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ON DENSITY OF GENERALIZED POLYNOMIALS 

N. DYN, D. S. LUBINSKY, AND BORIS SHEKHTMAN 

ABSTRACT. We consider the density in C[a, b] of generalized polynomials of the 
form Tf!=\ cjK(xi tj)- The main point of this note is that total positivity of K(x, t) has 
little relationship to density: There is a symmetric, analytic, totally positive (in fact ETP 
(oo)) kernel K for which these generalized polynomials are not dense. 

1. Introduction and Statement of Results. Let K\ [a, b] x [c, d] —-> R be contin
uous, and let iP denote the set of all generalized polynomials of the form 

(1.1) E cjK(x9 tj)9 

where n ^ 1, {tj}JL { C [c, d], { Cj}JL, C R. The density of <P in C[a, b] (the functions 
continuous on [a, b] with uniform norm) has been studied for many special kernels, for 
example, K(x, t) := e^\ K(x, t) := 1/ (\ — xt), K(x, t) := x1. On suitable intervals, these 
all yield fP that is dense in C[a, b][\]. When K has the form AT(JC, t) = h(x — t), a classical 
theorem of Wiener [ 1 ] provides a complete answer to this question. 

For totally positive K, the polynomials P̂ often appear in approximation theory, and it 
seems of interest to study their density properties. As far as the authors could determine, 
this has not been considered in detail, though [4] contains some results of this type and 
perhaps it is implicitly investigated in numerical solution of certain types of integral 
equations [5]. Convergence of interpolatory polynomials of the form (1.1) was studied 
in [2], and similar questions for generalized rational functions in [3]. 

The main point of this note is that total positivity has little to do with density. First, 
let us recall: 

DEFINITION 1.1. A: is totally positive if for all n ^ 1, a ^ $i < s2 < • • • < sn Û b\ 
c ^ t\ < t$ < • • • < tn ^ d, we have 

(1.2) tet(K(sh tj))lj=x > 0 . 

Suppose in addition that K has partial derivatives of all orders in [a, b] x [c, d]. We say 
that K is ETP(oo) (extended totally positive of all orders) if for all n ^ 1; a ^ s\ S 
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^ ^ sn ^ b; c ^ t\ ^ t2 ^ • • • ^ tn ^ d, we have 

(1.3) 

Here for 1 ̂  /, j ^ « 

(1.4) 

det 
dsl'dtm K(s, t) 

S—Si,t=tj 

> 0. 
U=i 

// := / — min { & : ^ = 57}, 

m, : = v - m i n { & : f* = tj}. 

The conditions (1.3) and ( 1.4) express the requirement that the determinant ( 1.2) remains 
positive, when some 57 or tt coalesce, provided we replace the relevant rows or columns 
by suitable order partial derivatives. 

Recall that <£ is the set of all generalized polynomials (1.1). Our main result is: 

THEOREM 1.2. Let 0 < a < b < 00 and let { \j}™0 C (0,00) be all distinct. Let 
{ Cj}j=o C (0,00) and let 

(1.5) K(x, t) := £ cj(xt)x' 

be convergent for x, t in an open interval containing [a,b]. Then K is ETP(oo), and the 
following are equivalent: 

(a) *P is dense in C[a, b]. 
(b) We have 

(1.6) £ 7=0 1 + A 7 

REMARKS, (i) Note that K is analytic in x and r, and also symmetric, that is K(x, t) — 
K(t,x). In particular, when (1.6) is not satisfied, we obtain an ETP(oo) kernel for which 
fP is not dense, (ii) We can obviously replace C[a, b] by Lp[a, b], and/7 ^ 1. 

Theorem 1.2 is a consequence of a general necessary and sufficient condition involv
ing the inner product for symmetric AT, 

(1.7) (w, v):= f f u(t)K(x, t)v(x) dx dt, u, v G Lx[a,b] : 
Ja Ja 

THEOREM 1.3. Let K : [a, b] x [a, b] —> R be continuous, symmetric and satisfy 

(1.8) (v, v ) ^ 0, v e Lx[a,b}. 

Then the following are equivalent: (a) *P is dense in C[a, b]. (b)Ifv G L\[a, b] satisfies 
(v, v) = 0, then v = 0 a.e. in [a, b]. 

REMARKS, (i) We are not sure that Theorem 1.3 is new. (ii) One can replace C[a, b] 
and L\[a,b] respectively by Lp[a,b] and Lq[a,b] for any 1 < p,q < 00 with/?-1 + 
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q~x — 1. (iii) Even without the non-negative definiteness of K in (1.8), (b) is sufficient to 
imply density of (P. (iv) An alternative formulation of Theorem 1.3 involves the integral 
equation 

/ K(x, t)h(x)dx = 0, t G [a,b], 
Ja 

having only the trivial solution h = 0 a.e. (v) Any symmetric totally positive kernel 
K(x, t) can be seen to be non-negative definite in the sense (1.8). 

There are two other classes whose density is naturally equivalent to that of fP (compare 
[4, Theorem 10]). Let K: [a, b] x [c, d] —• R be continuous, and let Q, denote the class 
of all functions of the form 

(1.9) g(x) := j * K(x, t)h{t)dt, x G [aM 

h G C[c, d]. Furthermore, let ^ denote the class of all functions of the form 

(1.10) g(x) := f K(x, t)dfi(t), x G [a,b], 

where /x is a (signed) Borel measure on [c, d] with 

(1.11) fc
d \dfi\(t) < oo. 

THEOREM 1.4. Let K: [a, b] x [c, d] —• R be continuous. The following are equiva
lent: (a) *P is dense in C[a, b]. (b) Q is dense in C[a, b]. (c) ^ is dense in C[a, b]. 

An easy corollary of Theorem 1.4 is: 

COROLLARY 1.5. Let K: [a, b] x [c, d] —+ R be continuous. Let 1 ^ p ^ oo, and let 
Tp denote the class of all functions of the form (1.9), where h G Lp[c,d]. The following 
are equivalent: (a) *P is dense in C[a, b]. (b) % is dense in C[a, b]. 

Finally, we note that (cf. [4]) when K(x, t) is analytic in t, we can restrict t to lie in any 
infinite subset A of [c, d] : Let fP(A) denote the class of all polynomials of the form (1.1), 
with{f,};= 1cA. 

THEOREM 1.6. Let K: [a,b] x [c,d] —• R be continuous and K(x,t) be analytic in 
t G [c, d] for each fixed x G [a, b], while d/ dt K(x, t) is continuous for x G [a,b] and 
t in an open set containing [c, d]. Let A be an infinite subset of[c, d\. The following are 
equivalent: (a) <P is dense in C[a, b]. (b) P̂(A) is dense in C[a, b]. 

We prove Theorems 1.2 to 1.6 in Section 2. 
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2. Proofs. For/ G C[a, b] and T C C[a, b], we define 

(2.1) dist (/, <T):= inf | | / - P | | W û ^ . 

LEMMA 2.1. Let K: [a,b] X [a, b] —> R be continuous, symmetric, and ¥ be the 
set of all generalized polynomials (1.1), and let (•, •) denote the inner product (1.1). For 
f G C[a,b], 

dist (/, IP) - sup { J^ (fq)(t)dt : J' \q{t)\dt = 1 and 

(2.2) 

(4, v) = 0 for all v G Lx[aM\ 

PROOF. If S is any dense linear subspace of *P or <2 (the closure of (P), it is clear that 

(2.3) dist (/, ¥) = dist (/, 5) = dist (/, !P). 

Let 5(= CZÏ) be the class of functions g of the form 

(2.4) g(jr) := T K(xj)v(t)dt, x G [A,*], 
./a 

some v G Li [a,Z?]. In view of the continuity of K, it is easy to see that S C fP. Fur
thermore, it is easy to see that any generalized polynomial P £ *P can be approximated 
uniformly on [a, b] by elements of 5. Hence (2.3) holds. Next, by the standard duality 
principle [1] 

dist (/, S) = sup { J' (fq)(t)dt : J' \q(t)\dt = 1, and 

j\qg)(t)dt = 0 for all $ G 5 ) . 

Since each g G 5 has the form (2.4), we can write 

/ (qg)(t)dt=(q,v). 
Ja 

Hence (2.2) follows. • 

PROOF OF THEOREM 1.3. (a) =* (b). Suppose q G Lj [a, 6] satisfies (g, g) = 0. We 
shall assume that 

(2.5) rj := [ \q(t)\dt> 0, 
Ja 

and derive a contradiction to (a). We may normalize q so that rj = I. Now by symmetry 
and non-negativity of (•, •), for any v G L\ [a,b] and À G R, 0 ^ (v + \q, v + \q) — 
(v, v) + 2À (g, v). Dividing by A ^ 0 and then letting A —> 00 or —00, yields 

(2.6) (4, v) = 0 for all v £ Lx [a, b\. 
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By Lemma 2.1, we have for a l l / G C[a, b], 

dist( / , <P)^ fh(fq)(t)dt. 
Ja 

But in view of (2.5), we can choose/ G C[a, b] for which this last integral is positive. 
Then/ ^ $\ and we have a contradiction to (a). So necessarily 77 = 0, and q = 0 a.e. 
(b) => (a). In view of Lemma 2.1, it suffices to show that if q G L\ [a, b] and (q, v) = 0 
for all v G L\ [a, b], then q — 0 a.e. But for such q, we have (g, g) — 0 and so q — 0 a.e., 
as required. • 

PROOF OF THEOREM 1.2. We can write for x, t G [a, H 

*(*, 0 = / ° ° e^^dais), 

where a := log JC; /3 := log t G [log a, log b], and dcr(s) places a jump of Cj ais = A/, 
j ^ 0. It follows that K(x, t) is ETP(oo) in [a, b] (see [6, p. 336]). Next, K(x, t) is analytic 
for x, t G [a, fc], symmetric and if v G Li [a, b], then 

(v, v) = J2 CJ 
7=0 

[ v(t)tXjdt 
Ja 

2 

^ 0, 

so K is non-negative definite. If (v, v) = 0, we deduce that (since q > 0), 

/ v(t)tXjdt = 0, j ^ 0. 
Ja 

Then Miintz' Theorem [1] shows that this implies v = 0 a.e. iff (1.6) holds. • 

PROOF OF THEOREM 1.4. The equivalence of the density of <P and Q, is easy, and 
was essentially proved in Lemma 2.1. Noting that K is continuous in [a,b] x [c, d], 
and that Q, C ^ , it is easily seen that the density of Q and ^ are equivalent: By a 
"discretisation" argument, each g of the form (1.10) can be approximated uniformly on 
[a, b] by generalized polynomials of the form (1.1) and hence by elements of Q,. • 

PROOF OF COROLLARY 1.5. This follows since Q c % C %, for any 1 ^ p ^ 00. • 

PROOF OF THEOREM 1.6. (a) => (b). Suppose that /i is a signed Borel measure on 
[c,d] having finite total mass (that is, satisfying (1.11)). In view of duality, it suffices to 
show that if 

1 P(x) dfi(x) = 0 

for all P G 1P(A), then /i = 0. Let 

F(t) := J^ K(x, t)dyi(x\ 

and note that Fis analytic for t G [c, d] by our assumptions on K. Since F(0 = 0, t G A, 
we obtain from the analyticity of F, 

F(0 = 0, f G [c,d], 
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and hence 
f P(x)dfi(x) = 0, 

for all P e ¥. The density of T implies /x = 0. (b) =» (a). Since 2>(A) C 2>, this is 
immediate. • 
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