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A MORDELL-WEIL GROUP OF RANK 8, AND

A SUBGROUP OF FINITE INDEX

CHARLES F. SCHWARTZ

It is well known [c.f. Kas] that every elliptic surface, with geometric
genus 0, is given by a Weierstrass equation of the form

(1) / - 4x3 - Σ a^x - Σ bjuj

2=0 j=0

(relative to a suitable parameter, u, for the base) where the α's and &'s
are constants. For sufficiently general choices of α's and &'s, the Mordell-
Weil group (i.e., the group of solutions (x, y), with x and y rational
functions of u) has rank 8.

We will find, for a specific equation of this form,

(2) y2 = 4(x3 - u'x + 1),

8 solutions that generate a subgroup of index 4 in the Mordell-Weil group
of the fibration given by this equation. We do this using the Cox-Zucker
Machine. We then use this result to draw certain conclusions concerning
the general case, and to make certain conjectures.

§ 1. The algorithm of Cox and Zucker (AKA, The Cox-Zucker
Machine)

The purpose of this section is to provide, not a complete description
of the algorithm of Cox and Zucker, but rather, a brief summary of their
technique. See [I] for details.

Let E > B be an elliptic fibration with geometric genus zero let
σ0: B—>E be the zero section, i.e., the identity element of the Mordell-
Weil group; let ( , ) be the intersection product on the space of 1-cycles
on the surface, E; and let S C B be the finite set of points of B, above
which lie the singular fibers.
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20 CHARLES F. SCHWARTZ

Define a symmetric bilinear form on the Mordell-Weil group of E, by

(σiy σj} = —& — σQ, σs — σ0) — Σ L.C.F.
ses

(where L.C.F. stands for local correction factors, rational numbers which

are read from [1], table 1.19, and which depend on the components of

the fiber above s, of the Neron model, through which the sections pass).

Let ms be the number of components of multiplicity one in the fiber,

above s, of the Neron model; let N be the number of elements of the

torsion subgroup of the Mordell-Weil group; and let r be the rank of the

Mordell-Weil group.

THEOREM (COX and Zucker, [1]): {σ19 , σr} is a basis of the Mordell-

Weil group if and only if the determinant

det «σ,, σj})

equals

N*IWn..
ses

COROLLARY. {σu , σr} generates a subgroup of index k if and only if

m9.

% 2. The example f = 4(x3 - u*x + 1)

Note that the elliptic surface given by

/ = 4(x3 - u'x + 1)

may be obtained by a base extension, v = u2, from either of the surfaces

f = 4(x3 - v2x + 1) or y2 = 4(x3 - x + v3);

and each of these is of the form

(3) / = 4x3 - Q(v)x - C(v) ,

where Q(υ) and C(υ) are, respectively, quadratic and cubic polynomials

in v. We now describe a basis of the Mordell-Weil group of an elliptic

surface given by an equation of the form (3); we then show, if you have

two different surfaces of this type, which become equivalent under this

type of base extension, then the bases of the Mordell-Weil groups of

these surfaces lift to a basis of a subgroup of index 4 of the Mordell-Weil

group of the new surface.
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Let E > B be the elliptic surface given by

f = 4*3 - Q(u)x - C(u)

= Ax" - (q2u
2 + qxu + qo)x - (c3w

3 + c2u
2 + c,u + c0).

Then we can find sections of the fibration by setting x = AM -f B, and

finding A and B so that the resulting cubic,

A(Au + BY - Q(u)(Au + B) - C(u)

is a perfect square. In particular,

(4) 0 = 4A3 - q2A - c3

and

0 - (12AB2 - g i B - q0A - C l )
2

- 4(12A2J3 - q2B - qxA - c2)(4B3 - g o β - c 0 ).

In general, the first equation yields 3 distinct solutions for A; and

for each of these, the second equation yields 4 solutions for B. Let A

and Af be distinct solutions of equation (4); and let Bu B2, B3, and Bf be

numbers so that (A, BJ, (A, B2), (A, Bz) and (A', B') are distinct solutions

of the pair of equations, (4) and (5). Let σ* = (xi9 yt) be a section with

x. = Au + Biy for i = 1, 2, or 3; and let σ4 = (xA, yA) be a section with

xA = Afu + B\

LEMMA 2.1. Suppose the elliptic surface E > B is given by an equa-

tion

(3) f = 4x3 - Q(μ)x - C{u);

and suppose that the J-invariant is non-constant, and that the singular

fibers of the Neron model consist of:

6 fibers of type Iu above finite values of u; and

1 fibers of type If, above u = oo

Then {σt\i = 1, 2, 3, 4} is a basis of the Mordell-Weίl group of this surface.

Proof. Using a formula of Shioda [3], one can show that the Mordell-

Weil rank is 4.

It is easy to compute that \\ ms = A.

We prove that the torsion subgroup consists of {σ0} only, by con-

sidering the bilinear form applied to τ and itself, with τ torsion and Φ σ0.

On the one hand <r, τ) = 0; but on the other hand, τ must pass through
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some non-identity component of a singular fiber of the Neron model, and

the only non-identity components are those of fiber of type If, above

u = co. The local correction factor, from table (1.19) of [1], is 1. So

<r, τ> = - ( r - σ0, τ - σ0) - 1 = - ( - 1 - 2τ σ0 - 1) - 1,

which cannot be zero. (See [1], § 2, for details.) So

N*/U m. = 1/4 .

One next computes the matrix

({σiy σj}; 1 < i, j < 4) to be

1

0

0

0

1

0

0

0

1

±i ±i 1

The sign of (σ(, σ4> is determined by whether the sections σt and σt inter-

sect; but since the matrix is symmetric, these signs turn out to be irrele-

vant, and the determinant of the matrix is 1/4. Q.E.D.

(For the sufficiency of the hypothesis to imply the existence of the

sections σit see [2]. At any rate, it is clear that for almost all elliptic

surfaces given by equations of the form (3), the singular fibers of the

Neron model are as in the hypothesis of the lemma, and that the 12

sections described will exist and be distinct.)

Notice that if

is of the form (3), then

= 4x3 - G2(u)x -

= 4x3 - u2G2(u)x - u3G3(u)

can also be put in the form (3).

Suppose that Et —ί-> Bt and E2 JB2 are the elliptic surfaces given

by

y2 = 4x3 - Q(ϋ)x- C(v), and f = Ax" - v2Q(ϋ)x - vzC(v);

and suppose that we have bases {σ1? σ2, σ3, σ4} and {σ[, σ'2, σ'd, σ'4} for the

Mordell-Weil groups of Ex and E29 respectively, of the type described in

the lemma. Let E be the elliptic surface obtained from either Ex or E%

by the base extension, v = u2.
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THEOREM 2.2. For almost all pairs of elliptic surfaces, Ex and E29 as

above, the bases of the Mordell-Weil groups of Ex and E2 lift to a basis of

a subgroup (of index 4) of the Mordell-Weil group of E.

Proof. One can use Shioda [3] to show that the Mordell-Weil rank

of the surface E is 8.

The torsion subgroup of the Mordell-Weil group of E is seen to be

{σ0} only, since there are no non-identity components of singular fibers

of the Neron model; and each ms = 1, since all the singular fibers are

of type Ix\ so

We now find it necessary to pay a bit of attention to the details of

the form of the sections.

If Gi = (xu yt) is a section of the surface E1 of the type described in

the lemma, then xt and yt are both linear polynomials in υ. Upon the

base extension υ = u2 they both become quadratic polynomials in u, and

in addition, they are both even functions.

If βi = (x'i, y'i) is a section of the surface E2 of the type described in

the lemma, then x\ and y\ are, respectively, a quadratic (without a con-

stant term) and a cubic (without linear or constant term). Upon the

base extension v — u2, xf

t and y^ become even functions of u, of degree 4

and 6, respectively, which satisfy the equation y2 = 4x3 — u*Q(u2)x — u6C(u2);

but we can reduce this equation by dividing the coefficient of x and the

"constant" term by uκ and u\ respectively, and dividing xft and y\ by u2

and uz respectively. Then x[ is a quadratic polynomial (in u) without

linear term, and y\ is a cubic polynomials (in u) without quadratic or

constant term. In particular x\ is an even function and y\ is an odd

function of u.

Using the parity of the functions, xu yiy x , and y\y we find that the

matrix of the bilinear form looks like

2
0
0

± 1

0
2
0

± 1 ±

U

0
0
2
1

±
±
±

1
1
1
2

2
0
0

+ 1

o

0
2
0

+ 1 H

0
0
2

h 1

± 1
± 1
± 1

2
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which has determinant 16. Hence the subgroup generated by these sec-

tions has index 4 in the Mordell-Weil group. Q.E.D.

The equivocation "almost all" in the statement of the theorem arises

from the following: Let σt = (xi9 yt), and as = (x'j, y'j), with xi9 yi9 and oή

even quadratic functions, and j>̂  an odd cubic function; then the equation

xi — χJy typically has 2 distinct solutions u = ±u0; then exactly one of

the statements

{yt(u0) = y'jiuo), yl-ud = yί(-wo)}

will hold because of the parity of the functions, except in cases where

yt(uo) = y'j(ih) = yl~uo) = y%—ud = 0. These cases can arise, but I have

evidence to suggest that, in these cases, the singular fibers of the Neron

models of E1 and E2 are not as hypothesized in Lemma 2.1.

Now consider the elliptic surface given by

It can easily be checked that this surface satisfies the hypothesis of

Theorem 2.2. Then we get the following:

COROLLARY 2.3. Let c be a real root of

3c4 - 6c2 - 1 = 0 ,

and let c be an imaginary root. Then these 8 sections generate a sub-

group of the Mordell-Weil group, of index 4:

{(0, 2),

( - 1 , 2u2),

(eπi/\ 2e2πί/V),

\U , Δ),

( - 1 + cu\ Vc((3 - 3c2)u + (3c3 - 5c)u%

(_1 _ cu\ </ZI£((3 - 3c2)u + (5c - 3c3)u%

(-1 + c'u2, VF((3 - 3c/2)u + (3c/3 - δcOO),

§3. The general case

To treat the general case,

(1) / = ίx* - t a&'x - ± btu',
ΐ = 0 .7=0
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we need the following lemma.

LEMMA 3.1. The sixth degree polynomial

au6 + βu* + Tu* + δuz + εu? + ζu + η, aφO

is a perfect square, in C(u), if and only if these three polynomial equations

in the coefficients are satisfied:

64a3ε = 4β(8a2δ - β(4aϊ - β2)) + (4aϊ - β2)2

64a% = (4aϊ - β2)(8a2δ - β(4aϊ - β2))

256a*v = (8a2δ - β(4aϊ - βψ.

We now find sections of the elliptic surface given by (1) (or, at least,

we write the polynomial equations satisfied by the coefficients of certain

sections) as follows:

Suppose x = Au2 + Bu + C, i.e., the degree of x is less than 3. Then

4x* - Σ a.u'x - Σ bjU3

is a sixth degree polynomial. Applying the lemma, this is a square if

and only if the three equations (in A, B and C, with coefficients that

are polynomials in the α's and &'s) are satisfied.

Notice that the solutions in Section 2 all had deg x < 2. Then I

claim the following:

THEOREM 3.2. For almost all choices of α's and b's, the solutions with

deg x < 2 generate a subgroup of the Mordell-Weίl group (of (1)) of finite

index.

Proof. If you view A, B and C as being multivalued functions of

the α's and 6's (no longer just constants), then the 8 solutions in Section

2 are the specializations of solutions in the general case. The solutions

(in the case of variable α's and 6's) must span a subgroup of rank 8 since

they span a subgroup of rank 8 upon specialization to the case in Sec-

tion 2. But then they span a subgroup of rank 8, and hence generate a

subgroup of finite index, upon specialization, for almost all choices of

α's and 6's.

CONJECTURE. For all choices of α's and 6's (such that the J-inυariant

of the elliptic surface is non-constant), the solutions with deg x < 2 and

deg y < 3 span a subgroup of the Mordell-Weίl group of finite index.
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As nearly as we can tell, this has to be checked case by case. The
problem that may arise is that the rank spanned by the solutions of the
required type may drop, but the Mordell-Weil rank not drop, for some
specialization.

Note added in Proof. Theorem 3.2 may be strengthened to state that
the sections with deg x < 2 generate the entire Mordell-Weil group, for
almost all choices of α's and δ's.

Proof. In [4], we give an example with a basis of this type.
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