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Abstract

Lassa fever (LF) is increasingly recognised as an important rodent-borne viral haemorrhagic
fever presenting a severe public health threat to sub-Saharan West Africa. In 2017–18, LF
caused an unprecedented epidemic in Nigeria and the situation was worsening in 2018–19.
This work aims to study the epidemiological features of epidemics in different Nigerian
regions and quantify the association between reproduction number (R) and state rainfall.
We quantify the infectivity of LF by the reproduction numbers estimated from four different
growth models: the Richards, three-parameter logistic, Gompertz and Weibull growth models.
LF surveillance data are used to fit the growth models and estimate the Rs and epidemic turn-
ing points (τ) in different regions at different time periods. Cochran’s Q test is further applied
to test the spatial heterogeneity of the LF epidemics. A linear random-effect regression model
is adopted to quantify the association between R and state rainfall with various lag terms. Our
estimated Rs for 2017–18 (1.33 with 95% CI 1.29–1.37) was significantly higher than those for
2016–17 (1.23 with 95% CI: (1.22, 1.24)) and 2018–19 (ranged from 1.08 to 1.36). We report
spatial heterogeneity in the Rs for epidemics in different Nigerian regions. We find that a one-
unit (mm) increase in average monthly rainfall over the past 7 months could cause a 0.62%
(95% CI 0.20%–1.05%)) rise in R. There is significant spatial heterogeneity in the LF epi-
demics in different Nigerian regions. We report clear evidence of rainfall impacts on LF epi-
demics in Nigeria and quantify the impact.

Introduction

Lassa fever (LF), caused by Lassa virus (LASV), is increasingly recognised as an important
rodent-borne viral haemorrhagic fever presenting a severe public health threat to some of
the communities in sub-Saharan West Africa [1]. Discovered in 1969 [2], LF is endemic to
much of rural Nigeria and regions in the Mano River Union [3]. LASV transmits from
human to human, as well as via the zoonotic cycle [1, 3, 4]. LF has a high case fatality rate
ranging from 1% in the community to over 60% in hospital settings [1, 4, 5]. The common
reservoir of LASV is Mastomys natalensis, one of the most widespread rodent species in
sub-Saharan Africa [1, 3], which exhibits sensitive population dynamics to the water level,
e.g. rainfall, flooded agricultural activities [6, 7]. Previous studies have recognised the eco-
logical association between the population levels of rodents and rainfall [8–10].

LF epidemics typically start in November and last until May of the following year, with
the majority of cases occurring in the first quarter of the following year, in addition to spor-
adic cases reported throughout the year. The 2017–18 epidemic in Nigeria was an unprece-
dented LF epidemic in the country’s history [11], which resulted in 400 confirmed cases,
including 97 deaths, between January and March 2018 [12]. The most recent epidemic in
Nigeria has already caused 526 confirmed cases from January to March of 2019, which
included 121 deaths [12]. The five states of Edo, Ondo, Ebonyi, Bauchi and Plateau are
the only states that have been among the top 10 hit hardest states in terms of number of
LF cases in both the 2018 (85.5% of total national cases) and 2019 (85.7% of total national
cases) epidemics. While there have been discussions about the association of rainfall level
and LF incidence rate [13, 14], this association has not yet been demonstrated and quanti-
fied. This work aims to study the epidemiological features of epidemics in different Nigerian
regions between January 2016 and March 2019. We estimate LF infectivity in terms of the
reproduction number (R) and quantify the association between R and state rainfall. We
explore the spatial heterogeneity of the LF epidemics and summarise the overall findings
with model-average estimates.
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Data and methods

Data

Weekly LF surveillance data are obtained from the Nigeria Centre
for Disease Control (NCDC), where the data are publicly avail-
able from the weekly situation reports released by NCDC [12].
Laboratory-confirmed case time series are used for analysis. We
examine the major epidemics that occurred between January
2016 and March 2019 across the whole country and the afore-
mentioned five states that were among the top 10 hardest-hit
states in both the 2018 and 2019 epidemics, i.e. Edo, Ondo,
Ebonyi, Bauchi and Plateau. The state rainfall records of each
state were collected on monthly average basis from the historical
records of the World Weather Online website [15]. Figure 1(a)
and (b) shows the rainfall time series of the five states and the
weekly reported LF cases across the entire Nigeria.

Intuitive coincidence between rainfall and epidemic

To test the credibility of the coincidence between rainfall and LF
epidemic, we use a simple statistical regression model of ‘case ∼
exp(α × rainfall) + θ’, where α and θ are free parameters to be esti-
mated. The ‘rainfall’ in the model represents the state rainfall time
series with lag of 4–9 months. This lag term corresponds to the
time interval between the rainfall and the development of rodent
population [7]. We check the least-square fitting outcomes of
these regression models and select the model of lagged rainfall
with the highest goodness-of-fit. The fitting significance is treated
as the initiation of the quantitative association between state rain-
fall and the LF epidemic.

Modelling and estimation

Four different nonlinear growth models are adopted to pinpoint
the epidemiological features of each epidemic. The models are
the Richards, three-parameter logistic, Gompertz and Weibull
growth models. These simple structured models are widely used
to study S-shaped cumulative growth processes; e.g. the curve of
a single-wave epidemic and have been extensively studied in pre-
vious work [16, 17]. These models consider cumulative cases with
saturation in the growth rate to reflect the progression of an epi-
demic due to reduction in susceptible pools or a decrease in the
exposure to infectious rodent populations. The extrinsic growth
rate increases to a maximum (i.e. saturation) before steadily
declining to zero. The modelling and fitting via the growth mod-
els of the epidemic curve are illustrated in Figure 2.

We fit all models to the weekly reported LF cases in different
regions and evaluate the fitting performance by the Akaike infor-
mation criterion (AIC). We adopt the standard nonlinear least
squares (NLS) approach for model fitting and parameter estima-
tion, following [16, 18]. A P-value <0.05 is regarded as statistically
significant and the 95% confidence intervals (CIs) are estimated
for all unknown parameters. As we are using the cumulative num-
ber of the LF cases to conduct the model fitting, some fitting
issues might occur, as per the studies in King et al. [19], due to
the non-decreasing nature in the cumulative summation time ser-
ies. The models are selected by comparing the AIC to that of the
baseline (or null) model. Only the models with an AIC lower than
the AIC of the baseline model are considered for further analysis.
Importantly, the baseline model adopted is expected to capture
the trends of the time series. Since the epidemic curves of an
infectious disease commonly exhibit autocorrelations [20], we

use autoregression (AR) models with a degree of 2, i.e. AR(2),
as the baseline models for growth model selection. We also
adopt the coefficient of determination (R-squared) and the coef-
ficient of partial determination (partial R-squared) to evaluate
goodness-of-fit and fitting improvement, respectively. For the cal-
culation of partial R-squared, the AR(2) model is used as the base-
line model. The growth models with a positive partial R-squared
(indicating fitting improvement) against the baseline AR(2)
model will be selected for further analyses.

After the selection of models, we estimate the epidemiological
features (parameters) of turning point (τ) and reproduction number
(R) via the selected models. The turning point is defined as the time
point of a sign change in the rate of case accumulation, i.e. from
increasing to decreasing or vice versa [16, 18]. The reproduction
number, R, is the average number of secondary human cases caused
by one primary human case via the ‘human-to-rodent-to-human’
transmission path [18, 21]. When the population is totally
(i.e. 100%) susceptible, the R will equate to the basic reproduction
number, commonly denoted as R0 [21, 22]. The reproduction
number (R) is given in Eqn (1),

R = 1
M(−g)

= 1
�1
0 e−gkh(k) dk

(1)

Here, γ is the intrinsic per capita growth rate from the nonlinear
growth models and κ is the serial interval of the LASV infection.
The serial interval (i.e. the generation interval) is the time between
the infections of two successive cases in a chain of transmission [21,
23–25]. The function h(·) represents the probability distribution of
κ. Hence, the functionM(·) is the Laplace transform of h(·) and spe-
cifically, M(·) is the moment generating function (MGF) of a prob-
ability distribution [21]. According to previous work [26], we
assume h(κ) to follow a Gamma distribution with a mean of 7.8
days and a standard deviation (SD) of 10.7 days. Therefore, R can
be estimated with the values of γ from the fitted models [18, 21,
27, 28]. The state Rs were estimated from the γs of the fitted epi-
demic growth curves of each state. Similarly, the national Rs are esti-
mated from the γs of the epidemic growth curves fitted to the
national number of cases time series in different epidemic periods.

We then summarise the κ and R estimates via the AIC-weighted
model averaging. The AIC weights, w, of the selected models (with
positive partial R-squared) are defined in Eqn (2),

wi = e−0.5(AICi−AICmin)

∑
e−0.5(AICi−AICmin)

(2)

Here, AICi is the AIC of the i-th selected model and the AICmin is
the lowest AIC among all selected models. Thus, the i-th selected
model has a weight of wi. The model-averaged estimator is the
weighted average of the estimates in each selected model, which
has been well studied in previous work [16, 29].

For the AIC-based model average of the R, there could be the
situation that no growth model is selected according to the partial
R-squared. In such cases, instead of the model average, we report
the range of the R estimated from all growth models.

Testing the spatial heterogeneity of the LF epidemics

After finding the model-averaged estimates, we apply Cochran’s Q
test to examine the spatial heterogeneity of the epidemics in differ-
ent regions over the same period of time [30]. For instance, we treat

2 Shi Zhao et al.

https://doi.org/10.1017/S0950268819002267 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268819002267


the model-averaged R estimates as the univariate meta-analytical
response against different Nigerian regions (states) and further
check the heterogeneity by estimating the significance levels of the
Q statistics. A P-value <0.05 is regarded as statistically significant.

Association between rainfall and reproduction number

Similar to the approach in the previous study [31], the association
between the state rainfall level and LASV transmissibility are mod-
elled by a linear mixed-effect regression (LMER) model in Eqn (3),

E[Rj|t] = e(cj|regionj)+b〈rainfall j,t〉 (3)

Here, E(·) represents the expectation function and j is the region
index corresponding to different regions (states). Term cj is the

interception term of the j-th region to be estimated and it is variable
from different regions, serving as the baseline scale of transmissibil-
ity in different states. The term t denotes the cumulative lag in
the model and 〈rainfallj,t〉 represents the average monthly rainfall
of the previous t months from the turning point, τ, of the j-th
region. The range of lag term, t, will be considered from 4 to 9
months, which is explained by the time interval between the peak
of the rainfall and the peak of rodent population [7]. As illustrated
in Figure 3, the reproduction numbers, Rjs, are estimated for differ-
ent epidemics from the selected growth models. The regression
coefficient, β, is to be estimated. Hence, the term (eβ – 1) × 100%
is the percentage changing rate (of R), which can be interpreted
as the percentage change in transmissibility due to a one-unit
(mm) increase in the average of the monthly rainfall level over
the past 7 months. The framework of the regression is based on
the exponential form of the predictor to model the expectation of

Fig. 1. Rainfall (unit: mm) and number of Lassa fever (LF) cases in Nigeria. Panel (a) shows the monthly rainfall in five states in Nigeria. Panel (b) shows the weekly
number of LF cases in Nigeria. The shaded area represents a weekly number of cases lower than 10. Panel (c) matches the rainfall (dots) and LF cases (in log scale,
black line) by shifting the rainfall time series by + 6 months. The sizes of each dot represent the number of the average weekly LF cases in each state in the 2017–18
and 2018–19 outbreaks. Panel (d) is the scatter plot of rainfall (shifted + 6 months) vs. LF cases; the dots of different colours and sizes share the same scheme as in
panel (c). The black line is the fitting outcome of the formula ‘case ∼ exp(α × rainfall) + θ’ by least square estimation and here, the ‘rainfall’ is the rainfall time series
shifted + 6 months. The fitted R-squared is 0.41 and significance is P-value < 0.0001. Panel (e) is the fitting outcome from panel (d) and the rainfall dots (shifted
+ 6 months) of different colours and sizes share the same scheme as in panel (c).
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transmissibility (e.g. R); this framework is inspired by previous
work [32–35]. To quantify the impacts of state rainfall, we calculate
the percentage changing rate with different cumulative lags (t) from
4 to 9 months and estimate their significant levels. Only the lag
terms (t) with significant estimates are presented in this work.

We present the analysis procedure in a flow diagram in
Figure 3. All analyses are conducted by using R (version 3.4.3
[36]) and the R function ‘nls’ is employed for the NLS estimation
of model parameters.

Results and discussion

The rainfall time series of the five states and the weekly reported
LF cases of the whole of Nigeria are shown in Figure 1(a) and (b).
We observe that the major LF epidemics usually occur in Nigeria
between November and May of the following year. The cumula-
tive lagged effects were observed via matching the peak timing
of the rainfall and epidemic curves. In Figure 1(c), we shift the
rainfall time series of the five states by + 6 months to match
the trends of the national LF epidemic curve in Nigeria. In
Figure 1(d) and (e), we find that the fit has a P-value <0.0001,
which indicates a statistically significant association between
the LF cases and shifted rainfall curve.

We fit four different growth models to the LF confirmed cases
and estimate the model-average reproduction number (R) after

model selection. We show the growth model fitting results in
Figure 4 and the model estimation and selection results in
Table 1. Most of the models have positive partial R-squared
against the baseline AR(2) model. Most of the regions exhibit
an epidemic turning point (τ) ranging from the epidemiological
week (EW) 4–10, i.e. from the end of January to mid-March, in
each year. Out of four epidemics in the states of Bauchi and
Plateau, there are three estimated τs after EW 10 (Table 1).
Larger τ means the more extension in the duration of the epi-
demics. The turning point (τ) could be affected by several factors
including seasonality, intervention program and depletion of the
susceptible pool. The estimated reproduction number (R) of
the epidemics in different regions varies from 1.06 to 1.62. At
the national level, the R value for the whole of Nigeria in 2016–
17 (R = 1.23 with 95% CI 1.22–1.24) is significantly lower than
in the epidemics of 2017–18 (R = 1.33 with 95% CI 1.29–1.37)
and 2018–19 (R ranged from 1.08 to 1.36). The state of Edo has
the highest estimated R (1.62 in 2017–18 and 1.09 in 2018–19)
and this state also has the largest number of LF cases in the epi-
demics of both 2017–18 (41.9% of all cases) and 2018–19 (36.0%
of all cases). Hypothesised spatial heterogeneity in the R is tested
via Cochran’s Q test. The testing results for the Rs in the five states
are significant (i.e. P-value <0.05) for both the 2017–18 and
2018–19 LF epidemics. Thus, we report the existence of spatial
heterogeneity in LF epidemics in Nigeria.

Fig. 3. A flow diagram of the modelling analysis. This figure shows the analysis procedures in this study.

Fig. 2. The illustration diagram of the growth models fitting framework. The (solid and dashed) orange lines are the theoretical growth curves from the simple
nonlinear growth models, i.e. the Richards, logistic, Gompertz, or Weibull models. The blue dots are the reported cumulative (cum.) number of cases. The blue
shading area represents the period with epidemic reported, which is used for the model fitting in corresponds to the non-shaded area in Figure 1. The intrinsic
growth rate is the γ in Eqn (1), which is estimated from the fitted growth models and used for R estimation.
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Many previous studies adopted the instantaneous reproduc-
tion number, commonly denoted by Rt, which can be estimated
by a renewable equation, to quantify the transmissibility of infec-
tious diseases [21, 23, 24, 37, 38]. The factors that affect the chan-
ging dynamics of Rt include

(i) the depletion of the susceptible population [32] or decrease
in the exposure to infectious sources,

(ii) the change, usually it is the improvement, in the unmeasur-
able disease control efforts, e.g. contract tracing, travel
restriction, school closure, etc., [39–42] and local awareness
of the epidemic [33], and

(iii) the natural features of the pathogen, e.g. its original infectiv-
ity and other interepidemic factors [32, 33, 35].

In this work, we choose to use the average reproduction num-
ber (R) rather than Rt, as the measurement of the LASV transmis-
sibility. The estimated R summarises the LASV transmissibility
over the whole period of an epidemic. The reasons why we prefer
R rather than Rt are as follows. First, the temporal changes of the
susceptible population or decrease in the exposure to infectious
sources are removed from the R estimates due to the nature of
the growth models. Second, the changes of the susceptible popu-
lation and/or disease awareness or control measures and the
effect of the rainfall cannot be disentangled in the time-varying
reproduction number, Rt, the average reproduction number (R)
adopted is a better proxy to explore the association between LF
infectivity and rainfall. With respect to point (iii) and other
heterogeneities of epidemics in different regions, we account
for this issue by including the ‘region’ dummy variables in the
LMER model in Eqn (3). These dummy variables serve as
random effects to offset the regional heterogeneities of LF
epidemics. Therefore, we can then quantify a general effect,

i.e. the β in Eqn (3), of the lagged rainfall on the LASV R esti-
mate among different Nigerian places.

The association between total rainfall in a state and the LASV
transmissibility (R) is modelled and quantified by the LMER
model. In Figure 5, we find a positive relation between rainfall
and R. The estimated changing rate in R under a one-unit
(mm) increase in the average monthly rainfall is summarised
with different cumulative lag terms from 4 to 9 months (the t
in Eqn (3)). The range of lag in the rainfall from 4 to 9 months
had previously been explained by the time interval between the
peak of the rainfall and the peak of the rodent population [7].
The estimates of the rainfall-associated changing rate in R with
different lag terms were summarised in Table 2. We report the
most significant (i.e. with the lowest P-value) regression estimates
that appear with a cumulative lag of 7 months. The habitats of
the LASV reservoir, i.e. rodents, include irrigated and flooded
agricultural lands that are commonly found in and around
African villages [6]. The 7-month lag also coincides with the per-
iod between the dry and rainy seasons [43]. The association
between rodent population dynamics and rainfall levels has
been demonstrated in a number of previous studies [6–10].
Hence, we consider the 7-month lagged estimation as our main
results. Namely, a one-unit (mm) increase in the average
monthly rainfall over the past 7 months is likely to cause a
0.62% (95% CI 0.20%–1.05%) rise in the R of the LF epidemic.
We also remark that this ‘one-unit (mm) increase in the average
monthly rainfall over the past 7 months’ is equivalent to ‘7-unit
(mm) increase in the total rainfall over the past 7 months’. The
present finding of the impact of lagged rainfall on LF epidemics
suggests that the knowledge of such weather-driven epidemics
could be gained by referring to past rainfall levels. For instance,
if a relatively high amount of rainfall occurs, local measures,
such as rodent population control, could be effective to reduce

Fig. 4. The fitting results of estimates of Lassa epidemics in Nigeria by nonlinear growth models. In each panel, the dots are the observed (reported) cases, the
dashed grey line is the fit by the baseline AR(2) model and the coloured lines are the fits from the nonlinear growth models.
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Table 1. The summary table of the model estimations. Population numbers are summarised in units of one million

Region Population Model Epidemic period Final size
Reproduction

number Turning point R-squared Improvement AIC Weight

Nigeria 186 Baseline: AR(2) from EW44-2016
to EW22-2017

NA NA NA 0.9959 0.00% 198.8 NA

Nigeria 186 Richards from EW44-2016
to EW22-2017

– – – – – – –

Nigeria 186 Logistic from EW44-2016
to EW22-2017

196; (191, 201) 1.24; (1.22, 1.25) EW10-2017;
(EW10-2017, EW10-2017)

0.9973 34.80% 191.8 0.968

Nigeria 186 Gompertz from EW44-2016
to EW22-2017

221; (208, 233) 1.14; (1.12, 1.15) EW08-2017;
(EW08-2017, EW09-2017)

0.9969 23.90% 198.6 0.032

Nigeria 186 Weibull from EW44-2016
to EW22-2017

350; (252, 448) 1.05; (1.04, 1.07) EW14-2017;
(EW09-2017, EW18-2017)

0.9937 −53.80% 220.5 excluded

Nigeria 186 Model average from EW44-2016
to EW22-2017

197; (192, 202) 1.23; (1.22, 1.24) EW10-2017;
(EW10-2017, EW10-2017)

NA NA NA NA

Nigeria 190.9 Baseline: AR(2) from EW44-2017
to EW22-2018

NA NA NA 0.9977 0.00% 157 NA

Nigeria 190.9 Richards from EW44-2017
to EW22-2018

464; (458, 470) 1.33; (1.28, 1.37) EW09-2018;
(EW08-2018, EW09-2018)

0.9984 32.00% 151.2 0.933

Nigeria 190.9 Logistic from EW44-2017
to EW22-2018

468; (462, 474) 1.41; (1.39, 1.43) EW08-2018;
(EW08-2018, EW08-2018)

0.998 14.00% 156.5 0.067

Nigeria 190.9 Gompertz from EW44-2017
to EW22-2018

474; (465, 483) 1.31; (1.29, 1.34) EW07-2018;
(EW07-2018, EW07-2018)

0.9972 −20.60% 169 excluded

Nigeria 190.9 Weibull from EW44-2017
to EW22-2018

491; (475, 507) 1.08; (1.08, 1.08) EW07-2018;
(EW07-2018, EW07-2018)

0.9955 −91.10% 183.3 excluded

Nigeria 190.9 Model average from EW44-2017
to EW22-2018

464; (458, 470) 1.33; (1.29, 1.37) EW09-2018;
(EW08-2018, EW09-2018)

NA NA NA NA

Nigeria 195.9 Baseline: AR(2) from EW44-2018
to EW13-2019

NA NA NA 0.9969 0.00% 98.8 NA

Nigeria 195.9 Richards from EW44-2018
to EW13-2019

– – – – – – –

Nigeria 195.9 Logistic from EW44-2018
to EW13-2019

623; (593, 653) 1.36; (1.32, 1.39) EW06-2019;
(EW06-2019, EW07-2019)

0.9953 −54.00% 111.5 excluded

Nigeria 195.9 Gompertz from EW44-2018
to EW13-2019

669; (620, 717) 1.24; (1.21, 1.28) EW05-2019;
(EW05-2019, EW06-2019)

0.9957 −39.40% 111.3 excluded

Nigeria 195.9 Weibull from EW44-2018
to EW13-2019

795; (670, 921) 1.08; (1.08, 1.09) EW06-2019;
(EW05-2019, EW07-2019)

0.9951 −0.599 114.3 excluded

Nigeria 195.9 Model average from EW44-2018
to EW13-2019

NA NA NA NA NA NA NA
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Edo state 4.2 Baseline: AR(2) from EW50-2017
to EW18-2018

NA NA NA 0.9901 0.00% 127.7 NA

Edo state 4.2 Richards from EW50-2017
to EW18-2018

– – – – – – –

Edo state 4.2 Logistic from EW50-2017
to EW18-2018

175; (173, 178) 1.62; (1.58, 1.66) EW09-2018;
(EW08-2018, EW09-2018)

0.9984 83.70% 95.6 0.995

Edo state 4.2 Gompertz from EW50-2017
to EW18-2018

178; (174, 181) 1.46; (1.42, 1.50) EW08-2018;
(EW08-2018, EW08-2018)

0.9976 75.40% 106.2 0.005

Edo state 4.2 Weibull from EW50-2017
to EW18-2018

182; (176, 189) 1.13; (1.13, 1.13) EW08-2018;
(EW08-2018, EW08-2018)

0.9963 62.20% 115.3 0

Edo state 4.2 Model average from EW50-2017
to EW18-2018

175; (173, 178) 1.62; (1.58, 1.66) EW09-2018;
(EW08-2018, EW09-2018)

NA NA NA NA

Ondo state 4.7 Baseline: AR(2) from EW48-2017
to EW18-2018

NA NA NA 0.9917 0.00% 129.2 NA

Ondo state 4.7 Richards from EW48-2017
to EW18-2018

– – – – – – –

Ondo state 4.7 Logistic from EW48-2017
to EW18-2018

111; (108, 113) 1.41; (1.37, 1.45) EW07-2018;
(EW06-2018, EW07-2018)

0.9946 35.40% 124.6 0.007

Ondo state 4.7 Gompertz from EW48-2017
to EW18-2018

114; (111, 117) 1.28; (1.26, 1.31) EW05-2018;
(EW05-2018, EW06-2018)

0.9968 61.50% 114.7 0.99

Ondo state 4.7 Weibull from EW48-2017
to EW18-2018

128; (118, 138) 1.14; (1.13, 1.15) EW06-2018;
(EW05-2018, EW06-2018)

0.9947 36.40% 126.3 0.003

Ondo state 4.7 Model average from EW48-2017
to EW18-2018

114; (111, 117) 1.28; (1.26, 1.31) EW05-2018;
(EW05-2018, EW06-2018)

NA NA NA NA

Ebonyi state 2.9 Baseline: AR(2) from EW45-2017
to EW18-2018

NA NA NA 0.9937 0.00% 117.8 NA

Ebonyi state 2.9 Richards from EW45-2017
to EW18-2018

– – – – – – –

Ebonyi state 2.9 Logistic from EW45-2017
to EW18-2018

63; (62, 64) 1.55; (1.51, 1.58) EW08-2018;
(EW08-2018, EW08-2018)

0.9982 0.708 90 0.999

Ebonyi state 2.9 Gompertz from EW45-2017
to EW18-2018

– – – – – – –

Ebonyi state 2.9 Weibull from EW45-2017
to EW18-2018

66; (64, 69) 1.09; (1.09, 1.09) EW07-2018;
(EW07-2018, EW07-2018)

0.997 52.60% 104.6 0.001

Ebonyi state 2.9 Model average from EW45-2017
to EW18-2018

63; (62, 64) 1.55; (1.51, 1.58) EW08-2018;
(EW08-2018, EW08-2018)

NA NA NA NA

Bauchi state 6.5 Baseline: AR(2) from EW49-2017
to EW16-2018

NA NA NA 0.9734 0.00% 50.2 NA

Bauchi state 6.5 Richards from EW49-2017
to EW16-2018

12; (11, 13) 1.34; (1.24, 1.44) EW12-2018;
(EW11-2018, EW13-2018)

0.9936 76.00% 26.5 0.483

Bauchi state 6.5 Logistic from EW49-2017
to EW16-2018

13; (12, 14) 1.43; (1.37, 1.48) EW12-2018;
(EW11-2018, EW12-2018)

0.993 73.70% 26.4 0.515

(Continued )
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Table 1. (Continued.)

Region Population Model Epidemic period Final size Reproduction
number

Turning point R-squared Improvement AIC Weight

Bauchi state 6.5 Gompertz from EW49-2017
to EW16-2018

– – – – – – –

Bauchi state 6.5 Weibull from EW49-2017
to EW16-2018

17; (12, 21) 1.09; (1.08, 1.09) EW12-2018;
(EW10-2018, EW13-2018)

0.9889 58.40% 37.5 0.002

Bauchi state 6.5 Model average from EW49-2017
to EW16-2018

13; (12, 14) 1.38; (1.31, 1.46) EW12-2018;
(EW11-2018, EW13-2018)

NA NA NA NA

Plateau state 4.2 Baseline: AR(2) from EW48-2017
to EW16-2018

NA NA NA 0.9576 0.00% 45.1 NA

Plateau state 4.2 Richards from EW48-2017
to EW16-2018

– – – – – – –

Plateau state 4.2 Logistic from EW48-2017
to EW16-2018

9; ( 8, 10) 1.40; (1.32, 1.47) EW12-2018;
(EW11-2018, EW13-2018)

0.9847 63.90% 26.4 0.301

Plateau state 4.2 Gompertz from EW48-2017
to EW16-2018

– – – – – – –

Plateau state 4.2 Weibull from EW48-2017
to EW16-2018

16; ( 6, 25) 1.07; (1.05, 1.09) EW14-2018;
(EW09-2018, EW19-2018)

0.9872 69.70% 24.7 0.699

Plateau state 4.2 Model average from EW48-2017
to EW16-2018

14; (7, 20) 1.17; (1.13, 1.21) EW13-2018;
(EW10-2018, EW17-2018)

NA NA NA NA

Edo state 4.3 Baseline: AR(2) from EW46-2018
to EW13-2019

NA NA NA 0.9919 0.00% 119 NA

Edo state 4.3 Richards from EW46-2018
to EW13-2019

– – – – – – –

Edo state 4.3 Logistic from EW46-2018
to EW13-2019

210; (194, 225) 1.37; (1.32, 1.42) EW07-2019;
(EW06-2019, EW07-2019)

0.9907 −14.60% 127.3 excluded

Edo state 4.3 Gompertz from EW46-2018
to EW13-2019

232; (207, 257) 1.23; (1.19, 1.27) EW06-2019;
(EW05-2019, EW06-2019)

0.994 25.70% 120.6 excluded

Edo state 4.3 Weibull from EW46-2018
to EW13-2019

307; (230, 384) 1.09; (1.08, 1.10) EW07-2019;
(EW05-2019, EW09-2019)

0.9947 34.40% 118.1 1

Edo state 4.3 Model average from EW46-2018
to EW13-2019

307; (230, 384) 1.09; (1.08, 1.10) EW07-2019;
(EW05-2019, EW09-2019)

NA NA NA NA

Ondo state 4.8 Baseline: AR(2) from EW44-2018
to EW13-2019

NA NA NA 0.9941 0.00% 104.5 NA

Ondo state 4.8 Richards from EW44-2018
to EW13-2019

165; (155, 176) 1.31; (1.21, 1.41) EW06-2019;
(EW05-2019, EW07-2019)

0.9927 −24.00% 115.2 excluded

Ondo state 4.8 Logistic from EW44-2018
to EW13-2019

170; (161, 179) 1.37; (1.33, 1.42) EW05-2019;
(EW05-2019, EW06-2019)

0.9922 −32.40% 114.7 excluded

Ondo state 4.8 Gompertz from EW44-2018
to EW13-2019

176; (162, 190) 1.28; (1.23, 1.34) EW04-2019;
(EW04-2019, EW05-2019)

0.991 −53.30% 119.9 excluded

Ondo state 4.8 Weibull from EW44-2018
to EW13-2019

193; (165, 221) 1.09; (1.09, 1.10) EW05-2019;
(EW04-2019, EW06-2019)

0.9895 −78.00% 123.2 excluded
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Ondo state 4.8 Model average from EW44-2018
to EW13-2019

NA NA NA NA NA NA NA

Ebonyi state 3 Baseline: AR(2) from EW48-2018
to EW13-2019

NA NA NA 0.9692 0.00% 89.5 NA

Ebonyi state 3 Richards from EW48-2018
to EW13-2019

– – – – – – –

Ebonyi state 3 Logistic from EW48-2018
to EW13-2019

41; (36, 46) 1.43; (1.32, 1.54) EW07-2019;
(EW07-2019, EW08-2019)

0.9749 18.40% 91.2 excluded

Ebonyi state 3 Gompertz from EW48-2018
to EW13-2019

– – – – – – –

Ebonyi state 3 Weibull from EW48-2018
to EW13-2019

59; (35, 83) 1.10; (1.08, 1.13) EW08-2019;
(EW05-2019, EW10-2019)

0.9853 52.40% 83.5 1

Ebonyi state 3 Model average from EW48-2018
to EW13-2019

59; (35, 83) 1.10; (1.08, 1.13) EW08-2019;
(EW05-2019, EW10-2019)

NA NA NA NA

Bauchi state 6.7 Baseline: AR(2) from EW48-2018
to EW13-2019

NA NA NA 0.9657 0.00% 74 NA

Bauchi state 6.7 Richards from EW48-2018
to EW13-2019

– – – – – – –

Bauchi state 6.7 Logistic from EW48-2018
to EW13-2019

49; (44, 53) 1.34; (1.27, 1.40) EW05-2019;
(EW04-2019, EW06-2019)

0.979 38.80% 69.7 0.002

Bauchi state 6.7 Gompertz from EW48-2018
to EW13-2019

– – – – – – –

Bauchi state 6.7 Weibull from EW48-2018
to EW13-2019

137; ( 8, 266) 1.06; (1.03, 1.09) EW15-2019;
(EW02-2019, EW41-2019)

0.9907 72.90% 57.1 0.998

Bauchi state 6.7 Model average from EW48-2018
to EW13-2019

137; (8, 266) 1.06; (1.03, 1.09) EW15-2019;
(EW02-2019, EW40-2019)

NA NA NA NA

Plateau state 4.3 Baseline: AR(2) from EW48-2018
to EW13-2019

NA NA NA 0.9679 0.00% 72.2 NA

Plateau state 4.3 Richards from EW48-2018
to EW13-2019

35; (33, 37) 1.37; (1.23, 1.49) EW06-2019;
(EW04-2019, EW07-2019)

0.9875 61.10% 61.6 0.28

Plateau state 4.3 Logistic from EW48-2018
to EW13-2019

36; (34, 38) 1.52; (1.43, 1.60) EW05-2019;
(EW04-2019, EW05-2019)

0.9851 53.70% 62.7 0.161

Plateau state 4.3 Gompertz from EW48-2018
to EW13-2019

36; (34, 37) 1.50; (1.38, 1.61) EW05-2019;
(EW04-2019, EW05-2019)

0.9874 60.60% 61.8 0.253

Plateau state 4.3 Weibull from EW48-2018
to EW13-2019

37; (34, 39) 1.14; (1.13, 1.15) EW05-2019;
(EW04-2019, EW05-2019)

0.9876 61.40% 61.4 0.306

Plateau state 4.3 Model average from EW48-2018
to EW13-2019

36; (34, 38) 1.35; (1.27, 1.43) EW05-2019;
(EW04-2019, EW06-2019)

NA NA NA NA

The ‘improvement’ is the partial R-squared. The ‘weight’ is the AIC-weight of the selected model, which is used for calculating the model-averaged estimates. The ‘NA’ means a summary term that is not applicable to a certain model. The notation ‘–’
means that the model cannot achieve a converging fitting outcome. The model-averaged estimates in each region are highlighted in grey.
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the LF risk. This speculation could also be verified by examining
the rodent population data of the Nigerian regions included in
this work. The findings in this work are of public health interest
and are helpful for policymakers in LF prevention and control.

On the one hand, our findings suggest the existence of an asso-
ciation between rainfall and LASV transmissibility, which could
be affected by the population dynamics of rodents [13]. On the

other hand, the positive relation between rainfall and R indicates
that rainfall, particularly in states with a high LF risk, can be
translated as a warning signal for LF epidemics. The modelling
framework in this study should be easily extended to other infec-
tious diseases.

Limitation

Our work contains limitations. As in some African countries, the
weather data are available only from a limited number of observa-
tory stations and thus it is not sufficient to capture more accurate
spatial variability. In this work, instead of exploring the spatial
differences in the associations between rainfall and LF epidemic,
we relaxed the setting and studied a general relationship. We
qualified the general rainfall-associated changing rate of R in
Nigeria. For the transmissibility estimation, our growth modelling
framework can provide the estimates of R, but not the basic repro-
duction number commonly denoted as R0. However, according to
the theoretical epidemiology [22, 27, 35, 44, 45], the R0 can be
determined by R0 = R/S, where S denotes the population suscepti-
bility. Although S is not involved in our modelling framework, the
information of S could be acquired from local serological

Table 2. The summary table of the LMER model estimates. The ‘cum. lag’ is the
lag term for the cumulative effect of the rainfall. The ‘change rate’ in is the
percentage change in R for per unit (mm) increase in the average monthly
rainfall

Cum. lag Change rate (%) (95% CI) P-value R-squared

4 0.42 (0.02–0.82) 0.039 0.36

5 0.45 (0.04–0.87) 0.034 0.37

6 0.62 (0.15–1.08) 0.012 0.44

7 0.62 (0.20–1.05) 0.006 0.47

8 0.57 (0.12–1.02) 0.016 0.42

9 0.45 (0.36–1.06) 0.044 0.36

Fig. 5. The relationship between state rainfall and Lassa fever (LF) transmissibility, i.e. the reproduction number (R), in five different states with different time lags
(t). The reproduction number of 1.0 is highlighted by the back dashed line. The panels at the bottom are the violin plots and show the distribution of rainfall in
each state. The black rectangles represent the 25% and 75% quantiles and the white dot is the median.
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surveillances. The existing literature reported 21.3% seropreva-
lence among Nigerian humans by the enzyme-linked immuno-
sorbent assay (ELISA) [46]. Hence, the R0 can be calculated as
1.63 by using S = 1–21.3% = 0.787 and the R = 1.28 as the average
of the 2016–18 LF epidemics. This was a data-driven modelling
study, and we quantified the effect of rainfall as a weather-driven
force of R based on previous ecological and epidemiological evi-
dences [7, 43]. Since the transmission of LASV mainly relies on
the rodent population, the factors including seasonality, agricul-
tural land-using, subtropical or tropical forest coverage that
could impact rodent ecology should be relevant and helpful in
the analysis. However, due to availability of data, the agricultural
land-using factors, e.g. pastureland, irrigated land, flooded agri-
cultural land usage and forest coverage were absent in our ana-
lysis, which should be studied in the future if they become
available.

Conclusions

The LF epidemic reproduction numbers (R) of the whole of
Nigeria in 2017–18 (R = 1.33 with 95% CI 1.29–1.37) and
2018–19 (R ranged from 1.08 to 1.36) are significantly higher
than in 2016–17 (R = 1.23 with 95% CI 1.22–1.24). There is sig-
nificant spatial heterogeneity in the LF epidemics of different
Nigerian regions. We report clear evidence of rainfall impacts
on LF epidemics in Nigeria and quantify this impact. A one-unit
(mm) increase in the average monthly rainfall over the past 7
months could cause a 0.62% (95% CI 0.20%–1.05%) rise in the
R. The state rainfall information has potential to be utilised as a
warning signal for LF epidemics.

Data. All data used for analysis are freely available via online public domains
[12, 15].
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