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SUMMARY

Recurrent epidemics of influenza are observed seasonally around the world with considerable

health and economic consequences. A key quantity for the control of infectious diseases is the

reproduction number, which measures the transmissibility of a pathogen and determines the

magnitude of public health interventions necessary to control epidemics. Here we applied a simple

epidemic model to weekly indicators of influenza mortality to estimate the reproduction numbers

of seasonal influenza epidemics spanning three decades in the United States, France, and Australia.

We found similar distributions of reproduction number estimates in the three countries, with

mean value 1.3 and important year-to-year variability (range 0.9–2.1). Estimates derived from

two different mortality indicators (pneumonia and influenza excess deaths and influenza-specific

deaths) were in close agreement for the United States (correlation=0.61, P<0.001) and France

(correlation=0.79, P<0.001), but not Australia. Interestingly, high prevalence of A/H3N2

influenza viruses was associated with high transmission seasons (P=0.006), while B viruses were

more prevalent in low transmission seasons (P=0.004). The current vaccination strategy targeted

at people at highest risk of severe disease outcome is suboptimal because current vaccines are

poorly immunogenic in these population groups. Our results suggest that interrupting

transmission of seasonal influenza would require a relatively high vaccination coverage (>60%)

in healthy individuals who respond well to vaccine, in addition to periodic re-vaccination due to

evolving viral antigens and waning population immunity.

INTRODUCTION

Annual influenza epidemics are observed worldwide

with substantial morbidity and mortality impact.

In the United States, between 5% and 20% of the

population become sick with influenza every year, and

36 000 people on average die from complications

of the disease, often following a secondary bacterial

infection [1, 2]. The overall economic burden of

influenza in the United States alone has been esti-

mated at more than 11 billion dollars annually [3].

Influenza hasmarked seasonal patterns in temperate

areas of the world, where large and intense outbreaks

occur once a year in wintertime, followed by fade-out

periods in warmer months where no influenza activity

is detected. The influenza virus is able to persist in

populations through continuous evolution in the

form of point mutations in the virus antigenic struc-

ture [4]. Major changes in the virus composition can

give rise to pandemics, which are major global epi-

demics that can cause dramatic morbidity and mor-

tality rates. There are currently three influenza
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(sub)types co-circulating in humans (A/H3N2,

A/H1N1 and B) [4].

An important quantity for disease control is the

basic reproduction number (R0), which represents the

number of secondary cases generated by a primary

case during the infectious period, in an entirely sus-

ceptible population [5, 6]. This quantity is a measure

of the transmissibility of a pathogen and can help

determine the intensity of interventions necessary to

control an outbreak [5]. If R0>1 then an epidemic

may occur, while transmission cannot be sustained

when R0<1.

The reproduction number is a central quantity to

evaluate whether disease control is possible, in par-

ticular when a vaccine is available. Large-scale influ-

enza vaccination programmes have been established

in developed countries since the early 1980s, and are

now starting in developing countries [7]. Despite

widespread vaccine use, there are indications that the

current annual vaccination strategy is not optimal for

reducing influenza mortality burden [8]. Vaccination

is targeted at people at high risk of severe disease

outcome, i.e. the elderly and those with chronic con-

ditions, for whom influenza vaccines may be less

immunogenic [9]. A key issue today is whether annual

immunization of high transmitter groups, in particular

children, could achieve herd immunity and interrupt

seasonal transmission [10]. Estimates of the trans-

missibility of seasonal influenza epidemics are necess-

ary to evaluate whether this is feasible and hence

refine existing control strategies.

Past studies have estimated the reproduction num-

ber of individual influenza seasons, in particular for

pandemics [11–19]. However, no study has yet re-

ported estimates of the reproduction number for sev-

eral countries and consecutive influenza seasons in

the inter-pandemic period, where a fraction of the

population is immune due to previous influenza ex-

posure or vaccination. Considering multiple epi-

demics occurring in different years and locations is

important to capture the year-to-year variability of

influenza epidemics [20], as well as their potential

geographical heterogeneities [19, 21, 22]. Here, we

apply a simple epidemic model to weekly indicators of

influenza-related mortality in the United States,

France, and Australia. We estimate the reproduction

number of seasonal epidemics spanning three decades

in these countries, and explore the relationship be-

tween reproduction number and viral prevalence. We

then use our reproduction number estimates to

discuss whether interrupting transmission of seasonal

influenza by vaccination is feasible, given the efficacy

of currently available vaccines.

MATERIALS AND METHODS

Demographic and epidemiological data

General approach

Assessment of the transmission patterns in influenza

epidemics is not straightforward because of lack of

reliable morbidity data, due to non-specific clinical

symptoms and infrequent confirmation by laboratory

tests [2, 23]. Alternatively, influenza-related mortality

is considered a good indicator of disease patterns,

albeit with some caveats. The severe complications

triggered by influenza infection, such as bacterial

pneumonia, are often diagnosed after the virus has

been cleared [2, 24]. Many influenza-related deaths

are therefore not coded as influenza but rather as

underlying respiratory or chronic conditions. The

traditional way to assess influenza activity patterns

is to calculate ‘excess mortality’ from broad death

categories, as the mortality in winter seasons in excess

of a non-epidemic baseline. Excess deaths from

pneumonia and influenza (P&I) have been shown in

several studies to be a reliable and specific endpoint

for studying timing and amplitude of influenza-

related mortality, both at the local and national scales

[2, 18, 23]. Alternatively, the subset of P&I deaths

coded specifically as influenza may be even more

specific, especially for epidemic timing [2, 18], but

these data capture a very small fraction of the overall

influenza mortality burden. Both P&I excess mor-

tality and influenza-specific deaths have been used in

the past to estimate influenza transmissibility [14–19],

and we consider both indicators here.

Mortality data

Weekly P&I mortality time series were computed

from death certificates collected by national agencies

for vital statistics in the three countries (United States,

1972–2002, National Center for Health Statistics ;

Australia, 1972–1997, Australian Bureau for Stat-

istics ; France, 1972–1997, Institut National de la

Santé et de la Recherche Médicale, Service Commun

8). We used codes 470–474 and 480–486 from the

International Classification of Diseases (ICD) 8th re-

vision, codes 480–487 from ICD-9 and codes J10.0-

J18.9 from ICD-10 to select deaths due to P&I. For

US data, we used the standard correction factor given
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by theNational Center for Health Statistics to account

for the decrease in pneumonia code use following

the transition between ICD-9 and ICD-10 in 1999.

To derive death rates, we obtained annual population

size estimates from the U.S. Census Bureau [25],

the French National Institute for Statistics and Econ-

omic Studies [26], and the Australian Bureau of Stat-

istics [27].

P&I excess mortality models

We measured the influenza contribution to weekly

P&I mortality series as those P&I deaths in excess of

a seasonal baseline, where the baseline mirrors the

expected level of mortality in the absence of influenza

activity (Fig. 1 and online Supplement). To fit the

baseline, we used a classical seasonal regression ap-

proach developed by Serfling in 1963 [28], where a

linear regression model with harmonic terms is fitted

to non-epidemic weeks to produce the baseline. This

approach has been applied to mortality data in dif-

ferent countries [8, 21, 22, 29] and at different geo-

graphical scales [18], and has also been compared

with morbidity data [18].

Influenza-specific mortality data

The Serfling approach we applied to P&I data has

limitations because it assumes that non-influenza

deaths are seasonal and can be modelled by harmonic

functions [28]. By contrast, we can use the raw time-

series of influenza-specific mortality to estimate

transmissibility, without fitting a seasonal baseline,

because there are no deaths in non-influenza months.

Transmission model

Several studies have used mathematical models to de-

scribe the transmission dynamics of influenza within

a susceptible population (e.g. see [30, 31]), although

none has explored whether interrupting transmission

by vaccination was feasible given currently available

vaccines. We adapted a mass-action model previously

developed for studying the transmissibility of the 1918

influenza pandemic in Geneva, Switzerland [11]. In

the ‘SEIR’ model, the population is divided in five

categories : Susceptible (S), Exposed (E), Infectious

(I), Recovered/Protected (P) and Dead (D) (Fig. 2). In

this model, infection is transmitted between infectious

and susceptible individuals, and no particular route of

transmission is assumed.

The total population size at time t is given by

N(t)=S(t)+E(t)+I(t)+P(t). We assume homogen-

ous mixing, that is, each individual has the same

probability of having contact with any other individ-

ual in the population. Moreover, for each influenza

season, the total population is assumed constant ac-

cording to the population size estimate for a given

country and year. As in a previous models of seasonal

influenza (e.g. [30]), susceptible individuals infected

with the virus enter the latent period (category E) at

the rate bI/N where b is the mean transmission rate

per day and I/N is the probability of contacting an

infected individual out of the total population size N.
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Fig. 1. Time-series of weekly number of pneumonia and in-

fluenza (P&I) and influenza-specific deaths per 100 000
in three countries (France, United States and Australia, blue
curve). The red dashed line indicates the baseline mirroring
the expected level of P&I mortality in the absence of influ-

enza epidemic activity.
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Fig. 2. Compartmental model indicating the transition of

individuals among the different epidemiological stages dur-
ing an influenza outbreak. b=transmission rate ; N=total
population; 1/k=latent period ; 1/c=recovery period ; d=
mortality rate (see Table for parameter values).
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Note that b represents a generic transmission rate that

combines the effect of direct and indirect contacts

(including, droplets, fomites and aerosols [32, 33]).

Latent individuals progress to the infectious class at

the rate k (1/k is the mean latent period). Infectious

individuals either recover or die from influenza at the

mean rates c and d, respectively. Recovered individ-

uals are assumed protected for the duration of the in-

fluenza season. The mortality rate is given by d=
c[CFP/(1xCFP)], where CFP is the mean case fatal-

ity proportion. The system of differential equations

that describes the above epidemic process is given by:

dS=dt =xbSI=N,
dE=dt=bSI=NxkE,
dI=dt =kEx(c+d)I,
dP=dt=cI,
dD=dt=dI:

The population is assumed completely susceptible at

the beginning of each influenza season prior to the

first epidemic week, which is defined as the first week

with non-zero influenza-related deaths. The initial

number of influenza deaths D(0) is set to be the

number of influenza deaths in the first epidemic week.

Furthermore, using a CFP, we also estimate the

number of recovered individuals in the first epidemic

week as P(0)=D(0)/CFP – D(0).

The reproduction number

The number of secondary cases generated by a primary

infectious case during its period of infectiousness in

an entirely susceptible population is known as the

basic reproduction number, R0. From our model R0

is given by the product of the transmission rate b

and the mean infectious period 1/(c+d) ; that is,

R0=b/(c+d).

In the case of seasonal influenza epidemics, R0

cannot be estimated due to partial immunity in in-

dividuals infected in previous years with antigenically

related strains, and annual vaccination of a fraction

of the high-risk population. However, we can estimate

a different reproduction number, Rp, which measures

the transmissibility at the beginning of an epidemic

in a partially immune population [5]. For example, if

a proportion p of a completely susceptible popu-

lation is successfully immunized prior to an epidemic,

then in a well-mixed population with a constant

force of infection Rp=(1 – p)R0. Estimating Rp is

equivalent to assuming a fixed R0 for seasonal influ-

enza and estimating a changing susceptibility (1xp)

each season [34].

Parameter estimation

Definitions and baseline values for fixed and esti-

mated parameters are given in the Table ; the mean

latent and recovery periods (respectively 1/k and 1/c),

and the CFP of influenza were fixed according to

previous studies [3, 14, 35]. To estimate the value of

unknown parameters, we rely on the general approach

of ‘ trajectory matching’, where one searches for the

combination of model parameters that produces an

epidemic curve most statistically similar to the ob-

served one. The transmission rate and the initial

numbers of individuals in the exposed E(0) and

Table. Parameter definitions and baseline values used with the SEIR compartmental epidemic model

Parameter Definition Source Estimate Range

k Latent period [14] 1.9 days
c Recovery period [14] 4.1 days

CFP Case fatality proportion
P&I Estimated from

data in [3, 14]
0.2% 0.1–0.4%

Influenza-specific 0.05%*
d Mortality rate c [CFP/(1 – CFP)] 0.0005 per day 0.0002–0.001
S(0) Initial number of susceptible

individuals
[25–27] Entire population

size

b Transmission rate Estimated
E(0) Initial number of exposed cases Estimated
I(0) Initial number of infectious cases Estimated

Only two parameters were estimated, the transmission rate and the initial numbers of exposed and infectious cases. That is,

for simplicity we assume E(0)=I(0).
* Influenza-specific deaths represent y25% of P&I excess mortality.
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infectious I(0) categories at the beginning of each in-

fluenza season were estimated by least squares fitting

to the cumulative number of weekly influenza-related

deaths or cases, during the initial take-off of the

epidemic. The advantage of using the cumulative

over the weekly number of deaths is that the former

smoothes out demographic noise and reporting delays

[16]. Due to the short latent period for influenza

(1.9 days), we assumed E(0)=I(0) ; this simplification

allowed us to estimate only two parameters from the

exponential growth phase of the epidemic. We also

made the assumption that errors in the data (e.g.

underreporting and misdiagnosis of cases) occurred

at random and observations were as likely to over-

estimate, as they were to underestimate the true

number of influenza deaths.

The reproduction number (Rp) was estimated

using data comprising the four epidemic weeks

immediately preceding the epidemic peak. Hence, we

only estimated the reproduction number (Rp) for

those influenza seasons for which the increasing

phase of the epidemic included at least four consecu-

tive weeks. We define the peak week as the week with

the maximum death rate ; this definition is not

ambiguous since there is only major peak of illness or

mortality for each influenza season [18]. In addition

P&I and influenza-specific mortality peaks are mean-

ingful since they coincide with peaks in influenza

laboratory surveillance [18], and occur synchronously

in other causes of deaths on which influenza has an

impact [23].

Uncertainty of parameter estimates

We estimated the uncertainty of the reproduction

number via parametric bootstrap [36]. For each flu

season, we simulated 200 alternate realizations of the

epidemic trajectory, by perturbation of the best-fit

curve of cumulative number of influenza-related

deaths. We added to the best-fit curve a simulated

error structure computed using the increment in the

‘ true’ number of deaths/cases from day j to day j+1

as the Poisson mean for the number of new deaths

observed in the j to j+1 interval. The cumulative

epidemic curves were then aggregated by week, the

temporal scale of the epidemic data. The 95% boot-

strap-based confidence intervals for the reproduction

number should be interpreted as containing 95% of

estimates if the analysis was repeated with the same

model assumptions and if observational error was the

only source of noise.

Sensitivity analyses

We conducted a number of sensitivity analyses to as-

sess the validity of our assumptions and the robust-

ness of our estimates. In particular, we checked the

impact of choosing a Poisson error for bootstrap re-

sampling, our assumptions on the distribution of the

latent and infectious periods, the boundaries of con-

fidence intervals, the number of weeks used in the es-

timations, and the CFP values. These analyses are

summarized below (more details are given in the on-

line Supplement).

In our simple SEIR model, we implicitly assumed

that the latent and infectious periods were exponen-

tially distributed. But we also simulated more realistic

distributions of the latent and infectious periods, such

as a gamma distribution, as described in [37], and as-

sessed the potential bias on estimates of the repro-

duction number (Rp).

Next, we explored the uncertainty of Rp estimates.

In the main analysis, we used Poisson distribution to

model observational errors, where variance is equal

to the mean, but we also tested higher levels of un-

certainty, where the variance is 2, 3, or 4 times the

mean. Moreover, to check whether the reproduction

number estimates were well-constrained, we derived

likelihood ratio confidence bounds for Rp.

Last, we assessed the robustness of Rp estimates to

a twofold increase or decrease in the predefined CFP

values (Table) and changes in the number of weeks

used in the computations (4–6).

Relationships between the reproduction number (Rp)

and seasonal virus surveillance

We explored the relationships between Rp and the

prevalence of the three influenza viral (sub)types

circulating each season (A/H3N2, A/H1N1, B). Virus

prevalence was defined as the proportion of respirat-

ory samples that tested positive for each influenza

(sub)type, as reported by the CDC laboratory sur-

veillance conducted since 1976 in the United States

[38–41]. The United States was the only country

among the three studied with publicly available virus

surveillance data for many years.

RESULTS

Estimates of the reproduction number (Rp)

We estimated the reproduction number (Rp) for

three decades in the inter-pandemic period using
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weekly P&I excess mortality curves in the United

States, France and Australia. Overall we found similar

averages in the three countries : the mean reproduction

number (Rp) was 1.3 (S.E.=0.05) in the United

States, 1.3 (S.E.=0.05) in France and 1.3 (S.E.=0.07)

in Australia (Fig. 3, Wilcoxon test for pairwise

comparisons between countries, all Po0.87). The re-

production number across influenza seasons and

countries lied in the range 0.9–2.0 with an overall

mean of 1.3, and 95% confidence interval (CI)

1.2–1.4. Larger variability in the estimates of the re-

production number was observed for Australia than

for the United States and France; perhaps explained

by the larger demographic noise and spatial hetero-

geneity in Australia (Fig. 1). Indeed, Australia has

the smallest population size of the three countries

studied, and most of the population is concentrated

in coastal areas of the South-East. Overall, the SEIR

transmission model fitted well to the epidemic rise of

influenza-related deaths in the three countries, as

shown in Fig. 4.

Applying the same methodological approach to

influenza-specific deaths, rather than P&I excess

deaths, gave similar results in the three countries. The

mean reproduction number (Rp) was 1.3 (S.E.=0.04)

in the United States, 1.3 (S.E.=0.05) in France and 1.2

(S.E.=0.08) in Australia (Wilcoxon test for pairwise

comparisons between countries, all Po0.68). Further,

estimates of the reproduction number using influenza-

specific mortality were strongly correlated with those

obtained using P&I excess mortality data in the

United States (r=0.61, P<0.001, n=27) and France

(r=0.79, P<0.001, n=19) (Fig. 5a, b). A weaker

association was found in Australia (r=0.17, P=0.74,

n=6) (Fig. 5c), probably due to the few overlapping

seasons for which it was possible to estimate the re-

production number for both time series, as well as

larger demographic noise and spatial heterogeneity.

Next, we assessed the sensitivity of Rp estimates

to the CFP value and the number of epidemic weeks

of mortality data used in the estimation. We found

that Rp estimates did not change when we increased

or decreased CFP by twofold (respectively 0.1%

and 0.4%). Moreover, Rp estimates were robust to

increasing the number of epidemic weeks used in

the estimation from 4 weeks, to 5 or 6 weeks, for

those seasons for which sufficient epidemic data was

available (Fig. 6, Wilcoxon test for differences in

mean Rp between 4 and 6 weeks, P>0.25 for all three

countries).

Additional sensitivity analyses (see online Supple-

ment) showed that our estimates were robust to model

assumptions and observational errors. When the

latent and infectious periods were modelled via more

realistic distributions than the exponential, the bias

incurred in point estimates of Rp rapidly declined with
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Fig. 3. Boxplots of the reproduction number (Rp) of influenza seasons (1972–1997) in the United States, France,
and Australia. The boxes have lines at 25, 50 and 75 percentiles. The whiskers show the extent of the rest of the data
extending to a maximum of 1.5 times the interquartile range. Points outside the ends of the whiskers are indicated with a ‘+ ’

symbol.
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the amount of epidemic data. When using 4 epidemic

weeks of data as in our main analysis, we estimated

that the bias was <0.13 (9%) on average (Fig. S1,

online). Further, increasing the variance of measure-

ment errors changed point estimates of Rp by <0.03

(3.3%) and increased the width of the 95% CI by

0.05 (26.8%) on average [maximum 0.24 (64.4%),

Supplementary Table, online]. In addition, profile

likelihood, showed that the two parameters estimated

in the model, Rp and the initial number of infected

individuals, were well-bounded and identifiable

(Fig. S2, online).

We then explored the relationship between seasonal

estimates of influenza transmissibility and virus

surveillance in the United States and found that the

reproduction number (Rp) differed by (sub)type of

circulating viruses. Influenza A/H3N2 viruses were

more frequently isolated in seasons with higher trans-

mission (correlation between Rp and A/H3N2 virus

prevalence; Spearman r=0.52, P=0.006) whereas by

contrast, B viruses were associated with low trans-

mission seasons (correlation between Rp and B virus

prevalence, Spearman r=x0.55, P=0.004). There

was no clear pattern of association for A/H1N1

viruses.

DISCUSSION

We used an epidemic model to estimate the repro-

duction number (Rp) of inter-pandemic influenza

seasons spanning three decades, using data on the

weekly cumulative number of influenza-related deaths

from the United States, France, and Australia. We

found an average Rp of 1.3 (95% CI 1.2–1.4) across

influenza seasons and countries, with substantial in-

ter-annual variability. Our model, based on SEIR

framework and homogeneous mixing assumption,

was kept minimal to estimate two parameters each

influenza season (Rp and the initial number of infected

individuals). Although we did not consider an age-

structured model, previous sensitivity analyses sug-

gest that estimates of the reproduction number are

not biased due to differences in age-specific trans-

mission parameters and CFP [14].

Our study is limited from the epidemic data used in

the estimation. Excess deaths from P&I capture about
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25% of the overall mortality burden of influenza [2].

Consequently, it was not possible to estimate the re-

production number for very mild epidemics (9%),

where mortality is not a good proxy indicator for

influenza transmission. The use of less sensitive mor-

tality data can explain why Rp estimates and their

95%CI were below 1.0 for two mild influenza seasons

(one in France and one in Australia). Encouragingly,

recent simulations have shown that estimation ap-

proaches relying on the cumulative number of cases

are expected to be robust to substantial measurement

error and underreporting of cases (such as occurs in

mortality data), in particular when the true theoretical

reproduction number is below 4.0 [42]. Moreover, we

performed a number of sensitivity analyses showing

the robustness of our estimates to various assump-

tions, in line with previous research [14].

Unlike P&I data, influenza-specific death time-

series do not require modelling a seasonal baseline

prior to fitting a transmission model [15–17, 19]. It is

reassuring that mean and individual-season estimates

using influenza-specific and P&I mortality data were

similar for the two countries where sufficient years

were available for comparison (United States, France).

Further, a similar modelling approach applied to

long-term data on weekly influenza cases from France

(41) gave consistent estimates (mean Rp=1.5, S.E.=
0.08). Taken together, the consistency of mean and

variance estimates of Rp confirms that long-term in-

fluenza mortality records can be used to study pat-

terns of disease transmission, even at a refined weekly

time-scale [14, 18].

An important limitation of using data aggregated

by country is the potential effect of spatial hetero-

geneity, which could lead to underestimation of the

reproduction number. However, recent US studies

have shown that estimates of Rp for influenza are sur-

prisingly similar across locations and spatial scales,

and do not depend on local geographical or popu-

lation factors [14, 18]. In addition, the comparison

of historical influenza epidemic curves for England

and Wales and Greater London concluded that even

considerable geographical heterogeneity did not sub-

stantially alter Rp estimates [15].

In our model, influenza is transmitted by serial

contacts between infected and susceptible individuals.

The model does not specify whether transmission oc-

curs by direct or indirect contact, via droplets, fomites

or aerosols, since the relative contribution of each

mode of transmission is unclear for influenza [32, 33,

43–45]. Unfortunately, there are very few experimen-

tal studies of human-to-human transmission; besides,

existing studies are inconclusive and predate the dis-

covery of the influenza virus [32, 46, 47]. Indirect evi-

dence for influenza transmission between humans can
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Fig. 5. Correlation of the reproduction number estimates

derived from pneumonia and influenza excess mortality
and influenza-specific mortality data in three countries (a)
United States, (b) France and (c) Australia. While a signifi-
cant and positive correlation was observed for the United

States and France, a weaker correlation was found in
Australia, probably due to the few overlapping seasons for
which it was possible to estimate the reproduction number

(n=6) and the larger demographic noise and spatial het-
erogeneity.
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nevertheless be found in observational studies in close

contact settings, such as aeroplanes, hospitals, house-

holds, schools, and day-care centres [48–53]. In par-

ticular, influenza transmission is more intense in the

household than in the community [51, 54], while

clinical trials have shown that treating index cases

with antivirals reduces secondary transmission to

household members [55]. As regards animal studies,

recent experiments in guinea pigs suggest that trans-

mission occurs via aerosols in this mammalian host

[44] – but whether this also applies to people is un-

clear. Overall, uncertainty in the source of exposure

(household/community) and mode of transmission

makes the estimation of the serial interval between

infection in two successive cases difficult from ob-

servational studies alone [56, 57]. To account for this

uncertainty, the different routes of influenza trans-

mission are lumped into a single contact rate par-

ameter (b) in our model.

While this is the first study to systematically esti-

mate the reproduction numbers of influenza for mul-

tiple inter-pandemic seasons in different countries, our

results are in overall agreement with a previous study

reporting an estimate of 1.5 for a single A/H3N2

season in France [12]. An earlier study proposed esti-

mates higher than ours (range 1.4–2.6) for several

consecutive influenza seasons in England and Wales

[15, 16], however the exact quantity measured in

this work remains controversial [14, 31]. A particu-

larly high Rp estimate (Rp>2.0) has also been re-

ported for the 1951 influenza epidemic in England and

Canada, however, this epidemic was associated with

unusually high mortality and transmissibility locally

[19, 22].

By contrast to the scarcity of estimates for the

reproduction number of inter-pandemic influenza,

several studies have recently proposed estimates for

pandemic influenza [11, 13, 14, 17, 19]. The analysis

of historical mortality and morbidity curves from

past pandemics has revealed that Rp ranged between

1.5 and 3.0 for the 1918 pandemic [11, 13, 14, 17, 19],

1.5–1.7 for the 1957 pandemic [13, 19], and 1.9–2.2

for the 1968 pandemic [13, 19, 58], depending on the

pandemic wave studied, geographical location, and

estimation method. This is consistent with higher

transmissibility in pandemic than inter-pandemic

seasons, since the fraction of susceptible individuals

is largest when an immunologically naive population
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is exposed to an entirely novel pandemic virus (and

RpyR0).

While the average inter-pandemic Rp seems rather

invariant across geographical locations at around 1.3,

there is substantial year-to-year variability around

this average (S.E.=0.09, maximum Rp=2.1). Our re-

sults suggest that H3N2 viruses are more transmissible

than B viruses ; A/H3N2 viruses are known to cause

more severe epidemics than A/H1N1 and B viruses

in terms of overall disease burden on mortality and

severe morbidity [20]. This difference in transmissi-

bility could be attributed to underlying differences

in the age patterns of infection among influenza

(sub)types. Influenza A/H3N2 viruses have the fastest

evolutionary rates [59], causing re-infection of a single

individual with the same subtype multiple times

through life, thereby allowing for a larger pool of

susceptibles, and higher transmissibility. By contrast,

B viruses have the slowest evolutionary rate [59]

and infect mainly children [60], perhaps explaining

their lower transmissibility. A/H1N1 viruses have

intermediate evolutionary rate [59] and did not dis-

play a clear relationship with transmissibility in our

study. Our finding of increased transmissibility of

A/H3N2 viruses reinforces a recent study showing

more rapid dispersal of A/H3N2 epidemics across

the United States, as compared with A/H1N1-B epi-

demics [18].

One could further expect that transmissibility of

inter-pandemic influenza is highest when new anti-

genic clusters of influenza A/H3N2 strains emerge

every 2–5 years and escape population immunity to

haemagglutinin [61] ; yet we could not detect a pattern

in our data (not shown). Recent epidemiological

studies of pandemic and inter-pandemic influenza

suggest that antigenic changes in the haemagglutinin,

the most studied component of antibody-mediated

immunity, may not be the only determinant of viral

fitness and ability to spread in a population [19, 21].

The exact relationship between virus antigenic

changes and population dynamics is still unclear, and

a key area for future research.

Influenza epidemics display marked seasonal pat-

terns in temperate countries, including the United

States, France and Australia [29, 62]. Our estimates

of the reproduction number reflect transmissibility

in wintertime, and it is likely that transmissibility de-

clines in warmer months, due to changes in the host,

the virus, or their interaction. The reasons for the

seasonality of influenza are still heavily debated, al-

though the susceptibility of the respiratory mucosa,

vitamin D production, human contacts, and virus

survival are subject to seasonal variations, which could

favour influenza transmission in colder months in

high-latitude countries [56, 57, 63, 64]. Influenza dis-

plays a pattern of year-round circulation and high dis-

ease burden in the Tropics [62, 65] and it would be

useful to elucidate the seasonal triggers of influenza

epidemics globally and estimate transmissibility in

the Tropics. This type of work is contingent upon

obtaining reliable data on influenza virus circulation

and disease burden in Tropical countries [62].

Overall, our results indicate that the reproduction

number Rp for inter-pandemic influenza is below 2.1

in temperate countries, which has important impli-

cations for disease control. In a fully mixed popu-

lation, transmission could be interrupted if about

52% of the population was successfully immunized

and we discuss below whether this could be achieved

with currently available vaccines.

The influenza vaccination programme in the United

States has traditionally targeted individuals who

are at highest risk of severe disease outcome and are

immunologically impaired relative to the general

population, in particular people over 65 years of age

and those with chronic conditions [66]. Vaccination

prevents 70% of laboratory-confirmed infections in

healthy adults and children [67, 68], but the immune

response to vaccines varies greatly with age and is

particularly weak in the elderly [9] and young chil-

dren [69]. In particular, there has been no decline in

0

20

40

60

80

100 1 2 3 4

5

0 20 40 60 80 100

Vaccine coverage in healthy people aged 2–64 years (%)

Pr
ob

ab
ili

ty
 o

f i
nt

er
ru

pt
in

g
tr

an
sm

is
si

on
 o

f s
ea

so
na

l i
nf

lu
en

za
 (%

)

line 1, 99% efficacy
line 2, 90% efficacy
line 3, 80% efficacy
line 4, 70% efficacy
line 5, 60% efficacy

Fig. 7. Probability of interrupting transmission of seasonal
influenza for various vaccination scenarios. Values are based
on the empirical cumulative distribution of reproduction

number estimates in the three countries (y axis) and different
vaccine coverage in the healthy population aged 2–64 years
(x axis), who is supposed to respond well to influenza vac-

cines (see online Supplement for methods). Different curves
represent different assumptions about vaccine efficacy in the
healthy population.

Influenza transmission and control 861

https://doi.org/10.1017/S0950268807009144 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268807009144


influenza-related mortality among the elderly in the

past two decades in the United States, while vaccine

coverage increased from 5% to 65% in this age group

[8]. Analysis of long-term trends in mortality in Italy

revealed similar patterns, suggesting an alarming lack

of effectiveness of traditional vaccination programmes

targeted at the elderly [70, 71]. In recent years, about

23% of the US population received influenza vacci-

nation [72, 73], but we estimate that only 13% is ef-

fectively protected by vaccination at the start of the

influenza season (range 11–16%), assuming no mis-

match between the vaccine strain and circulating

strain.

Complementary immunization strategies could tar-

get high transmitter groups such as school-age chil-

dren, who are likely to respond well to influenza

vaccination and are prone to transmit infection to

their immediate contacts [74]. Fig. 7 illustrates that

interrupting transmission in most influenza seasons

(>90%) would require vaccination of 60–100% of

the population who responds well to vaccine, healthy

people aged 2–64 years, depending on vaccine efficacy

assumptions (see online Supplement for details on

methods). On the one hand, this estimate would

probably be lower if we had considered an age-

structured transmission model with increased con-

tacts in children [3] ; however, data on influenza

transmissibility and contact rates between and within

different age groups are scarce. On the other hand,

our estimate of herd immunity threshold is based

on the current background level of natural immunity

to influenza, resulting from continuous exposure

to viruses circulating in the community. If influenza

circulation gradually decreased due to improved

vaccination coverage, natural immunity would wane,

increasing the level of vaccine coverage necessary to

achieve herd immunity.

In conclusion, given that vaccine efficacy at one

dose is suboptimal in population groups currently

targeted for vaccination, many are not benefiting

from direct protection. Relatively high vaccination

coverage would be necessary in the immuno-

competent population, healthy people aged 2–64

years, in order to interrupt transmission of seasonal

influenza, in addition to periodic re-vaccination

due to evolving viral antigens and waning popu-

lation immunity. An alternative strategy, perhaps less

costly in the long run, would be the use of vaccines

that are more immunogenic and provide longer-term

protection, obviating the need for repeated vacci-

nation.
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