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Abstract

Site-specific weed management using open-source object detection algorithms could accurately
detect weeds in cropping systems. We investigated the use of object detection algorithms to
detect Palmer amaranth (Amaranthus palmeri S. Watson) in soybean [Glycine max (L.)
Merr.]. The objectives were to (1) develop an annotated image database of A. palmeri and soy-
bean to fine-tune object detection algorithms, (2) compare effectiveness of multiple open-
source algorithms in detecting A. palmeri, and (3) evaluate the relationship between A. palmeri
growth features and A. palmeri detection ability. Soybean field sites were established in
Manbhattan, KS, and Gypsum, KS, with natural populations of A. palmeri. A total of 1,108
and 392 images were taken aerially and at ground level, respectively, between May 27 and
July 27, 2021. After image annotation, a total of 4,492 images were selected. Annotated images
were used to fine-tune open-source faster regional convolutional (Faster R-CNN) and single-
shot detector (SSD) algorithms using a Resnet backbone, as well as the “You Only Look Once”
(YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the highest mean
average precision score of 0.77. For both A. palmeri and soybean detections within this algo-
rithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A lower
confidence threshold of 0.15 increased the likelihood of species detection, but also increased
the likelihood of false-positive detections. The trained YOLOV5 data set was used to identify
A. palmeri in a data set paired with measured growth features. Linear regression models pre-
dicted that as A. palmeri densities increased and as A. palmeri height increased, precision, recall,
and F1 scores of algorithms would decrease. We conclude that open-source algorithms such as
YOLOV5 show great potential in detecting A. palmeri in soybean-cropping systems.

Introduction

Site-specific weed management (SSWM) involves adapting weed management strategies to
match weed variation within a given field (Fernandez-Quintanilla et al. 2018). In agriculture,
weeds often grow in distinct patches rather than uniformly across a field (Maxwell and
Luschei 2005); as a result, broadcast herbicide applications often treat areas of the field where
no weeds are present. In theory, using SSWM could result in increased herbicide savings,
decreased herbicide expenses, and decreased environmental contamination (Arsenijevic et al.
2021; Barroso et al. 2004; dos Santos Ferreira et al. 2019). An additional benefit is that
SSWM could allow for the economical application of multiple herbicide mechanisms of action
(MOAs) so that more expensive chemistries could be applied only where needed. Not only
would this be less expensive for the farmer, but applications with diversified MOAs help to slow
the development of herbicide-resistant weeds (Evans et al. 2015). In modern agriculture, suc-
cessful weed control can be very difficult due to increases in herbicide-resistant weed cases, ris-
ing costs of herbicides, and shortages of crop protection products brought on by economic
consequences of the COVID-19 pandemic (Dayan 2021; Mordor Intelligence 2022). As such,
strategies such as SSWM that aim to reduce input quantities and costs could potentially benefit
farmers and contribute to the sustainability of cropping systems around the world (Bongiovanni
and Lowenberg-Deboer 2004).

The key component to SSWM involves the accurate detection of weed positions within a
given field, but the development of a robust and accurate detection system for field conditions
remains a challenge (Gao et al. 2020). One of the ways this challenge is being addressed is by
applying artificial intelligence using convolutional neural networks (CNNs). Convolutional
neural networks are a type of deep neural network that excel at pattern recognition and can
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be utilized in a variety of tasks ranging from image analysis to audio
file analysis (Albawi et al. 2017). The most common use of CNNs in
the agricultural sector involves image analysis; CNNs analyze the
textural, spectral, and spatial features of images and can extract fea-
tures unseen by the human eye (Albawi et al. 2017; Sapkota et al.
2020). Fruit counting, weed detection, disease detection, and grain
yield estimation are ways that CNNs have been used in agriculture
(Biffi et al. 2021; Hussain et al. 2020, 2021; Sivakumar et al. 2020;
Yang et al. 2019).

Two approaches to documenting and treating weeds in the field
are real-time in situ weed detection and herbicide application and
scouting and developing weed maps to guide SSWM (Cardina et al.
1997; Somerville et al. 2020). In situ weed detection involves rec-
ognizing weeds in real time and can lead to plants being treated
in a timelier manner. Platforms that have been developed to detect
weeds in situ include “smart” sprayers, autonomous weeding
robots, and unmanned aerial spraying vehicles (Sivakumar et al.
2020), most of which use some type of CNN technology. CNNs
have been shown to be accurate in tasks such as segmentation
(dividing images into regions based on pixel similarities), image
classification (assigning a label to an image based on the objects
present), and object detection (identifying objects within an
image) (Biffi et al. 2021; Sivakumar et al. 2020; Stanford 2022;
ThinkAutomation 2022). Object detection CNNs are typically at
the forefront of in situ weed detection, as there is often greater
value in detecting and localizing agricultural pests as opposed
to assigning labels to images with pests located in them (Chen
et al. 2021).

In recent years, open-source object detection algorithms
have become available, such as those from the TensorFlow
Object Detection API (Huang et al. 2017), the “You Only Look
Once” (YOLO) algorithm series (first introduced by Redmon
et al. 2016), and the Detectron algorithm series (Lin et al. 2018).
These object detectors have been used to implement a variety
of computer vision tasks, including cancer cell detection (Al
Zorgani et al. 2022), facial recognition (Mattman and Zhang
2019), underwater fish detection (Xu and Matzner 2018), and pro-
jects related to the development of self-driving vehicles (Kulkarni
et al. 2018). Open-source algorithms are typically pretrained on
very large data sets, such as the Microsoft COCO (Common
Objects in Context) data set (Lin et al. 2014). Through utilizing
a process called transfer learning, pretrained algorithm parameters
can be fine-tuned to detect custom objects. Transfer learning
involves using information learned from one object detection algo-
rithm and applying this information to identify different, yet
related, objects (Ghazi et al. 2017). This eliminates the need to train
algorithms from scratch, which is a very computationally expen-
sive and time-consuming process (Ruder 2021). Open-source algo-
rithms fine-tuned to identify agricultural crops and weeds have
been used in a variety of studies, including late-season species
detection in soybean [Glycine max (L.) Merr.] of Palmer amaranth
(Amaranthus palmeri S. Watson), waterhemp (Amaranthus tuber-
culatus (Moq.) Sauer], common lambsquarters (Chenopodium
album L.), velvetleaf (Abutilon theophrasti Medik.), and Setaria
spp. (Sivakumar et al. 2020); detection of wild radish (Raphanus
raphanistrum L.) and capeweed [Arctotheca calendula (L.)
Levyns] in barley (Hordeum vulgare L.) (Thanh Le et al. 2021);
and weed detection in a variety of crops, including lettuce
(Lactuca sativa L.) (Osorio et al. 2020), carrots (Daucus carota
L. var. sativus Hoffm.) (Ying et al. 2021), corn (Zea mays L.)
(Ahmad et al. 2021), and onions (Allium cepa L.) (Parico and
Ahamed 2020).
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For this study, we focused on detecting A. palmeri in soybean-
cropping systems using open-source object detection algorithms.
Amaranthus palmeri has been designated the most problematic
weed in the United States (WSSA 2016), and it can reduce soybean
yields by as much as 68% (Klingaman and Oliver 1994; Kumar
et al. 2021). Therefore, controlling this weed is very important
for United States soybean producers. Large numbers of training
images are necessary to train object detection algorithms to iden-
tify custom objects (Pokhrel 2020); however, nonproprietary image
databases of A. palmeri are often unavailable. In addition, even
though algorithms have been previously trained on A. palmeri
in the midwestern United States (Sivakumar et al. 2020), we did
not find many studies that investigated the relationship of model
evaluation metrics as influenced by A. palmeri growth features,
including canopy diameter, plant height, percent ground cover,
and weed density. Understanding the relationship between algo-
rithm evaluation metrics and A. palmeri growth features could
benefit precision weed applications. For example, future databases
could focus on collecting images of A. palmeri plants with growth
features best detected by the algorithm. In addition, farmers and
agricultural professionals could gain a better understanding of
which field conditions would benefit the most from deploying
these algorithms. For instance, A. palmeri infestations with large
plants and high populations may not be the best environments
to use this technology for site-specific applications.

We hypothesized that as weed diameter and height increase,
object detection algorithms will be better able to identify A. palmeri
plants; however, as A. palmeri density and ground cover increases,
ability to identify will decrease. Object detection algorithms can
have difficulty both detecting small objects (Li et al. 2017) and
detecting all object occurrences if objects are present in high
densities in an image (Sun et al. 2022). The specific objectives of
this study were (1) to develop an annotated image database of
A. palmeri and soybean with multiple weed densities and soybean
row spacings that can be used to fine-tune object detection algo-
rithms, (2) compare multiple open-source algorithms’ effective-
ness in detecting A. palmeri, and (3) evaluate the relationship
between A. palmeri growth features (diameter, height, density,
and ground cover) and A. palmeri detection ability.

Materials and Methods
Image Acquisition

To establish conditions representative of multiple A. palmeri den-
sities and soybean-cropping systems, field locations were identified
at the Kansas State University, Department of Agronomy Ashland
Bottoms Research Farm near Manhattan, KS (39.122°N, 96.635°
W) and at the Lund Research Farm near Gypsum, KS (38.797°
N, 97.448°W) in 2021. At each location, 24 plots of soybeans were
planted at a seeding rate of 331,000 seed ha™': 12 plots were planted
at 38-cm-wide row spacing, and 12 plots were planted at 76-cm-
wide row spacing; plot dimensions were 3.1-m wide and 9.1-m
long. Both field sites had a naturally occurring population of
A. palmeri that was allowed to germinate and grow with the
soybeans. These field locations allowed multiple densities of
A. palmeri to be photographed while growing among soybean in
different row spacings, providing a greater diversity of field situa-
tions to be “seen” by each algorithm.

The training database was built with 1,500 images taken of
A. palmeri only, soybean only, or both species between May 27
and July 27 (Table 1). Imagery was taken both with a TG-610
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handheld camera (OM Digital Solutions, Hachioji-City, Tokyo,
Japan), and with a DJI Inspire 1 unmanned aerial vehicle
(UAV) equipped with a Zenmuse X5R RAW camera (D]I,
Shenzhen, China). The TG-610 has a sensor size of 28 mm?,
whereas the Zenmuse X5R has a larger sensor size of 225 mm?
To increase the variability of the photographed vegetation, above-
ground altitudes at which the images were taken varied from 1.5 m
to 8 m, often with the minimum height chosen on any given day
determined by vegetation height. For example, as the plants
increased in height, it became necessary to increase the UAV flight
altitude to prevent propeller downdraft from collapsing the plants.
To add an additional source of variability, images were also col-
lected under a variety of lighting conditions.

Field-collected Data

To model algorithm evaluation metrics related to A. palmeri
growth features, plant height, canopy diameter, and density were
taken weekly between the middle rows of each plot from 1 to 4 wk
after planting (WAP) and 1 to 5 WAP for the Manhattan and
Gypsum plots, respectively. Amaranthus palmeri density was mea-
sured each week in a 0.25-m? quadrat placed at random within
these rows. A total of four height and diameter measurements were
recorded from random plants within the quadrats. Within this
study, A. palmeri height was defined as the tallest measurable struc-
ture, and diameter was defined as the widest portion of the plant
within the top 20 cm. In plots with a total of fewer than four
A. palmeri plants observed, height and diameter measurements
corresponded to the total number of observable plants. Data were
taken on A. palmeri plants after the formation of the first true leaf
and any growth stage afterward, as cotyledons proved to be too
difficult to annotate on the image data set. On these same dates,
five photos were taken within the middle of each plot with the
handheld camera, approximately 1.5 m above the canopy. Five
photos were taken to provide a representative sample of the plot,
as plots were 9.1 m in length. These images were kept separate from
the training data set and were used to evaluate algorithm perfor-
mance within each plot.

Image Processing and Data Annotation

Raw image outputs from the handheld and the Zenmuse cameras
produced images with dimensions that were too large and would
exceed processor memory capacity. To begin, every input image
was cropped to dimensions of 2,880 X 2,880 pixels to remove
the “fish-eye” effect that often accompanies aerial imagery
(Gurtner et al. 2007). Next, these images were tiled into smaller
dimensions of 1,024 X 1,024 pixels using Python 3.9.7 (Python
Software Foundation 2022) and the Pillow module (Clark 2022).
This allowed images large enough to retain features necessary
for labeling, but small enough so as to not exhaust processor
memory during training. Each input image was tiled into 20
new images of 1,024 X 1,024 pixels for a total of 30,000 images,
which allowed for more images to be added to the training data-
base. Images in which no plant features were visible or those of
poor quality were simply discarded and not labeled; in all, 4,492
images were selected for labeling.

Images were labeled using the annotation tool Labellmg
(Tzutalin 2015), which allows users to draw rectangular bounding
boxes around objects within imagery and assign classes to each
box. In many cases, the presence of multiple classes of objects
can lead to better detection results due to the presence of multiple
feature gradients (Oza and Patel 2019). Therefore, we chose to
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Table 1. Dates, number of images, platform used, and height above ground for
image collection at Manhattan and Gypsum, KS, field locations in 2021.

Manhattan
Height
above Image
Date Images  Platform®*  ground  dimensions®
no. m
May 27, 2021 35 UAV 15 A
June 1, 2021 90 UAV 0.5-1.5 A
June 9, 2021 17 UAV 2.8 A
June 14, 2021 44 UAV 2.0-3.0 A
June 15, 2021 14 HH 2 B
June 17, 2021 72 HH 1.2-15 B
June 22, 2021 150 HH 1.2-15 B
July 1, 2021 125 HH 1.2-18 B
July 8, 2021 80 HH 1.2-2.3 B
July 9, 2021 33 UAV 3.0-8.0 A
July 19, 2021 80 HH 2.3 B
July 19, 2021 61 UAV 7.0-8.0 A
July 26, 2021 40 HH 2.3 B
Gypsum
June 21, 2021 80 HH 1.2-15 B
June 29, 2021 135 HH 1.2-15 B
July 5, 2021 80 HH 1.2-18 B
July 12, 2021 90 HH 1.2-15 B
July 12, 2021 68 UAV 6.0-7.0 A
July 20, 2021 80 HH 1.8 B
July 27, 2021 82 HH 23 B
July 27, 2021 44 UAV 7.0-8.0 A

2HH, handheld Olympus TG-510 digital camera; UAV, unmanned aerial vehicle with Zenmuse
camera.
bTotal pixel dimensions per image: A = 4,608 X 3,456; B = 4,288 x 3,216.

annotate two classes for this study: A. palmeri and soybean.
Using the same methods described by Sivakumar et al. (2020),
bounding boxes were drawn over both individual and patches of
A. palmeri and soybean. In the event of irregularly shaped plants
or patches of plants, multiple bounding boxes were drawn to
encompass the entirety of the plant features. Labeling partial sec-
tions of irregularly shaped plants has been shown to be beneficial to
object detectors (Sharpe et al. 2018, 2020a; Zhuang et al. 2022), so
these irregular features were not ignored. In any given image, both
plant species could be present, so they were labeled accordingly.
Amaranthus palmeri plants were labeled at all growth stages rang-
ing from the formation of the first true leaf through inflorescence,
and soybeans were labeled from the VE-VC stage through the R2
stage (Fehr et al. 1971) (Figure 1). Amaranthus palmeri plants vis-
ible within each labeled image ranged from no plants (only soybean
labeled) to roughly 115 labeled specimens. Throughout the image
data set, soybean growth stage was homogeneous on each plant
date, but A. palmeri could have multiple growth stages visible
due to its ability to emerge throughout the growing season (Jha
and Norsworthy 2009; Shyam et al. 2021). Figure 2 illustrates
the image labeling process.

The images that were selected for labeling contained a total of
10,494 and 10,312 A. palmeri and soybean annotations across all
growth stages, respectively. The data set was then divided into
90% training and 10% test images, used to train and evaluate
the algorithms, respectively. The training and test data sets con-
sisted of 4,042 and 450 images, respectively. The aforementioned
images taken over the plots for analysis of A. palmeri growth fea-
tures and algorithm evaluation metrics were not included in the
training or testing data sets but were kept separate for further
analysis.
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Figure 2. lIllustration of the annotation process. Amaranthus palmeri and soybean plants are labeled in this figure with orange and white boxes, respectively. Bounding boxes
overlap with neighboring bounding boxes when plant features are irregular. In cases where a single bounding box could not encompass a plant without including a plant of
another species, multiple irregular bounding boxes were drawn on a single specimen.

Algorithm Selection algorithms are a modern development of what are called regional-

Three open-source algorithm architectures were used in this study: based CNNs, first P roposed. by G.irshick et al. (2014). This
faster regional convolutional neural network (Faster R-CNN), sin- approach was revolutionary, in that it W?S one of the first lar.ge-
gle-shot detector (SSD), and two YOLO algorithms. Faster R-CNN scale successful approaches to addressing the task of object

https://doi.org/10.1017/wsc.2022.53 Published online by Cambridge University Press
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Table 2. Training information and hyperparameters used in this study.

Architecture? Backbone model Batch size Training interval Initial learning rate Learning rate policy
Faster R-CNN ResNet-50 2 100,000 steps 0.01 Cosine decay
Faster R-CNN ResNet-101 2 100,000 steps 0.0001 Cosine decay
Faster R-CNN ResNet-152 1 100,000 steps 0.0001 Cosine decay
Faster R-CNN Inception ResNet-V2 1 182,500 steps 0.001 Cosine decay
SSD ResNet-50 4 100,000 steps 0.001 Cosine decay
SSD ResNet-152 1 100,000 steps 0.0001 Cosine decay
YOLOv4 CSPDarknet53 1 6,000 iterations 0.001 Cosine decay
YOLOV5 CSPDarknet53 4 41 epochs 0.01 Cosine decay

2Faster R-CNN, faster regional convolutional neural network; SSD, single-shot detector; YOLO, “You Only Look Once.”

localization and detection (Balasubramanian 2021). As input
images are fed into the algorithm, areas of interest based on groups
of pixels are extracted from the image and fed into the neural net-
work (Oinar 2021). The architecture has been updated with the
development of Fast R-CNN in 2015 (Girshick 2015) and finally
with Faster R-CNN in 2016 (Ren et al. 2017), with each version
being faster in detection speed than the previous. Faster R-CNN
is known as a two-stage object detector, in that it first extracts
regions of interest where it is likely that the objects will be and then
classifies these regions of interest (Du et al. 2020). Consequently,
Faster R-CNN is known to perform better in terms of detection
accuracy but has slower detection speeds (Sivakumar et al. 2020).

SSD and YOLO algorithms were proposed by Liu et al. (2016)
and Redmon et al. (2016), respectively. Considered single-stage
object detectors, they are generally faster and less computationally
expensive than Faster R-CNN algorithms (Liu et al. 2016), allowing
for faster detection and suitable for real-time detection applica-
tions. Instead of extracting regions of interest as R-CNN algo-
rithms do, they accomplish object localization and classification
in one forward pass of the neural network (Forson 2017). As in
Sivakumar et al. (2020), Faster R-CNN was chosen for this project
due to its detection performance, whereas SSD and YOLO algo-
rithms were chosen due to their inference speeds.

The backbone models refer to the specific neural networks
behind the architectures and allow for feature extraction from
the input image (Shimao 2019). These networks are interchange-
able, with multiple networks able to be used as backbone models
(Li et al. 2020). For this study, the Faster R-CNN architecture
backed with the ResNet (He et al. 2016) network was chosen with
multiple layers, including ResNet-50, ResNet-101, ResNet-152,
and Inception ResNet-V2 (Szegedy et al. 2017). Additionally,
ResNet-50 and ResNet-152 were also chosen as backbone models
for the SSD architecture.

For the YOLO algorithms, YOLOv4 (Bochkovskiy et al. 2020)
and YOLOV5 (Jocher et al. 2020) were used, both running on the
Cross Stage Partial (CSP) Darknet53 (Bochkovskiy et al. 2020) net-
work. YOLOV5 also implements a Path Aggregation Network,
allowing for both increased propagation of lower-level features
and improvements in using localization signals (Carlos and
Ulson 2021). This allows for an increase in accuracy when localiz-
ing an object (Carlos and Ulson 2021). Additionally, the YOLOv5
algorithm consists of four releases: YOLOv5s, YOLOv5m, YOLOVSI,
and YOLOv5x (ultralytics 2022b). YOLOv5x was chosen for this
experiment, as it is considered the most accurate object detector
of the four (Carlos and Ulson 2021). Both YOLO algorithms were
obtained from their respective GitHub repositories (Alexey 2022;
Jocher 2022a). YOLO algorithms down-sample input images by a
factor of 32 when training (Hui 2018), so input images with width
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and height dimensions divisible by 32 are necessary. Our input
image dimensions of 1,024 X 1,024 pixels fit this criterion. All
Faster R-CNN and SSD algorithms were obtained from the
TensorFlow 2 Detection Model Zoo (TensorFlow 2021); the
respective algorithms with input dimension requirements of
1,024 x 1,024 pixels were chosen. All YOLO and TensorFlow mod-
els selected were pretrained, thus eliminating the need to train from
scratch (Ruder 2021).

Training

All algorithms were trained on a virtual Ubuntu 18.04 computer
available on Paperspace, a virtual machine learning platform
(Paperspace Cloud Computing, https://www.paperspace.com).
The computer was equipped with an Intel® Xeon® E5-2623 v4 proc-
essor (Intel Technologies, Santa Clara, CA, USA) equipped with 16
CPU cores and 60 GB of RAM. To increase training speed, training
was done utilizing a NVIDIA P6000 Graphics Processing Unit
(GPU) with 24 GB of RAM (NVIDIA, Santa Clara, CA, USA).

For all algorithms, the default training hyperparameters were
accepted, except for the learning rates for both the TensorFlow
algorithms and batch sizes for all algorithms. As algorithm loss
was monitored during training, learning rate had to be lowered
below default settings for most Faster R-CNN and SSD algorithms
due to an issue with exploding gradients. When doing so, we also
lowered the warm-up learning rate to a value below the learning rate
to avoid errors during training. As input images were large, batch
sizes were reduced to prevent exhausting the GPU’s memory capac-
ity. Larger batch sizes were possible with smaller algorithms (i.e.,
Faster R-CNN ResNet-52 and Faster R-CNN ResNet-101), but
batch sizes had to be reduced for larger algorithms (i.e., Faster R-
CNN Inception ResNet-V2) to avoid the ResourceExhaustedError
(TensorFlow 2017) indicating that the GPU was out of memory.
Because batch size has been said to not be a significant factor in
affecting algorithm performance (Ghazi et al. 2017), we did not
expect this to affect the outcome of our algorithms. Algorithm train-
ing information is presented in Table 2.

During the image annotation process, all annotations were
saved in Pascal VOC format. Pascal VOC format is compatible
with TensorFlow algorithms, but not with YOLO algorithms.
Therefore, before training the YOLO algorithms, copies of the
annotations were saved in a separate folder and converted to
YOLO format using Python 3.9.7. The script that was used can
be obtained on the Convert PascalVOC Annotations to YOLO
GitHub website (vdalv 2017).

All algorithms were trained for the default 100,000 steps, except
for the Faster R-CNN Inception Resnet-V2, YOLOv4, and
YOLOV5 algorithms. The default number of training steps for
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Annotated bounding box

Computer prediction

loU =

Annotated bounding box

Computer prediction

Figure 3. Intersection over union (loU) equation, defined as the overlap between the ground truth annotation and the computer prediction bounding box, divided by the total
area of the two bounding boxes. loU overlaps greater than 0.5 were considered true-positive predictions, whereas overlaps less than 0.5 were considered false-positive predictions.

mAP @ 0.5 Comparisons

YOLOv5
YOLOv4 -

SSD ResNet50
SSD ResNet152

Faster R-CNN ResNet50-

Algorithm

Faster R-CNN ResNet152 -
Faster R-CNN ResNet101

Faster R-CNN Inception ResNet (V2)

0.00 0.25 050 0.75
mAP @ 0.5

Figure 4. Mean average precision (mAP) results of each model after training. YOLOV5
was considered the best-performing algorithm of each tested model with a mAP
of 0.77.

the Faster R-CNN Inception ResNet-V2 algorithm is 200,000, but
upon monitoring the loss, it was determined that no further
increases in algorithm training were being made, and training
was terminated early. YOLOV4 training involves iterations, thereby
defining a batch size before training and an iteration as complete
when the algorithm has processed the number of images specified
in the batch size. Finally, YOLOV5 output metrics were reported
after each completed epoch, which is defined as one iteration
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YOLOVS mAP @ 0.5

0 10 20 30 40
Epoch

Figure 5. Change in mean average precision (mAP) @ 0.5 over each epoch during
training. mAP was reported after the completion of each epoch. Training was termi-
nated after visual inspection of curve and when mAP @ 0.5 curve was seen to
“plateau.”

through the entire training data set (Brownlee 2018). Upon view-
ing an output of the evaluation metrics for each epoch, we termi-
nated algorithm training after 41 epochs, and the best weights were
automatically saved for analysis.
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Figure 6. Precision-recall curve for YOLOV5. Amaranthus palmeri achieved a slightly higher average precision (AP) (0.788) than soybean. Solid blue line represents mean
average precision (MAP) computed on the test data set. The AP for each class and the mAP for the overall algorithm were representative of the area of the graph under each

respective curve.

Image augmentation is an important aspect of model train-
ing, as it allows for a more comprehensive set of images to be
passed through the algorithm and reduce overfitting (Shorten
and Khoshgoftaar 2019). Each of the algorithms contained code
to automatically augment images during algorithm training,
according to each algorithm’s default settings. The Faster R-
CNN architecture augmentations included random horizontal
flips, hue adjustments, contrast adjustments, saturation adjust-
ments, and random image cropping. The SSD architectures used
random horizontal flips and random image cropping augmen-
tations. For the YOLO algorithms, the YOLOv4 augmentations
included random image saturation, exposure, and hue adjust-
ments (Alexey 2020). Finally, the YOLOv5 model used random
mosaicking. This process involves combining an input image
with three random images from the training data set. The
new mosaic is then passed through the algorithm for training
(Jocher 2022b).

Algorithm Evaluation and Statistical Analysis

To measure overall performance of the algorithms, the metrics of
precision, recall, and F1 score were computed for the test data set
(Shung 2018). Using an intersect over union (IoU) threshold of 0.5
(50%) between the annotated objects and the predicted bounding
boxes (Henderson and Ferrari 2017), true-positive (TP) and false-
positive (FP) detections are determined. IoU is defined as the over-
lap between the ground truth bounding boxes drawn during anno-
tation and the predicted bounding box determined by the
computer (Jin et al. 2022), divided by the total area of each bound-
ing box (Figure 3). IoU values greater than or equal to 0.5 were
considered TP, and values less than 0.5 were considered FP predic-
tions (Henderson and Ferrari 2017).

https://doi.org/10.1017/wsc.2022.53 Published online by Cambridge University Press

Precision is the ratio between the number of TP predictions and
the total number of positive predictions, with the lowest value
being 0 and the highest value being 1 (Hussain et al. 2021).
Precision is reduced when an algorithm makes many incorrectly
positive, or FP, predictions or a low number of TP predictions
but is increased by larger numbers of correct predictions and
low FP detections (Gad 2021). Precision was computed with the
following equation:

TP

— 1
TP + FP 1]

Precision =

Recall, also referred to as the TP rate (Hussain et al. 2021), is a mea-
sure of how well a given algorithm identifies TP predictions
(Huilgol 2020). Also ranging from 0 to 1, a higher recall indicates
better TP predictions. Recall was computed as follows:

Recall = — % 2]
TP EN

where FN denotes false-negative detections.

The F1 score is the harmonic mean between precision and recall
(Zhong et al. 2019), with the best score being 1 and the worst being
0 (Hussain et al. 2021). It was calculated as:

Precision X recall
Fl=2x ——— (3]
Precision + recall

The average precision (AP) for each class is determined by graph-
ing a precision-recall curve for each test image for both classes and
computing the area beneath each curve (Henderson and Ferrari
2017). The AP is then used to find the mean AP (mAP) of the
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Figure 7. Image annotation of soybean at the R2 growth stage. As soybean populations were much higher than Amaranthus palmeri populations, there was a high level of
soybean overlap. Therefore, it was necessary to include multiple soybean plants in each image. However, A. palmeri plants typically did not have as much overlap, and in most

cases, it was much easier to identify and label individual plants.

algorithm, which was calculated from an IoU threshold of 0.5 in
this study using the following equation (Jin et al. 2022):

N AP
mAP = &5— (4]

where N corresponds to the total number of object classes. Values
for mAP range from 0 to 1, with higher values corresponding to
larger areas beneath the curve. For this study, the algorithm with
the largest mAP was selected to analyze the model evaluation met-
rics for the photos taken above the individual plots.

For each measurement date, an average for each plot was deter-
mined for all field-collected data (A. palmeri height, diameter, and
density). Amaranthus palmeri coverage was computed by multi-
plying the average canopy area by the average density per plot,
assuming a circular shape:

T = 7nr’n [5]

where T is the average total A. palmeri coverage (m?), r is the
average A. palmeri radius (m), and # is the average weed density
(plants m™2).

Each test image taken over the plots was passed through the
best-performing algorithm, and precision, recall, and F1 scores
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were generated. Each evaluation metric was averaged within its
respective plot. Statistical analysis was done using R v. 4.1.2 (R
Core Team 2021). Regression models (see “Results and
Discussion” section) were used to test whether field-measured data
(A. palmeri density, height, and coverage) significantly predicted
algorithm evaluation metrics. Data were combined over all collec-
tion dates and locations for this analysis, as regression assumptions
were checked visually for each location and were determined to
meet all assumptions (data not shown) (Osborne and Waters
2002). Best regression models were selected based on the Akaike
information criterion (AIC) values, such that the model with the
lowest AIC value was selected for each evaluation metric. AIC val-
ues and weights (indicating the total predicative power among all
tested models) were found using the AICCMODAVG package in R
(Mazerolle 2020). Density and coverage were found to be highly
collinear (data not shown), so these variables were never included
in the same model together.

Results and Discussion
Algorithm Comparison

The results of algorithm training are presented in Figure 4. After
training, it was shown that YOLOV5 achieved the highest overall
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Figure 8. F1 scores for YOLOV5 indicating the harmonic mean between precision and recall scores. Data indicated that detection results for both species would be best at a

confidence threshold of 0.298.

s

Figure 9. YOLOV5 detection results for Amaranthus palmeri and soybean using confidence thresholds of 0.15 (A) and 0.70 (B). The likelihood of false-negative (FN) detections
increases as confidence thresholds increase, as can be seen in B. Objects assigned a confidence interval of less than 0.70 are not detected in B. FN A. palmeri and soybean

detections in B are indicated by the orange and white arrows, respectively.

mAP value of 0.77. YOLOv4 and Faster R-CNN ResNet50 both
achieved acceptable results with mAP values of 0.70, followed by
SSD ResNet152 and Faster R-CNN Inception ResNet(v2) with val-
ues of 0.68. In most cases, the mAP values for the single-stage
detectors (YOLO and SSD) on this data set were equal or superior
to those of the two-stage detectors. Faster R-CNN models are gen-
erally considered accurate object detectors (Sivakumar et al. 2020),
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but they can be sensitive to background noise and often have dif-
ficulty detecting small objects (Amin and Galasso 2017; Roh and
Lee 2017). Our test data set contained images of multiple
A. palmeri and soybean growth stages, including very small plants
of both species. This could explain why the single-stage object
detectors often outperformed the Faster R-CNN models in this
study. Additionally, we were not surprised to see the higher
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Figure 10. Detection results for YOLOV5 with a confidence interval of 0.15. False-pos-
itive detections of Mollugo verticillata and Abutilon theophrasti as Amaranthus palmeri
are denoted by arrows pointing from “A” and “B,” respectively.

performances of YOLOv4 and YOLOV5 algorithms, as previous
versions of YOLO have been reported to detect weeds faster than
Faster R-CNN algorithms and with greater accuracy than SSD
algorithms (Ahmad et al. 2021). Given these results, YOLOvV5
was selected for further analysis.

The YOLOVS5 algorithm in this study was trained for 41 epochs
(Figure 5), taking approximately 15 h to complete. Training
was monitored based on the changes in mAP per epoch.
Algorithm training was terminated after mAP values were seen
to “plateau,” thus indicating no further meaningful gains in
algorithm performance were expected. During training,
YOLOV5 saved the best-performing weights, which were used
to compute all further algorithm evaluations. In the preci-
sion-recall curve for YOLOvV5 (Figure 6), the AP of A. palmeri
(0.788) is greater than that of soybean (0.756), indicating that
detection was slightly better for A. palmeri than for soybean.
This could be related to differences in the way that the species
were annotated. As soybean increased in size, larger bounding
boxes were drawn over multiple plants, as there was a high level
of overlap between individual plants (Figure 7). Separating out
the individual plants would have been both difficult and time-
consuming. On the other hand, although there were some over-
laps observed with A. palmeri, these were much less pronounced
and allowed for more individual weed plants to be annotated.
Therefore, individual A. palmeri plants were presumably easier
for the YOLOV5 algorithm to identify.

When using YOLOVS5 for detection, users can specify a confi-
dence threshold as an input parameter to the detection script
(ultralytics 2022a). This confidence threshold acts to limit the
number of FP scores displayed in the final prediction (Wenkel
et al. 2021). In our algorithm, lower confidence thresholds
increased the likelihood of detecting either an A. palmeri or
soybean plant, but the FP detection rates increased as a result.
Figure 8 illustrates the F1 scores calculated on the test image data
set. Interpretation of Figure 8 indicates that at a confidence thresh-
old of 0.298, the highest F1 score (0.72) was achieved for both
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classes. This indicates that at this threshold, both precision and
recall will be optimized for best detection results. As this confi-
dence threshold is a recommended value, users still have the option
to set the threshold to a value of their choosing.

There were differences between detections using lower (0.15)
and higher (0.70) confidence thresholds (Figure 9). With multiple
objects present in this image, YOLOv5 confidence in object detec-
tions ranged from low (0.36) to high (0.86); values are displayed
immediately following the class prediction on each box. If this
algorithm were to be used by a precision ground sprayer or a sim-
ilar platform, we propose that using a lower confidence threshold
would result in more A. palmeri plants being identified and treated.
Consequently, the likelihood of soybean being incorrectly detected
as A. palmeri would increase, but in soybean-cropping systems
with herbicide-tolerant traits, this would not result in crop damage,
assuming all current labels for such applications were followed. An
increase in A. palmeri FP detections would likely lead to more her-
bicide being applied to the field. Interestingly, A. palmeri FP detec-
tions were not just limited to soybean; other broadleaf weeds such
as carpetweed (Mollugo verticillata L.) and A. theophrasti were
sometimes detected as A. palmeri with lower confidence intervals
(Figure 10). This suggests that some weeds with features similar to
A. palmeri plants would be sprayed if confidence intervals were
lowered upon deployment. Regardless, further research is needed
to determine which threshold would be optimal to reduce the vol-
ume of herbicides applied, while still achieving acceptable weed
control.

Modeling YOLOv5 Evaluation Metrics

Only data for the A. palmeri class were used to model A. palmeri
physical characteristics in relation to YOLOV5 evaluation metrics.
For all regression models analyzed, the model P-values were sig-
nificant, indicating that all ground-measured variables affected
the evaluation metrics (Table 3). However, it was determined that
model 5, which included the main effects and interaction effect of
A. palmeri density and height, was the model that best fit the data.
For precision, recall, and the F1 score, the model carried 72%, 86%,
and 91% of the weights from the models that were compared,
respectively. Therefore, this model was selected to describe the
relationship between model evaluation metrics for density and
height.

For all evaluation metrics analyzed with model 5, the interac-
tion coefficient for density and height was significant (P = 0.049,
0.016, and 0.010 for precision, recall, and F1 score, respectively)
(Table 4). As smaller weeds are generally more susceptible to con-
trol (Kieloch and Domaradzki 2011), we chose to model our results
with four heights representing A. palmeri plants at early growth
stages. The results of these predictions by the YOLOV5 algorithm
indicated that smaller, younger A. palmeri plants growing at
lower densities were detected better than taller plants (Figure 11).
The results were as anticipated for density, but the prediction sug-
gesting that YOLOV5 detection ability was greater for smaller
plants was surprising, as species identification is often easier
on larger plants with distinctive features. This may have been
because there were a greater number of A. palmeri annotations
of younger, smaller plants as opposed to larger, more mature
plants. Additionally, larger plants have canopies that overlap
with each other, making it difficult to distinguish and label large
individual plants. Regardless, these predictions were encourag-
ing, as algorithms that can detect smaller weeds are of more
practical use, because weeds can be controlled much more easily
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Table 3. Regression models used to evaluate the effect of Amaranthus palmeri morphological parameters on model evaluation metrics and Akaike information
criterion (AIC) used for model selection to detect A. palmeri. Bold type indicates that model 5 best fit the data.

Precision Recall F1 score
Model? AIC AIC WtP P-value AIC AIC WtP P-value AlC AIC WtP P-value
Yem = Po + Prx1 1 —259.20 0 <0.0001 —304.63 0 <0.0001 —288.34 0 <0.0001
Yem = Bo + P2X2 2 —302.64 0 <0.0001 —247.97 0 <0.0001 —292.20 0 <0.0001
Yem = Po + Paxz 3 —263.21 0 <0.0001 —268.37 0 <0.0001 —-278.33 0 <0.0001
Yem = Bo + BrX1 + B 4 —337 0.28 <0.0001 —331.98 0.12 <0.0001 —349.93 0.09 <0.0001
Yem = Bo + P1Xa + PaXa + PaXaXy 5 —338.9 0.72 <0.0001 —335.9 0.86 <0.0001 —354.57 0.91 <0.0001
Yem = Bo + BoXa + Baxs 6 —315.60 0 <0.0001 —275.43 0 <0.0001 —311.39 0 <0.0001
Yem = Bo + BoXa + Baxz + Bsxoxs 7 —316.5 0 <0.0001 —274.68 0 <0.0001 —-312.58 0 <0.0001
Yem = Po + BrX1 + Bexs? 8 —260.90 0 <0.0001 —327.38 0.01 <0.0001 —296.14 0 <0.0001
Yem = Po + BaXa + Prxa? 9 —301.82 0 <0.0001 —246.06 0 0.0001 —291.60 0 <0.0001
Yem = Po + Paxs + Pexs’ 10 —286.87 0 <0.0001 —283.37 0 <0.0001 —298.05 0 <0.0001
Yem = Bo + Bolog(xy) 11 —256.02 0 <0.0001 —285.07 0 <0.0001 —278.61 0 <0.0001
Yem = Po + Prolog(xz) 12 —256.03 0 <0.0001 —241.07 0 0.0009 —264.51 0 <0.0001
Yem = Bo + Br1log(x3) 13 —262.75 0 <0.0001 —269.19 0 <0.0001 —281.14 0 <0.0001

2 yem = evaluation metric (precision, recall, F1 score), x; denotes density (plants m~2), x, denotes height (cm), and x; denotes coverage (m?). B, intercept; p,, coefficient for A. palmeri density
(plants m™2); B,, coefficient for height (cm); B, coefficient for coverage (m?); B4, interaction coefficient for density and height; s, interaction coefficient for height and coverage; pg, coefficient for
the square of density; B, coefficient for the square of height; Bs, coefficient for the square of coverage; po, coefficient for the log of density; B0, coefficient for the log of height; p1, coefficient for
the log of coverage.

b AIC weight, indicating the total predictive power among all tested models.

Table 4. Linear regression results (model 5) for Amaranthus palmeri density (plants m=2) and height (cm) regressed against model evaluation metrics.

Parameter estimates?

Evaluation metric Density Height Density x height R? RMSE® P-value
Precision —8.6 X 1074** —3.4 x 1073*** 1.1 x 1075 0.42 0.10 <0.0001
Recall —1.3 x 1073*** —2.2 x 1073*** 1.4 x 107°* 0.43 0.10 <0.0001
F1 score —1.1 x 1073*** —3.0 X 1073*** 1.4 x 107 0.44 0.10 <0.0001

2 Significant at: *P < 0.05; ***P < 0.001.
b RMSE, root mean-square error.

(A) when they are younger and smaller in size (Naghashzadeh and
- Beyranvand 2015).

In relation to weed density affecting algorithm performance,

g el our study conflicts with Yu et al. (2020), in that they found that

Ll images with higher weed densities generally led to better algorithm

0.83 detection results than those with lower weed densities. However,

0824 the study by Yu et al. (2020) utilizes image classification rather than
object detection. Rather than localizing the weeds within the image,
the entire input image was classified with the weed species that
were visible. Image classification for weed detection comes with
some disadvantages, however, as the location of individual weeds
Zem was not provided, and multiple weed species within an image were
not able to be detected (Ahmad et al. 2021). With object detection
. algorithms, object localization within the image allows for weeds to
0.881 - be located and controlled where they occur. However, we hypoth-

0.921 Amaranthus palmeri height

Recall

0.90+

0 10 20 30 esize that this application is best suited for postemergence applica-

© tions (in the case of using precision herbicide application
0.891 o : . :

technology) where weed density is relatively low. Fields with very

. — high weed densities would likely not benefit from a site-specific

e herbicide application, as the volume of herbicide needed for con-

T 0891 trol would likely not be statistically different from a whole-field

0.85

- broadcast application. Further research is needed to determine

0.841 the optimum weed density beyond which precision weed control
0 10 20 30 has no economic or environmental benefits.
Amaranthus palmeri density (plants m) The overall precision, recall, and F1 scores computed for the

Figure 11. YOLOVS precision (A), recall (B), and F1 score (C) changes as a function of
Amaranthus palmeri density (plants m=2).
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450 images in the test data set were 0.71, 0.70, and 0.71, respectively
(data not shown). A precision of 0.71 indicates that the YOLOv5
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algorithm was 71% accurate in successfully predicting A. palmeri
and soybeans. Likewise, a recall of 0.70 indicates that the algorithm
correctly predicted 70% of the plants belonging to either class (Jin
et al. 2022). These results were lower than previously reported
by other YOLO weed detectors (Jin et al. 2022; Zhuang et al.
2022). However, our “test” data set consisted of images randomly
selected from the large-input database and had a variety of
A. palmeri growth stages and population densities. When evaluat-
ing YOLOV5 evaluation metrics on images taken within the plots
with lower A. palmeri densities and shorter plant heights, the algo-
rithm precision, recall, and F1 scores greatly improved. Based on
the regression model fit to the data, A. palmeri plants 2-cm tall and
growing at a density of 1 plant m™2 would be detected with preci-
sion, recall, and F1 scores of 0.87, 0.93, and 0.89, respectively.

YOLO algorithms have been used previously for weed detec-
tion. Ahmad et al. (2021) achieved an overall mAP score of
0.543 when using YOLOv3 (Redmon and Farhadi 2018) to detect
redroot pigweed (Amaranthus retroflexus L.), giant ragweed
(Ambrosia trifida L.), common cocklebur (Xanthium strumarium
L.), and green foxtail [Setaria viridis (L.) P. Beauv.]. Hussain et al.
(2020) developed an in situ sprayer using both YOLOv3 and
YOLOvV3-tiny (Adarsh et al. 2020) as backbone algorithms to
detect C. album, achieving mAP scores of 0.932 and 0.782, respec-
tively. Sharpe et al. (2020b) achieved good detection results when
training the YOLOv3 algorithm to identify general classes of
grasses, broadleaves, and sedge species; further, they found that
including multiple classes (as opposed to a single class) in their
algorithm increased precision, recall, and F1 metrics. Hu et al.
(2021) used YOLOv3 and YOLOV4 to detect 12 different weed spe-
cies common to rice (Oryza sativa L.) and found that YOLOv4
achieved a mAP score that was 0.116 higher than YOLOv3. Our
best mAP score was slightly lower than some of these YOLO weed
detectors; however, it must be mentioned that this data set was col-
lected with multiple cameras covering a variety of A. palmeri den-
sities and growth stages. Data sets such as those collected by Jin
et al. (2022) and Zhuang et al. (2022) consisted of a handheld cam-
era taking multiple images at a consistent height. In this study, we
collected imagery ranging from 1.5 m to 8 m above ground level.
While many data sets collected consist of “ideal” specimens includ-
ing plants grown in greenhouses or photos of individual plants, our
data set was based on what a field sprayer or application UAV
would observe in the field. As a result, during the labeling process,
several overlapping bounding boxes had to be drawn, and it was
impossible for each image to contain labels for individual plants.

In conclusion, this research demonstrated that YOLOV5, a free
and open-source object detection algorithm, can detect A. palmeri
in soybean-cropping systems. As site-specific herbicide applica-
tions become more widespread due to the potential for herbicide
savings and environmental benefits, open-source algorithms such
as YOLOV5 could enable increased development and adoption of
precision weed detectors. Furthermore, this research suggests that
our algorithm may be better at detecting smaller as opposed to
larger A. palmeri plants. Upon further refinement and training
of the algorithm, it may be of great use to growers, as smaller weeds
are much more susceptible to control than larger ones.

Future research and improvements to our model will include
adding more images to the data set. We included different imagery
heights in this study to create a data set that could be utilized by
multiple precision agriculture platforms such as precision ground
sprayers and pesticide application UAVs. In the future,
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construction of specialized data sets that consist of imagery for
each type of platform would be collected. For instance, imagery
collected to train an algorithm for a precision ground sprayer
should be at a height consistent with the sensors on the sprayer
itself, that is, 60 cm above the target canopy. In this experiment,
we trained the object detectors to identify two species (A. palmeri
and soybean), and a future goal is to expand the number of weed
species that can be detected by the YOLOv5 model. An increase in
both the number of images and number of annotated weed species
in these specialized data sets would increase the mAP of the
YOLOVS5 algorithm and reduce errors in object detection (Linn
et al. 2019). Equal distribution of annotations among species is
important when collecting these images. With further improve-
ments to the algorithm, field tests will need to be carried out to both
optimize weed detection and to treat weeds in real time using a pre-
cision ground sprayer with high-resolution cameras oriented close
to plant canopies.
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