v′ 2)

We have obtained the following program that does not construct any intermediate

list:

itog n = let (r,) = i2g n n 0 in r

where i2g w v f = if w ≡ 0 then ([], v)

else let (r′, v′) = i2g (div w 2) v (mod v′ 2)

in (xor (mod v′ 2) f : r′, div v′ 2)

Note that i2g is a circular program: from the second component of its result, v′,

which retains the inputted decimal number, it calculates its third argument, mod v′ 2,

which will be used to calculate the next bit. This circularity does not introduce

nontermination, because the third argument is unnecessary for calculating the second

result. It was pointed out (Nishimura, 2003; Nishimura, 2004; Voigtländer, 2004) that

introduction of circularities enables us to deforest accumulative functions. Indeed,

IO swapping derived a circular program.

5 Removing higher order value in accumulation

Next, we consider a cooperation between IO swapping and the shortcut deforesta-

tion.

We rewrite grayCode and itoa using foldr and build , respectively.

grayCode s = foldr (λa r f → xor a f : r a) (λ → []) s 0

itoa v = build (λc n → i2a ′ v n c)

where i2a ′ v s c = if v ≡ 0 then s else i2a ′ (div v 2) (c (mod v 2) s) c

Then we can apply the shortcut deforestation.

itog v = { foldr/build forms }
foldr (λa r f → xor a f : r a) (λ → []) (build (λc n → i2a ′ v n c)) 0

= { Theorem 1 }
i2a ′ v (λ → []) (λa r f → xor a f : r a) 0

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 289

After inlining the parameter functions, we obtain the following program:

itog n = i2g ′ n (λ → []) 0

where i2g ′ v s= if v ≡ 0 then s

else i2g ′ (div v 2) (λf → xor (mod v 2) f : s (mod v 2))

The intermediate list is eliminated. However, instead of it, i2g ′ accumulates a rather

complicated function closure.

There are transformations that eliminate such function closures and thereby obtain

a simpler program (Nishimura, 2003; Nishimura, 2004; Katsumata & Nishimura,

2008). We demonstrate that IO swapping can eliminate the closure.

Since i2g ′ is tail-recursive, Theorem 4 is applicable and yields the following

program:

itog n = let (r,) = i2g ′� n n in r 0

where i2g ′� v n= if v ≡ 0 then ((λ → []), n)

else let (s, v′) = i2g ′� (div v 2) n

in ((λf → xor (mod v′ 2) f : s (mod v′ 2)), div v′ 2)

For removing the function closure in the result, we consider another function

ai2g� that supplies an additional argument to i2g ′�.

ai2g� w v f = let (r, s) = i2g ′� w v in (r f, s)

Then, itog n = let (r,) = ai2g� n n 0 in r holds. Moreover, ai2g� does not require

function closures. In fact, ai2g� is i2g that we derived in the previous section, as

the following calculation shows:

ai2g� w v f = { unfolding ai2g� and i2g ′� }
if w ≡ 0 then ([], v)

else let (s, v′) = i2g ′� (div w 2) v

in (xor (mod v′ 2) f : s (mod v′ 2), div v′ 2)

= { folding ai2g� }
if w ≡ 0 then ([], v)

else let (s′, v′) = ai2g� (div w 2) v (mod v′ 2)

in (xor (mod v′ 2) f : s′, div v′ 2)

The underlying observation is that higher order results can be removed by supply-

ing additional arguments, and therefore we can remove higher order accumulations

by transforming them to higher order results. Indeed we did it by using IO swapping.

As another example, we consider the summation in the continuation-passing style.

sumCPS x = sumC x (λv → v)

where sumC [] k = k 0

sumC (a : x) k= sumC x (λv → k (a+ v))

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

290 A. Morihata et al.

Note that sumCPS x = foldl (λk a v → k (a+v)) (λv → v) x 0. Therefore, Theorem 3

is applicable and yields the following program:

sumCPS � x = let (k, []) = sumC � x x in k 0

where sumC � [] x = (λv → v, x)

sumC � (: y) x= let (k, a : x′) = sumC � y x

in (λv → k (a+ v), x′)

Now we can remove the higher order result by supplying an additional argument

sumC ′� y x v = let (k, x′) = sumC � y x in (k v, x′)

We calculate a recursive definition of sumC ′� as follows:

sumC ′� [] x v = { unfolding sumC ′� }
let (k, x′) = sumC � [] x in (k v, x′)

= { unfolding sumC � }
(v, x)

sumC ′� (: y) x v = { unfolding sumC ′� and sumC � }
let (k, a : x′) = sumC � y x in (k (a+ v), x′)

= { folding sumC ′� }
let (r, a : x′) = sumC ′� y x (a+ v) in (r, x′)

We have developed the following first-order program:

sumCPS ′� x = let (r, []) = sumC ′� x x 0 in r

where sumC ′� [] x v = (v, x)

sumC ′� (: y) x v = let (r, a : x′) = sumC ′� y x (a+ v)

in (r, x′)

This is also a terminating circular program. Nevertheless, it is different from the

familiar summation function. We will revisit it in Section 8.

6 Inverting accumulative function

The next transformation is program inversion, which generates a program that

takes an output and returns the input of the original program. We consider

parse that parses expressions written in the reverse Polish notation. For example,

parse [“21”, “5”, “36”, “+”, “∗”] = Op “∗” (Val “21”) (Op “+” (Val “5”) (Val “36”)).

The following is a program for parse, in which we use predicate isOp that checks

for operators

parse x = let [e] = ps x [] in e

where ps [] st = st

ps (a : x) st = if isOp a then let (e1 : e2 : st ′) = st

in ps x (Op a e2 e1 : st ′)

else ps x (Val a : st)

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 291

We would like to derive its inverse, unparse, such that unparse (parse x) = x. But

it is nontrivial. Consider the following reasoning:

unparse (parse x) = x⇒ { assume that x = a : x′ and ¬(isOp a); unfolding }
unparse (ps x′ [Val a]) | ¬(isOp a) = a : x′

Here we get stuck. It is unclear what ps x′ [Val a] will result in, and therefore

we cannot know when unparse should result in a : x′. Several methods have been

proposed (Glück & Kawabe, 2005; Mogensen, 2006; Matsuda et al., 2010) for

solving this problem.

By swapping the accumulative parameter and the result, IO swapping makes

it apparent what kinds of outputs are generated from each branch and thereby

makes inversion easier. Let us see its effect. First, we decompose parse as parse x =

unwrap (ps x []) where unwrap [r] = r. Since ps is an instance of foldl , Theorem 3

is applicable and results in the following:

parse x = let (r′, []) = ps� x x in unwrap r′

where ps� [] x = ([], x)

ps� (: y) x= let (st , a : x′) = ps� y x

in if isOp a then let (e1 : e2 : st ′) = st

in (Op a e2 e1 : st ′, x′)

else (Val a : st , x′)

The derived function may appear to be unsuitable for inversion because ps�

discards its first argument and therefore is not injective. This is not a problem.

Recall that IO swapping introduces the first argument only for counting the depth

of the recursion. In other words, the first argument is not important for inversion.

Therefore, we work out function ups that satisfies the following equation

ups (ps� y x) = x

It is indeed sufficient for our purpose, as the following calculation confirms:

unparse (parse x) = x⇔ { unfolding parse }
unparse (let (r′, []) = ps� x x in unwrap r′) = x

⇔ { definition of ups }
unparse (let (r′, []) = ps� x x in unwrap r′) = ups (ps� x x)

⇔ { definition of unwrap and simplification }
unparse r = ups ([r], [])

Now let us develop a recursive definition of ups .

ups (ps� [] x) = x⇔ { unfolding ps� }
ups ([], x) = x

ups (ps� (: y) x) = x

⇔ { definition of ups }
ups (ps� (: y) x) = ups (ps� y x)

⇔ { assume (e1 : e2 : st ′, a : x′) = ps� y x and isOp a; unfolding ps� }
ups (Op a e2 e1 : st ′, x′) | isOp a = ups (e1 : e2 : st ′, a : x′)

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

292 A. Morihata et al.

ups (ps� (: y) x) = x

⇔ { definition of ups }
ups (ps� (: y) x) = ups (ps� y x)

⇔ { assume (st , a : x′) = ps� y x and ¬(isOp a); unfolding ps� }
ups (Val a : st , x′) | ¬(isOp a) = ups (st , a : x′)

We have obtained the following program:

unparse r = ups ([r], [])

where ups ([], x) = x

ups (Op a e2 e1 : st ′, x′) | isOp a= ups (e1 : e2 : st ′, a : x′)

ups (Val a : st , x′) | ¬(isOp a) = ups (st , a : x′)

This is certainly an unparsing program for the reverse Polish notation.

7 IO swapping applied to tree-traversing functions

So far we have considered linearly recursive functions because IO swapping is only

applicable to them. By linearizing the recursion (Wand, 1980; Boiten, 1992), we

can apply IO swapping to nonlinearly recursive functions. Although linearization

usually yields complicated programs, this approach sometimes leads to successful

manipulations.

As an example, let us fuse revflat = lrev ◦ flatten . Function lrev is that seen in the

Introduction, and flatten gathers leaves in a tree,

flatten t = flat t []

where flat (Leaf a) h = a : h

flat (Fork l r) h= flat l (flat r h)

Since both lrev and flatten are accumulative, their fusion is nontrivial. The

situation is very similar to grayCode discussed in Sections 4 and 5: unfolding-

folding cannot deforest the intermediate list, and the foldr/build rule yields a

program that accumulates complicated closures, whereas more sophisticated meth-

ods (Kühnemann, 1998; Correnson et al., 1999; Nishimura, 2003; Nishimura, 2004;

Voigtländer, 2004; Voigtländer & Kühnemann, 2004; Katsumata & Nishimura,

2008) can deal with it.

We linearize flat by introducing a stack

flatten t = flat l [t] []

where flat l [] h = h

flat l (Leaf a : st) h = flat l st (a : h)

flat l (Fork l r : st) h= flat l (r : l : st) h

Now that flat l is a linear tail-recursive function, IO swapping can deforest the

intermediate list. We apply Theorem 4 for removing the accumulative computation.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 293

For clarity, we introduce two additional auxiliary functions, addVal and nextStack .

flatten t = let (r,) = flat�
l [t] [t] in r

where flat�
l [] t′ = ([], t′)

flat�
l (s′ : st ′) t′ = let (h, s : st) = flat�

l (nextStack s′ st ′) t′

in (addVal s h, nextStack s st)

addVal (Leaf a) k = a : k

addVal (Fork l r) k= k

nextStack (Leaf a) st = st

nextStack (Fork l r) st = r : l : st

Then, we fuse lrev with flatten by using the unfolding–folding method.

revflat t= { unfolding revflat , lrev , and flatten }
aux lrev (let (r,) = flat�

l [t] [t] in r) []

= {let rf st ′ t′ k = (let (r, st) = flat�
l st ′ t′ in (aux lrev r k, st)),

and folding rf } let (r,) = rf [t] [t] [] in r

rf [] t′ k= { unfolding rf and flat�
l }

(aux lrev [] k, t′)

= { unfolding aux lrev }
(k, t′)

rf (s′ : st ′) t′ k= { unfolding rf , flat�
l , and addVal }

let (h, s : st) = flat�
l (nextStack s′ st ′) t′

in case s of Fork l r → (aux lrev h k, nextStack s st)

Leaf a → (aux lrev (a : h) k, nextStack s st)

= { unfolding aux lrev }
let (h, s : st) = flat�

l (nextStack s′ st ′) t′

in case s of Fork l r → (aux lrev h k, nextStack s st)

Leaf a → (aux lrev h (a : k), nextStack s st)

= { folding rf and addVal }
let (h′, s : st) = rf (nextStack s′ st ′) t′ (addVal s k)

in (h′, nextStack s st)

We have developed the following program:

revflat t = let (r,) = rf [t] [t] [] in r

where rf [] t′ k = (k, t′)

rf (s′ : st ′) t′ k= let (h′, s : st) = rf (nextStack s′ st ′) t′ (addVal s k)

in (h′, nextStack s st)

As expected, the derived program does not have any intermediate list except for

the stack. Note that rf is circular: its accumulative argument, addVal s k, uses its

return value, s. As in the case of itog , we obtained a circular function by fusing

accumulative functions.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

294 A. Morihata et al.

8 Manipulating circular functions

In the previous section, we have performed deforestation and obtained a program

for revflat . However, it is not satisfactory. The program traverses the input tree twice,

and moreover it has a circularity. We would like to develop a simpler program.

Note that revflat is an instance of hylo� in Theorem 6. Therefore, we can eliminate

the circularity by transforming revflat to its equivalent hylo form. Theorem 6 yields

the following simpler program that contains no circularity:

revflat t = rf �
l [t]

where rf �
l [] = []

rf �
l (s : st) = addVal s (rf �

l (nextStack s st))

This circularity removal is not magic. A circularity is a situation where an

argument depends on a return value. Then by swapping call-time and return-time

computations, IO swapping transforms a circularity to a situation where a return

value depends on an argument.

As another example, recall sumCPS ′� is discussed in Section 5. sumCPS ′� is an

instance of foldr� in Theorem 5, and therefore the theorem enables us to remove

the circularity and results in the following usual summation function:

sum [] = 0

sum (a : x) = a+ sum x

Nevertheless, IO swapping often fails to transform circular programs to noncir-

cular ones. For instance, recall itog that we derived in Sections 4 and 5. We repeat

the program for convenience,

itog n = let (r,) = i2g n n 0 in r

where i2g w v f = if w ≡ 0 then ([], v)

else let (r, v′) = i2g (div w 2) v (mod v′ 2)

in (xor (mod v′ 2) f : r, div v′ 2)

It has a circularity: in the argument of i2g , mod v′ 2, uses a part of the return value.

None of the IO swapping rules are applicable for this program. Even so we can

consider swapping call-time and return-time computations based on the core idea of

IO swapping. Observe that the first argument of i2g is only used for moving to the

bottom of the recursion. Then it starts the computation by using the initial input as

if it simulates computations in arguments at return time. Based on this observation

we may think of the following i2g†, which is in fact equivalent to i2g

itog n = let (r′,) = i2g† n [] in r′

where i2g† v′ r= if v′ ≡ 0 then (r, 0)

else let (r′, f) = i2g† (div v′ 2) (xor (mod v′ 2) f : r)

in (r′,mod v′ 2)

Now function mod uses an argument rather than a return value. However, i2g† is

a circular program. Result f is used in an argument. This is because IO swapping

derives a circularity from a situation where a return value depends on an argument.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 295

9 Related work and concluding remarks

We introduced IO swapping that swaps call-time and return-time computations

and demonstrated its usefulness for manipulating accumulative, in particular, tail-

recursive functions.

IO swapping originates from the TABA programming pattern devised by Danvy

and Goldberg (2005). While usual recursive functions traverse data structures in

the call time, those in the TABA pattern do in the return time. Several interesting

programs could be developed by using the TABA pattern, including lrev�, foldl�,

foldr�, sumCPS ′�, and revflat . More examples could be found in the paper

by Danvy and Goldberg (2005) and in a textbook by Roy and Haridi (2004)

(Exercise 16).

We originally formulated IO swapping rules for systematically developing non-

trivial programs in the TABA pattern (Morihata et al., 2006). Indeed, the original

IO swapping rule, Theorem 3, relies on the TABA pattern. Later, we noticed that

its core idea, swapping call-time and return-time computations, could have further

impacts: traversals of data structures are not essential (Theorem 4); we can relate

usual programs to circular programs (Theorems 5 and 6); and furthermore, deriving

the TABA-like programming patterns is sometimes effective for manipulating ac-

cumulative programs. Such possibilities were partially suggested in the preliminary

report (Morihata et al., 2006). In this paper, we demonstrated the effect of IO

swapping in program manipulations.

The first author’s (Morihata, 2006) Master’s thesis contains other applications

of IO swapping, including developments of programs in the TABA pattern and

deforestation for circular programs. In addition, it contains a more generic IO-

swapping rule that can derive i2g† from i2g . The generic rule requires a nontrivial

precondition and its proof is intricate; moreover, it seems that there are few

interesting applications in practice. Therefore, we have introduced simpler rules

in Section 3 together with their proofs in a transformational manner. It is worth

noting that Theorems 4 and 6 specify the functions whose IO-swapped variant has

no circularities; thus, they are sufficient for eliminating circularities.

As mentioned in the Introduction, accumulative functions are known to be less

suitable for program manipulations, and several methods have been proposed.

IO swapping is neither more powerful nor simpler than the existing methods.

However, though they have been developed independently, IO swapping enables us

to uniformly apply several kinds of manipulations.

Wadler (1990) proposed a deforestation method based on the unfolding–folding.

It often fails to deforest intermediate structures produced in accumulative parame-

ters (Chin, 1994; Kühnemann, 1999). In order to resolve this issue, Kühnemann (1998)

and Correnson et al. (1999) proposed deforestation methods that first translate

functional programs to attribute grammars and then apply a method of composing

attribute grammars. Voigtländer (2004) and Voigtländer and Kühnemann (2004)

developed more direct methods that avoid the translation to attribute grammars.

Essentially, they could deal with all the deforestation examples presented here if we

neglect technical differences caused by their formalisms. In particular, they could

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

296 A. Morihata et al.

derive i2g† seen in Section 8 for grayCode. Moreover, they are much simpler,

especially when dealing with nonlinear recursive functions. It is worth noting that

we also borrowed some intuition from attribute grammars, as seen in Figure 2, and

proposed IO swapping that swaps the roles of inherited and synthesized attributes

and thereby making them more equally manipulable.

Another well-known method of deforestation is shortcut deforestation (Gill et al.,

1993; Takano & Meijer, 1995; Gill, 1996; Svenningsson, 2002). Applying shortcut

deforestation to a composition of two accumulative functions has the problem of

yielding functions that construct complicated function closures. Nishimura (2003,

2004) and Katsumata and Nishimura (2008) tackled this problem and formulated

higher order removal methods. Their methods could derive i2g† and sum from i2g ′

and sumCPS , respectively, if we additionally apply a kind of copy propagation;

unfortunately, its connections to the reverse CPS transformation were not noticed.

Accumulative functions are harder to apply inversion. Glück and Kawabe (2005)

and Matsuda et al. (2010) proposed parsing-based methods for dealing with them.

Our inversion can be seen as a variant of the method by Mogensen (2006) who

considered a loop combinator and introduced a rule for inverting it.

Circular programs were first invented by Bird (1984), and their manipulation is

a topic of active research (Voigtländer, 2004; Fernandes et al., 2007; Fernandes &

Saraiva, 2007; Katsumata & Nishimura, 2008; Pardo et al., 2009; Fernandes et al.,

2011). Most of them consider developing circular programs from composition of

functions, or eliminating circularities by decomposing functions, while IO swapping

only concerns one function.

It is known that mechanical reasoning about accumulative programs is diffi-

cult (Boyer & Moore, 1975; Boyer et al., 1976; Giesl, 2000; Giesl et al., 2007).

Induction is a main method of mechanical reasoning, and accumulative parameters

make it difficult to provide appropriate induction hypotheses. For instance, recall

revMap discussed in the Introduction and reconsider proving map f (lrev x) =

revMap. We saw that auxrevMap f x h = map f (aux lrev x h) was not an appropriate

induction hypothesis; in fact, an appropriate one is auxrevMap f x (map f h) =

map f (aux lrev x h). To resolve this difficulty, program transformations, called

deaccumulation, have been proposed (Boyer et al., 1976; Giesl, 2000; Kühnemann

et al., 2001; Giesl et al., 2007). Deaccumulation derives nonaccumulative programs

from accumulative ones. For example, it derives reverse from lrev . Deaccumulation

techniques are not designed for program manipulation, and they do not consider

efficiency of derived programs. They may significantly make programs slower as the

case of reverse functions. IO swapping usually does not change asymptotic time

complexity.

Acknowledgments

We are grateful to several people for their encouragement. Olivier Danvy advised

us to seek more applications and suggested some examples. Jeremy Gibbons

recommended us proving the IO swapping theorems calculationally and explained

an idea for it. He also gave useful comments on this paper. Varmo Vene and

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 297

Alberto Pardo emphasized their interest in applying to nonlinear recursions. Their

encouragement led to further development of IO swapping. The transformational

proof of Theorem 3 is given by Shin-Cheng Mu. We are also grateful to anonymous

reviewers for their instructive comments and suggestions of references.

References

Backhouse, R. C., Jansson, P., Jeuring, J. & Meertens, L. G. L. T. (1999) Generic programming:

An introduction. In Advanced Functional Programming, Third International School, Braga,

Portugal, Revised Lectures. Lecture Notes in Computer Science, 1608, pp. 28–115. Berlin,

Germany: Springer-Verlag.

Bird, R. S. (1984) Using circular programs to eliminate multiple traversals of data. Acta Inf.

21, 239–250.

Bird, R. S. & Wadler, P. (1989) Introduction to Functional Programming. Saddle River, NJ:

Prentice-Hall.

Boiten, E. A. (1992) Improving recursive functions by inverting the order of evaluation. Sci.

Comput. Program. 18(2), 139–179.

Boyer, R. S. & Moore, J. S. (1975) Proving theorems about Lisp functions. J. ACM. 22(1),

129–144.

Boyer, R. S., Moore, J. S. & Shostak, R. E. (1976) Primitive recursive program transformations.

In Proceedings of POPL’76: Conference Record of the Third ACM Symposium on Principles

of Programming Languages, Atlanta, Georgia. Pittsburgh, PA: ACM Press, pp. 171–174.

Burstall, R. M. & Darlington, J. (1977) A transformation system for developing recursive

programs. J. ACM. 24(1), 44–67.

Chin, W.-N. (1994) Safe fusion of functional expressions II: Further improvements. J. Funct.

Program. 4(4), 515–555.

Correnson, L., Duris, É., Parigot, D. & Roussel, G. (1999) Declarative program transformation:

A deforestation case-study. In Proceedings of International Conference on Principles and

Practice of Declarative Programming (PPDP’99), Paris, France. Lecture Notes in Computer

Science, vol. 1702. Berlin, Germany: Springer-Verlag, pp. 360–377.

Danvy, O. & Goldberg, M. (2005) There and back again. Fundam. Inform. 66(4), 397–413.

Fernandes, J. P., Pardo, A. & Saraiva, J (2007) A shortcut fusion rule for circular program

calculation. In Proceedings of the ACM SIGPLAN Workshop on Haskell (Haskell 2007),

Freiburg, Germany. Pittsburgh, PA: ACM, pp. 95–106.

Fernandes, J. P. & Saraiva, J. (2007) Tools and libraries to model and manipulate circular

programs. In Proceedings of the 2007 ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation, Nice, France. Pittsburgh, PA: ACM, pp. 102–111.

Fernandes, J. P., Saraiva, J., Seidel, D. & Voigtländer, J. (2011) Strictification of circular

programs. In Proceedings of the 2011 ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation (PEPM 2011), Austin, TX, USA. Pittsburgh, PA: ACM, pp. 131–140.

Giesl, J. (2000). Context-moving transformations for function verification. In Proceedings

of the 9th International Workshop on Logic Programming Synthesis and Transformation

(LOPSTR’99), selected papers. Lecture Notes in Computer Science, vol. 1817. Berlin,

Germany: Springer-Verlag, pp. 293–312.

Giesl, J., Kühnemann, A. & Voigtländer, J. (2007) Deaccumulation techniques for improving

provability. J. Log. Algebr. Program. 71(2), 79–113.

Gill, A. (1996) Cheap Deforestation for Non-Strict Functional Languages. PhD. thesis,

Department of Computing Science, Glasgow University, Glasgow, UK.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

298 A. Morihata et al.

Gill, A., Launchbury, J. & Peyton Jones, S. (1993) A short cut to deforestation. In Proceedings

of FPCA’93 Conference on Functional Programming Languages and Computer Architecture,

Copenhagen, Denmark. New York, NY: ACM Press, pp. 223–232.

Glück, R. & Kawabe, M. (2005) A method for automatic program inversion based on LR(0)

parsing. Fundam. Inform. 66(4), 367–395.

Katsumata, S. & Nishimura, S. (2008) Algebraic fusion of functions with an accumulating

parameter and its improvement. J. Funct. Program. 18(5–6), 781–819.

Kühnemann, A. (1998) Benefits of tree transducers for optimizing functional programs. In

Proceedings of the 18th Conference on Foundations of Software Technology and Theoretical

Computer Science, Chennai, India. Lecture Notes in Computer Science, vol. 1530. Berlin,

Germany: Springer-Verlag, pp. 146–157.

Kühnemann, A. (1999) Comparison of deforestation techniques for functional programs and

for tree transducers. In Proceedings of the 4th Fuji International Symposium on Functional

and Logic Programming (FLOPS’99), Tukuba, Japan. Lecture Notes in Computer Science,

vol. 1722. Berlin, Germany: Springer-Verlag, pp. 114–130.

Kühnemann, A., Glück, R. & Kakehi, K. (2001) Relating accumulative and non-accumulative

functional programs. In Proceedings of the 12th International Conference on Rewriting

Techniques and Applications (RTA 2001), Utrecht, the Netherlands. Lecture Notes in

Computer Science, vol. 2051. Berlin, Germany: Springer-Verlag, pp. 154–168.

Matsuda, K., Mu, S.-C., Hu, Z. & Takeichi, M. (2010) A grammar-based approach to invertible

programs. In Proceedings of the 19th European Symposium on Programming Languages

and Systems (ESOP 2010), held as part of the Joint European Conferences on Theory and

Practice of Software (ETAPS 2010), Paphos, Cyprus. Lecture Notes in Computer Science,

vol. 6012. Berlin, Germany: Springer-Verlag, pp. 448–467.

Meijer, E., Fokkinga, M. M. & Paterson, R. (1991) Functional programming with bananas,

lenses, envelopes and barbed wire. In Proceedings of the 5th ACM Conference on Functional

Programming Languages and Computer Architecture, Cambridge, MA, USA . Lecture Notes

in Computer Science, vol. 523. Berlin, Germany: Springer-Verlag, pp. 124–144.

Mogensen, T. Æ. (2006) Report on an implementation of a semi-inverter. In Proceedings of

6th International Andrei Ershov Memorial Conference on Perspectives of Systems Informatics

(PSI 2006), Novosibirsk, Russia, revised papers. Lecture Notes in Computer Science,

vol. 4378. Berlin, Germany: Springer-Verlag, pp. 322–334.

Morihata, A. (2006) Relationship between Arguments and Results of Recursive Functions.

Master’s thesis, Graduate School of Information Science and Technology, University of

Tokyo, Japan.

Morihata, A., Kakehi, K., Hu, Z. & Takeichi, M. (2006) Swapping arguments and results

of recursive functions. In Proceedings of the 8th International Conference on Mathematics

of Program Construction (MPC 2006), Kuressaare, Estonia. Lecture Notes in Computer

Science, vol. 4014. Berlin, Germany: Springer-Verlag, pp. 379–396.

Nishimura, S. (2003) Correctness of a higher-order removal transformation through

a relational reasoning. In Proceedings of the First Asian Symposium on Programming

Languages and Systems (APLAS 2003), Beijing, China. Lecture Notes in Computer Science,

vol. 2895. Berlin, Germany: Springer-Verlag, pp. 358–375.

Nishimura, S. (2004) Fusion with stacks and accumulating parameters. In Proceedings

of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program

Manipulation (PEPM ’04), Verona, Italy. New York, NY: ACM Press, pp. 101–112.

Pardo, A., Fernandes, J. P. & Saraiva, J. (2009) Shortcut fusion rules for the derivation of

circular and higher-order monadic programs. In Proceedings of the 2009 ACM SIGPLAN

Symposium on Partial Evaluation and Semantics-Based Program Manipulation (PEPM

2009), Savannah, GA, USA. New York, NY: ACM Press, pp. 81–90.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

Swapping call-time and return-time computations 299

Peyton Jones, S. (ed). (2003) Haskell 98 Language and Libraries: The Revised Report.

Cambridge, UK: Cambridge University Press.

Roy, P. V. & Haridi, S. (2004) Concepts, Techniques, and Models of Computer Programming.

Cambridge, MA: MIT Press.

Svenningsson, J. (2002) Shortcut fusion for accumulating parameters & zip-like functions. In

Proceedings of the 7th ACM SIGPLAN International Conference on Functional Programming

(ICFP’02), Pittsburgh, Pennsylvania, USA. New York, NY: ACM Press, pp. 124–132.

Takano, A. & Meijer, E. (1995) Shortcut deforestation in calculational form. In Proceedings

of SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languages and

Computer Architecture (conference record of FPCA’95), La Jolla, CA, USA. New York,

NY: ACM Press, pp. 306–313.

Voigtländer, J. (2004) Using circular programs to deforest in accumulating parameters. Higher-

Order Symb. Comput. 17(1–2), 129–163.

Voigtländer, J. & Kühnemann, A. (2004) Composition of functions with accumulating

parameters. J. Funct. Program. 14(3), 317–363.

Wadler, P. (1990) Deforestation: Transforming programs to eliminate trees. Theor. Comput.

Sci. 73(2), 231–248.

Wand, M. (1980) Continuation-based program transformation strategies. J. ACM. 27(1),

164–180.

https://doi.org/10.1017/S0956796812000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000111

