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Abstract

We consider coherent and mixed reliability systems composed of elements with
independent and identically distributed lifetimes. We present upper bounds on variances
of system lifetimes, expressed in terms of variances of single components. We also
discuss attainability conditions and some special cases and examples.
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1. Introduction

Coherent systems provide useful mathematical models for sophisticated technical devices
composed of simple elements. The whole device can operate as long as given selections
of its elements work. It is assumed that the lifetime of the system is a function of the
component lifetimes. Barlow and Proschan (1975) is the classic monograph devoted to this
topic. A significant contribution to the analysis of the system lifetime was made by Samaniego
(1985), who proved that if the component lifetimes are independent and identically continuously
distributed then the distribution of the system lifetime is a mixture of the distributions of the
so-called k-out-of-n systems. The k-out-of-n system, k = 1, . . . , n, is a system that functions
as long as at least k of its n components function. The mixture coefficients merely depend
on the structure function of the system. The distributions of k-out-of-n systems depend on the
parent distribution of the single component in a simple way. The Samaniego representation was
further extended to systems with exchangeable component lifetimes (cf. Navarro and Rychlik
(2007) and Navarro et al. (2008b)). The formula allows us to represent the distributions of
lifetimes of reliability systems as fixed combinations of lifetime distributions of k-out-of-n
systems. Boland and Samaniego (2004) introduced the notion of mixed systems by admitting
signatures with arbitrary nonnegative coordinates summing up to 1. The mixed system is a
randomly chosen k-out-of-n system with the choice probability determined by the signature.
The role of signatures in reliability theory was comprehensively reviewed in Samaniego (2007).

The lifetime of a k-out-of-n system is the same as that of the kth greatest order statistic of the
component lifetimes. Accordingly, the problem of evaluating expectations of system lifetimes is
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Email address: trychlik@impan.gov.pl

894

https://doi.org/10.1239/jap/1253279857 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279857


Bounds on variances of lifetimes of coherent and mixed systems 895

equivalent to evaluating expectations of linear combinations of order statistics. Various bounds
on expected system lifetimes composed of elements with lifetime distributions coming from
various nonparametric families were reviewed in Rychlik (2008a). Respective bounds for the
systems with exchangeable components were presented in Navarro and Rychlik (2007).

Papadatos (1995) originally exploited the Hoeffding representation of covariance (see Hoeff-
ding (1940) and Lehmann (1966, Lemma 2) for a short proof) in order to establish sharp bounds
on variances of order statistics (and so the k-out-of-n systems) of independent and identically
distributed (i.i.d.) samples. They were further specified by Papadatos (1997) to the case of
order statistics of symmetric populations. A similar approach was used in Klimczak and Rychlik
(2004) for evaluating variances of kth record values. Rychlik (2008b) determined sharp bounds
on variances of order statistics coming from dependent, identically distributed populations. We
also mention several generalizations of the Hoeffding lemma to covariances of functions of
random variables (see Quesada-Molina (1992) and Cuadras (2002)), multivariate versions (see
Block and Fang (1988),Yu (1993), Prakasa Rao (1998), and Beare (2009)), and higher-moment
representations (see Mardia and Thompson (1972) and Jones and Balakrishnan (2002)).

In this paper we use the ideas of Papadatos (1995) to establish upper bounds on variances of
lifetimes of coherent and mixed systems composed of elements with i.i.d. lifetimes. The bounds
presented in Section 2 depend on the variance of a single-component lifetime, and are expressed
in terms of the maximum of a polynomial of two variables, with coefficients depending only
on the system signature, over a triangular domain. We further present a method of calculating
the maximum, and present conditions of attainability of the bounds by coherent and mixed
systems. In Section 3 we discuss the important special cases of systems with monotone and
unimodal signatures for which our bounds are attained. We also formulate a conjecture that
our variance bounds are sharp for all ‘deterministic’ coherent systems, and show an example
of a mixed system for which our bound can be improved. We say that the system determined
by a signature is ‘deterministic’ if it is possible to construct (and choose deterministically) one
coherent system with the given signature. Otherwise, we call the system ‘random’.

2. General results

We assume that a coherent system with a given structure function is composed of n identical
elements. The lifetimes of the components, X1, . . . , Xn, are independent and have a common
continuous distribution function F and positive finite variance σ 2, say. It is well known (see
Samaniego (1985), (2007)) that the distribution function of the system lifetime T has the form

P(T ≤ x) =
n∑

i=1

si P(Xi:n ≤ x), (1)

where X1:n ≤ · · · ≤ Xn:n are the order statistics of lifetimes X1, . . . , Xn, and

si = P(T = Xi:n), i = 1, . . . , n. (2)

The vector s = (s1, . . . , sn) is called the Samaniego signature of the system, and it merely
depends on the structure function of the system, and is independent of the distribution of
the component lifetimes. We have si ≥ 0, i = 1, . . . , n, and

∑n
i=1 si = 1. Clearly, the

distributions of the order statistics depend on the marginal F , and do not depend on the
structure of the system. These distributions are conveniently expressed by means of the Berstein
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polynomials,

Bk,n(u) =
(

n

k

)
uk(1 − u)n−k, 0 < u < 1, 0 ≤ k ≤ n, (3)

as follows:

P(Xi:n ≤ x) =
n∑

k=i

Bk,n(F (x)), i = 1, . . . , n.

Each distribution function is the composition Gi:n(F (x)) of the distribution function Gi:n, say,
the ith order statistic of a standard uniform sample of size n, and the parent F . The former has
density

gi:n(u) = nBi−1,n−1(u), 0 < u < 1.

Accordingly, (1) can be written as

P(T ≤ x) = G(F(x)), (4)

where

G(u) =
n∑

i=1

siGi:n(u) =
n∑

i=1

si

n∑
k=i

Bk,n(u) =
n∑

k=1

( k∑
i=1

si

)
Bk,n(u). (5)

Function (5) is a polynomial of degree n that strictly increases on the interval [0, 1], and
satisfies G(0) = 0 and G(1) = 1. It depends on the Samaniego signature of the system,
which we drop in our notation for brevity. The function can be also written in the simpler form
G(u) = ∑n

i=1 biu
i , useful in calculations. Note that the boundary conditions imply that G does

not have a constant term and that
∑n

i=1 bi = 1. The vector b = (b1, . . . , bn) with possibly
negative coordinates is called the maximal signature of a system. This notion was introduced
and exploited in the context of analyzing reliability systems in Navarro et al. (2007). The
derivative of (5),

g(u) =
n∑

i=1

sigi:n(u) = n

n−1∑
i=0

si+1Bi,n−1(u), (6)

is a positive polynomial of degree n − 1. The function p(u) = 1 − G(1 − u) is called the
domination polynomial of the system (cf., e.g. Navarro et al. (2008a)).

Important examples of coherent systems are the so-called k-out-of-n systems, which function
as long as at least k of their n components function. The lifetime of the k-out-of-n system is
T = Xn+1−k:n, and its signature consists of sn+1−k = 1 and sj = 0, j �= n + 1 − k. By
(1), the distribution of the system lifetime is the same as that of a randomly chosen k-out-of-n
system with probabilities sn+1−k, k = 1, . . . , n. All the systems of sizes n = 3 and 4 were
presented in Kochar et al. (1999) and Shaked and Suarez-Llorens (2003), respectively. Navarro
and Rubio (2009) proposed an algorithm for determining all the coherent systems of a fixed
size, and presented the exhaustive set of 180 coherent systems of size n = 5. The number of
systems increases rapidly as the size increases. Navarro and Rubio (2009) proved that there are
16 145 systems with six components.

Boland and Samaniego (2004) proposed the notion of mixed systems, which arise by
randomly choosing a k-out-of-n system with arbitrary probabilities sn+1−k, k = 1, . . . , n, from
the simplex Sn = {(s1, . . . , sn) : si ≥ 0,

∑n
i=1 si = 1}. Evidently, a mixed system of size n can

arise by mixing arbitrary coherent systems of this size. The family of proper ‘deterministic’
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coherent systems is a finite subset of the set of all mixed systems. So we consider below
arbitrary mixed systems with lifetime distribution function (1) and arbitrary signature (2).
Given s = (s1, . . . , sn), we define distribution function (5) and its density function (6). Note
that the former is a polynomial of degree n such that G(0) = 0 and G(1) = 1. Therefore, the
auxiliary functions

G1(u) = G(u)

u
= n

n−1∑
k=0

(
1

k + 1

k+1∑
i=1

si

)
Bk,n−1(u), (7)

G2(u) = 1 − G(u)

1 − u
= n

n−1∑
k=0

(
1

n − k

n∑
i=k+1

si

)
Bk,n−1(u) (8)

are polynomials of degree n − 1, positive on (0, 1). Note that the right-hand sides of (7) and
(8) allow us to define both the functions on the closed interval [0, 1]. At the endpoints, we have

G1(0) = g(0) = ns1, G1(1) = 1,

G2(0) = 1, G2(1) = g(1) = nsn.

With the above notation, we are in a position to formulate the main result of this paper.

Proposition 1. Let T denote the lifetime of a mixed system with signature s = (s1, . . . , sn),
composed of n elements with independent, identically continuously distributed lifetimes with a
finite variance σ 2 > 0. Under the notation given in (7) and (8), the following inequality holds:

var T

σ 2 ≤ max
0≤u≤v≤1

G1(u)G2(v). (9)

Proof. The idea of the inequality proof is taken from Papadatos (1995), who established
analogous bounds for order statistics (k-out-of-n systems). We use the Hoeffding (1940)
representations of lifetime variances of the single component,

var X1 = 2
∫∫

{x≤y}
F(x)[1 − F(y)] dx dy, (10)

and the mixed system,

var T = 2
∫∫

{x≤y}
G(F(x))[1 − G(F(y))] dx dy.

Since G attains the extreme values 0 and 1 only at 0 and 1, respectively, we can write

var T = 2
∫∫

{0<F(x), x≤y, F (y)<1}
G(F(x))[1 − G(F(y))] dx dy

≤ sup
0<F(x)≤F(y)<1

G(F(x))[1 − G(F(y))]
F(x)[1 − F(y)]

× 2
∫∫

{0<F(x), x≤y, F (y)<1}
F(x)[1 − (F (y))] dx dy

= sup
0<u≤v<1

G(u)[1 − G(v)]
u(1 − v)

2
∫∫

{x≤y}
F(x)[1 − (F (y))] dx dy

= max
0≤u≤v≤1

G1(u)G2(v)σ 2. (11)
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Kochar et al. (1999) proved that if T is the lifetime of a coherent system with signature
s = (s1, . . . , sn) then the signature of its dual system is sd = (sn, . . . , s1) (the formal definition
of a dual system can be found in Barlow and Proschan (1975)). Similarly, we say that the dual
system to the mixed system with signature s = (s1, . . . , sn) is the system with signature sd =
(sn, . . . , s1). Consequently, the lifetime T d of the dual mixed system is equal to X1:n, . . . , Xn:n
with respective probabilities sn, . . . , s1.

Corollary 1. Bound (9) is identical for mutually dual mixed systems.

Proof. By definition, the system dual to one with signature s = (s1, . . . , sn) and lifetime
distribution function G(F(x)) has lifetime distribution function Gd(F (x)) = 1−G(1−F(x)).
Hence,

sup
0<u≤v<1

Gd(u)[1 − Gd(v)]
u(1 − v)

= sup
0<u≤v<1

[1 − G(1 − u)]G(1 − v)

u(1 − v)

= sup
0<s≤t<1

[1 − G(t)]G(s)

(1 − t)s
,

and the statement follows.

Below we present an efficient numerical method of calculating bound (9) of Proposition 1.
Let 0 < a1 < · · · < ak < 1 and 0 < b1 < · · · < bl < 1 be all the points at which the
derivatives

G′
1(u) = n(n − 1)

n−2∑
k=0

1

k + 2

(
sk+2 − 1

k + 1

k+1∑
i=1

si

)
Bk,n−2(u), (12)

G′
2(u) = n(n − 1)

n−2∑
k=0

1

n − k

(
1

n − k − 1

n∑
i=k+2

si − sk+1

)
Bk,n−2(u) (13)

of (7) and (8), respectively, change their signs. Let 0 < x1 < · · · < xm < 1 arise by combining
all the elements of sequences ai, i = 1, . . . , k, and bj , j = 1, . . . , l. Note that 0 ≤ m ≤ 2n−4,
and set x0 = 0 and xm+1 = 1. Each [xi−1, xi], i = 1, . . . , m + 1, is the maximal interval
where both (7) and (8) are monotone. Let Vp = (xip , xjp ), p = 1, . . . , q, be all the pairs
such that xip < xjp , and (7) and (8) have local maxima at xip and xjp , respectively. In other
words, both the derivatives in (12) and (13) change their signs from plus to minus at xip and xjp ,
respectively. Let Ir = [xir−1, xir ], r = 1, . . . , s, be the intervals where (12) is nonnegative
and (13) is nonpositive. Then we have the following proposition.

Proposition 2. Under the above notation,

max
0≤u≤v≤1

G1(u)G2(v) = max
{
G1(xip )G2(xjp ), p = 1, . . . , q,

max
xir−1≤u≤xir

G1(u)G2(u), r = 1, . . . , s
}
.

The proposition asserts that in order to establish the bound in Proposition 1, it suffices
to determine all the pairs of local maxima of the factors G1 and G2 with properly ordered
arguments, and compare the products with the extremal value of the product over the diagonal,
which is a polynomial of degree 2n − 2 of a single variable there. Moreover, it shows to which
parts of the diagonal the search for the maximum can be restricted.
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Proof of Proposition 2. The proof is based on elementary arguments. We partition the
triangle � = {(u, v) : 0 ≤ u ≤ v ≤ 1} into the families of rectangles

Ri,j = {(u, v) : xi−1 ≤ u ≤ xi, xj−1 ≤ v ≤ xj }, 1 ≤ i < j − 1 ≤ m,

and triangles
�i = {(u, v) : xi−1 ≤ u ≤ v ≤ xi}, 1 ≤ i ≤ m + 1,

with disjoint interiors and possibly common edges. It is easy to see that the maximum of
G1(u)G2(v) over an arbitrary rectangle Ri,j is attained at either of its vertices. For instance,
if G1 and G2 are increasing in [xi−1, xi] and [xj−1, xj ], respectively, then we increase the
product by increasing either of the variables until we reach the maximum at the right upper
vertex. Starting from a point of triangle �i , and performing the naive maximization procedure,
we can stop either at the right upper vertex (if G1 and G2 are increasing in [xi−1, xi]) or at the
left lower vertex (if G1 and G2 are decreasing) or at the left upper vertex (if G1 is decreasing
and G2 is increasing). Lastly, we stop on the hypotenuse edge if G1 is increasing and G2 is
decreasing. When we arrive at a vertex of a rectangle or triangle, we can treat it as a border
point of a neighboring figure, and repeat the procedure. It is easy to note that we stop at a
nondiagonal point of the whole domain � if it is the common vertex of either four (if it is an
interior point of �) or two (if it is a point of either of legs of �) rectangles, and it maximizes
the product over all these rectangles. This clearly gives a local maximum of both the factors.
The maximization over the diagonal may be restricted to the intervals, where (7) is increasing
and (8) is decreasing.

Below we discuss attainability of the bound in Proposition 1.

Proposition 3. Bound (9) is sharp if and only if the maximum of the right-hand side is attained
at a point of the diagonal line segment D = {(u, u) : 0 ≤ u ≤ 1}.

This proposition means that for the systems for which the maximum is attained apart from the
diagonal, the general maximum can be treated as an upper estimate of the sharp bound, whereas
the maximum constrained to the diagonal may serve as a lower estimate of the unknown sharp
upper bound.

Proof of Proposition 3. Suppose first that

max
0≤u≤v≤1

G1(u)G2(v) = G1(u0)G2(u0)

for some 0 < u0 < 1. Repeating the arguments of Papadatos (1995), we note that the equality
in (11) holds if and only if either F(x)[1 − F(y)] = 0 or F(x)[1 − F(y)] = u0(1 − u0)

almost everywhere with respect to the Lebesgue measure on the half-space {(x, y) : x ≤ y}.
This implies that F can take on only three values, 0, u0, and 1. So F determines two-point
distributions with the probability of the smaller point equal to u0. Let F0 be such a exemplary
distribution function with the respective quantile function

F−1
0 (u) =

{
a, 0 < u < u0,

b, u0 ≤ u < 1,

for some 0 < a < b. Let Fk, k = 1, 2, . . . , be a sequence of continuous distribution functions
such that their quantile functions tend to F−1

0 in the norm of L2((0, 1), dx). For instance, Fk
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can be chosen as the mixture of uniform distributions over the intervals [a − 1/k, a + 1/k] and
[b − 1/k, b + 1/k] with respective probabilities u0 and 1 − u0. Then we have

Ek X1 =
∫ 1

0
F−1

k (u) du →
∫ 1

0
F−1

0 (u) du = au0 + b(1 − u0),

Ek X2
1 =

∫ 1

0
[F−1

k (u)]2 du →
∫ 1

0
[F−1

0 (u)]2 du = a2u0 + b2(1 − u0),

and
vark X1 → u0(1 − u0)(b − a)2.

Similarly,

Ek T =
∫ 1

0
F−1

k (u)g(u) du → aG(u0) + b[1 − G(u0)],

Ek T 2 =
∫ 1

0
[F−1

k (u)]2g(u) du → a2G(u0) + b2[1 − G(u0)],
vark T → G(u0)[1 − G(u0)](b − a)2,

and, consequently,

vark T

vark X1
→ G(u0)[1 − G(u0)]

u0(1 − u0)
= G1(u0)G2(u0).

Suppose now that

max
0≤u≤v≤1

G1(u)G2(v) = G1(0)G2(0) = lim
u↘0

G(u)[1 − G(u)]
u(1 − u)

.

For fixed 0 < a < b and ul ↘ 0, we consider

F−1
l (u) =

{
a, 0 < u < ul,

b, ul ≤ u < 1,
l = 1, 2 . . . ,

and, for each F−1
l , we construct a sequence of continuous distributions with quantile functions

F−1
l,k , k = 1, 2, . . ., approaching F−1

l in the sense described in the previous paragraph. We can
easily check that

lim
k→∞

vark,k T

vark,k X1
= lim

k→∞
G(uk)[1 − G(uk)]

uk(1 − uk)
= G1(0)G2(0).

A similar reasoning applies to the case when the maximum is attained at (1, 1).
Now we show that bound (9) is not sharp if the respective maximum is attained in the interior

of the triangle. Suppose that
m := max

0≤u≤1
G1(u)G2(u)

= sup
0<u<1

G(u)[1 − G(u)]
u(1 − u)

< M := max
0<u<v<1

G1(u)G2(v)

= max
0<u<v<1

G(u)[1 − G(v)]
u(1 − v)

.
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The latter maximum is attained at a finite number of pairs 0 < up < vp < 1, p = 1, . . . , q,
bounded by the total number of pairs of local extrema of polynomials G1 and G2. We prove
that there does not exist a distribution function F (possibly improper, with an atom at ∞) for
which the equality in (11) holds. This would imply that the equality is not attainable in the
limit by any sequence of continuous distribution functions.

The equality in (11) holds if and only if

G(F(x))[1 − G(F(y))]
F(x)(1 − F(y))

= M (14)

almost everywhere with respect to the Lebesgue measure on the set {0 < F(x), x ≤ y,

F (y) < 1}. This has a positive measure, because (10) is positive. Relation (14) means that
either F(x) = up or F(y) = vp, p = 1, . . . , q, holds almost everywhere, and, consequently,
at least one of the sets {(x, y) : F(x) = up, F (y) = vp} for some p has a positive measure. By
monotonicity of F , it contains a rectangle, [x1, x2] × [y1, y2] say, of positive measure. Hence,
F(x) = up, x1 ≤ x ≤ x2, and F(x) = vp, y1 ≤ x ≤ y2. Furthermore, relations

G(F(x))[1 − G(F(y))]
F(x)[1 − F(y)] = G(up)[1 − G(up))]

up(1 − up)
≤ m < M,

G(F(x))[1 − G(F(y))]
F(x)[1 − F(y)] = G(vp)[1 − G(vp))]

vp(1 − vp)
≤ m < M

hold on triangles x1 ≤ x ≤ y ≤ x2 and y1 ≤ x ≤ y ≤ y2 of positive measures (x2 − x1)
2/2

and (y2 − y1)
2/2, respectively. This contradicts the fact that (14) holds almost everywhere.

More subtle analysis should be carried out if the maximum of (9) is attained only on the line
{(0, v) : 0 < v ≤ 1} or the line {(u, 1) : 0 ≤ u < 1}. If, for example, (0, v0) is a minimum
point then

sup
0<u<v<min{u+δ,1}

G(u)[1 − G(u)]
u(1 − u)

≤ m + ε

< M − ε

≤ sup
0<u<δ

G(u)[1 − G(v0)]
u(1 − v0)

for some positive δ and ε. A detailed argumentation is left to the reader.

Finally we mention two extensions of our main result given in Proposition 1. Firstly, we
observe that Proposition 1 can also be applied to systems with i.i.d. component lifetimes even
if the common distribution is not continuous. This is based on the fact that relations (1) and
(4) hold in this case when we use the signature vector s = (s1, . . . , sn) computed in the case
of independent and identically continuously distributed component lifetimes (see Navarro et
al. (2008b)). Secondly, we note that Proposition 1 can be applied for determining bounds on
the residual variance of a mixed system var(T − t | T > t) by use of a representation of the
residual lifetime (T − t | T > t) distribution due to Navarro et al. (2008a, Theorem 2.5).

3. Special cases

We first recall the variation diminishing property of Bernstein polynomials, proved in
Schoenberg (1959). The following form convenient for our purposes can be found in Rychlik
(2001, p. 66).
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Lemma 1. The number of zeros of a given nonzero linear combination of Bernstein polynomi-
als,

B(u) =
m∑

k=0

akBk,m(u), 0 < u < 1, (15)

does not exceed the number of sign changes of the sequence a0, . . . , am. The first and last
signs of (15) are the same as the signs of the first and last nonzero elements of a0, . . . , am,
respectively.

The variance evaluations for special cases are based on analyzing properties of distribution
function (5) for specific s = (s1, . . . , sn). Its first and second derivatives are (6) and

g′(u) = n(n − 1)

n−2∑
k=0

(sk+2 − sk+1)Bk,n−2(u). (16)

Application of Lemma 1 to (16) simplifies the analysis. The corollaries below show that, for
many systems, a cursory look on the system signature provides an immediate solution of the
variance bound problem, (9).

Corollary 2. If (6) is decreasing (in particular, when s = (s1, . . . , sn) is nonincreasing) then
the inequality var T /σ 2 ≤ ns1 is sharp.

Proof. First note that a nonincrease of s, combined with Lemma 1 and (16), implies a
decrease of (6). Assume now that (6) is decreasing and that (5) is strictly concave. Take any
0 < u1 < u2 < 1. The point (u1, G(u1)) lies above the line segment connecting (0, G(0)) =
(0, 0) with (u2, G(u2)), and so does the segment joining (0, 0) with (u1, G(u1)). So we have
the following relation for the slopes:

G(u1)

u1
>

G(u2)

u2
.

By similar arguments we check that

1 − G(u1)

1 − u1
>

1 − G(u2)

1 − u2
.

This implies that both G1(u) = G(u)/u and G2(u) = [1 − G(u)]/(1 − u) are decreasing on
(0, 1), and so

max
0≤u≤v≤1

G1(u)G2(v) = G1(0)G2(0) = ns1.

A construction of a sequence of distributions attaining the bound in the limit was presented in
the proof of Proposition 3.

Analogously, we prove the following corollary.

Corollary 3. If (6) is increasing (in particular, when s = (s1, . . . , sn) is nondecreasing) then
the inequality var T /σ 2 ≤ nsn is sharp.

Note that Corollaries 2 and 3 provide the following simple bounds on variances of series
and parallel systems:

var X1:n
σ 2 ≤ n,

var Xn:n
σ 2 ≤ n

(cf. Papadatos (1995)). Respective evaluations for other k-out-of-n systems follow from the
next corollary.
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Corollary 4. Assume that (6) is first increasing and then decreasing.

(i) If ns1 < 1 and nsn < 1, then there exist u1 and u2, 0 < u1 < u2 < 1, determined
uniquely by the equations

G2(u) = g(u), (17)

G1(u) = g(u), (18)

respectively, and u1 ≤ u0 ≤ u2 such that the bound

var T

σ 2 ≤ G1(u0)G2(u0) (19)

is sharp.

(ii) If nsn < 1 ≤ ns1 then there exists a unique solution 0 < u2 < 1 to (18), and 0 ≤ u0 ≤ u2
such that inequality (19) is sharp.

(iii) If ns1 < 1 ≤ nsn then there exists a unique solution 0 < u1 < 1 to (17) such that, for
some u1 ≤ u0 ≤ 1, inequality (19) is sharp.

Observe that the assumption that the signature sequence is first nondecreasing and then non-
increasing implies that (6) is increasing–decreasing. Note that it also implies either conditions
(i)–(iii) or s1 = · · · = sn = 1/n, which leads to the trivial identity var T = var X1.

Proof of Corollary 4. By assumption, (5) is strictly increasing, first convex and then con-
cave. Under (i), its graph lies below and above the diagonal of the unit cube [0, 1]2 at the right
and left neighborhoods of 0 and 1, respectively. The curve crosses the diagonal at a single
point. A thorough, but elementary, analysis of the graph leads to the conclusion that the slopes
G1(u) = G(u)/u of the lines joining (0, 0) with the graph points (u, G(u)), 0 < u ≤ 1, first
increase from ns1 over the whole convexity domain and continue to increase to a maximum
greater than 1, and ultimately decrease to 1 at 1. The maximum is attained at the unique
point at which the line is tangent to the curve, and this is determined by (18). Similarly,
we check that G2(u) = (1 − G(u))/(1 − u) first increases from 1 at 0 to a maximal value
(1−G(u1))/(1−u1) = g(u1) > 1, and then decreases to nsn. Point u1 precedes the inflection
point of G. By Proposition 2 we partition [0, 1] into three intervals, [0, u1], [u1, u2], and
[u2, 1]. Both G1 and G2 are increasing on [0, u1], and both are decreasing on [u2, 1]. In
the middle interval, G1 increases and G2 decreases. The unique pair of their local extrema
(u2, u1) lies beyond the triangle domain of maximization. The statement of Proposition 2
asserts that the constrained maximum of the right-hand side of (9) is located on the central part
{(u, u) : u1 ≤ u ≤ u2} of the diagonal. By Proposition 3, the respective bound is sharp.

In case (ii) the whole graph of the convex–concave function G lies above the diagonal. As
before, G1 first increases on [0, u2] and eventually decreases, but G2 is now decreasing on
the whole interval. By Proposition 2, the maximum point (u0, u0) is located on the lower part
{(u, u) : 0 ≤ u ≤ u2} of the diagonal, and the respective bound is sharp. In the last case, the
curve runs below the line, G1 is increasing, and G2 is increasing and decreasing on [0, u1] and
[u1, 1], respectively. By analogous arguments, the last conclusion follows.

The sharp bounds for k-out-of-n systems, 2 ≤ k ≤ n−1, can be deduced from Corollary 4(i).
In fact, Papadatos (1995) managed to prove that in these cases G1(u)G2(u), u1 ≤ u ≤ u2, is
maximized by a unique point at which the derivative of the product vanishes. We are not able
to prove an analogous claim in the case of general unimodal signature vectors.

https://doi.org/10.1239/jap/1253279857 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279857


904 K. JASIŃSKI ET AL.

A majority of systems have signatures satisfying the assumptions of the corollaries. All
the coherent systems of sizes up to four have either monotone or unimodal signature vectors.
Consequently, the respective density functions (6) are either monotone or unimodal, and the
bounds of Proposition 1 are sharp for these systems. The numerical values of the bounds
are presented in Table 1. In each row, for a given system, represented by the functional
dependence of its lifetime T on X1, . . . , Xn, we present the consecutive values of corresponding
signature coefficients, the variance bound, and the parameter u0 describing the limiting two-
point distribution attaining the bound. This parameter represents the probability of the smaller
of two points. Values u0 = 0 or 1 respectively mean that the probabilities of the smaller value
should tend to 0 or 1 in order to reach the bound in the limit.

Table 1: Bounds on variances of coherent systems with n = 2, 3, 4 components.

System s1 s2 s3 s4 Bound u0

X1:2 1 0 2 0
X2:2 0 1 2 1
X1:3 1 0 0 3 0

min(X1, max(X2, X3))
1
3

2
3 0 1.114 93 0.223 67

X2:3 0 1 0 1 0.5
max(X1, min(X2, X3)) 0 2

3
1
3 1.114 93 0.776 33

X3:3 0 0 1 3 1
X1:4 1 0 0 0 4 0

min(X1, X2, max(X3, X4))
1
2

1
2 0 0 2 0

min(X1, max2≤i<j≤4 min(Xi, Xj ))
1
4

3
4 0 0 1.270 86 0.182 98

min(X1, max(X2, X3), max(X2, X4))
1
4

7
12

1
6 0 1.195 29 0.197 63

min(X1, max(X2, X3, X4))
1
4

1
4

1
2 0 1.034 59 0.316 90

X2:4 0 1 0 0 1.087 02 0.325 30
max(min(X1, X2), min(X1, X3, X4),

min(X2, X3, X4)) 0 5
6

1
6 0 1.043 70 0.369 26

max(min(X1, X2), min(X3, X4)) 0 2
3

1
3 0 1.012 03 0.427 98

max(min(X1, X2), min(X1, X3),

min(X2, X3, X4)) 0 2
3

1
3 0 1.012 03 0.427 98

max(min(X1, X2), min(X2, X3),

min(X3, X4)) 0 1
2

1
2 0 1 0.5

max(min(X1, max(X2, X3, X4)),

min(X2, X3, X4)) 0 1
2

1
2 0 1 0.5

max(min(X1, max(X2, X3, X4)),

min(X2, X3)) 0 1
3

2
3 0 1.012 03 0.572 02

min(max(X1, X2), max(X3, X4)) 0 1
3

2
3 0 1.012 03 0.572 02

min(max(X1, X2), max(X1, X3, X4),

max(X2, X3, X4)) 0 1
6

5
6 0 1.043 70 0.630 74

X3:4 0 0 1 0 1.087 02 0.674 70
max(X1, min(X2, X3, X4)) 0 1

2
1
4

1
4 1.034 59 0.683 10

max(X1, min(X2, X4), min(X3, X4)) 0 1
6

7
12

1
4 1.195 29 0.802 37

max(X1, max2≤i<j≤4 min(Xi, Xj )) 0 0 3
4

1
4 1.270 86 0.817 02

max(X1, X2, min(X3, X4)) 0 0 1
2

1
2 2 1

X4:4 0 0 0 1 4 1
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We have found examples of coherent systems with multimodal signatures (the simplest one
is presented in Example 1, below), but all of them have unimodal densities (6) in the uniform
case. This means that, for all of them, the bounds of Proposition 1 are sharp. We conjecture that
for all ‘deterministic’ coherent systems, function (6) is either monotone or unimodal. On the
other hand, there are ‘random’ mixed systems for which the variance bounds of Proposition 1
are not sharp. Two of them are presented in Examples 2 and 3, below. In Example 2, the
maximum of the two-variable polynomial determining the bound is located at the border of the
triangle, and in Example 3 it lies in its interior.

Example 1. Consider a system of five components with lifetime T = max(min(X1, max(X2,

X3, X4, X5)), min(X2, X3, X4, X5)). The graph of the system is presented in Figure 1. It has
the signature vector (0, 2

5 , 1
5 , 2

5 , 0).
The density

g(u) = 2B1,4(u) + B2,4(u) + 2B3,4(u)

(cf. (6)) has derivative

g′(u) = 8B0,3(u) − 4B1,3(u) + 4B2,3(u) − 8B3,3(u) = 4(1 − 2u)
[
5
(
u − 1

2

)2 + 3
4

]
(cf. (16)), which implies that the former is symmetric about 1

2 , and first increasing and eventually
decreasing. Moreover,

G1(u) = B1,4(u) + B2,4(u) + 5
4B3,4(u) + B4,4(u)

= 4u − 6u2 + 5u3 − 2u4,

G2(u) = G1(1 − u).

The latter relation is a consequence of the fact that the signature vector is symmetric,
i.e. sn+1−i = si, i = 1, . . . , n, which implies that G(1−u) = 1−G(u). Applying Corollary 4,
we numerically determine the sharp variance bound

var T

σ 2 ≤ max
0≤u≤1

G1(u)G2(u) = G1
( 1

2

)
G2

( 1
2

) = 1,

attained in the limit when we approach a symmetric two-point distribution.

1

2

3

4

5

2 3 4 5

Figure 1: Coherent system of Example 1.
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Example 2. Take the mixed system which is a combination of series and parallel systems with
signature defined by s1 = sn = 1

2 , s2 = · · · = sn−1 = 0 for n ≥ 3. Then

G(u) = 1

2

n−1∑
k=1

Bk,n(u) + Bn,n(u),

G1(u) =
n−2∑
k=0

n

2(k + 1)
Bk,n−1(u) + Bn−1,n−1(u),

G′
1(u) = −

n−3∑
k=0

n(n − 1)

2(k + 1)(k + 2)
Bk,n−2(u) + n − 2

2
Bn−2,n−2(u). (20)

By Lemma 1, we deduce that G′
1(u) is first negative and then positive. Moreover,

G′
1

(
1

2

)
<

n − 2

2
Bn−2,n−2

(
1

2

)
− n(n − 1)

4
B0,n−2

(
1

2

)
= − (n − 3/2)2 + 7/4

2n
< 0.

It follows that (20) decreases from G1(0) = n/2 to a positive minimum at some 1
2 < u0 < 1,

at which (20) vanishes, and then increases to G1(1) = 1. We have G(1 − u) = 1 − G(u) and
G2(u) = G1(1 − u). This means that G2 is also decreasing and increasing with two maxima
G2(0) = 1 and G2(1) = n/2 at the ends, and one minimum at 0 < 1 − u0 < 1

2 . Applying
Proposition 2, we conclude that the function (u, v) 	→ G1(u)G2(v), 0 ≤ u ≤ v ≤ 1, has
three local maxima: one G1(0)G2(1) = n2/4 at the right-angle vertex and two G1(0)G2(0) =
G1(1)G2(1) = n/2 at the other two vertices. Therefore, the inequality

var T

σ 2 ≤ n2

4

of Proposition 1 is not sharp. However, the sharp bound is not less than n/2, which is attained
in the limit by sequences of continuous distributions concentrating about two points, with the
probability mass of one concentration region decreasing to 0.

Example 3. Consider the mixture of 2-out-of-6 and 5-out-of-6 systems with signature
(0, 1

2 , 0, 0, 1
2 , 0). Here

g(u) = 3B1,5(u) + 3B4,5(u)

is symmetric about 1
2 and bimodal. It has two maxima at 0.211 33 and 0.788 67, and a minimum

at 0.5. The function

G1(u) = 3
2B1,5(u) + B2,5(u) + 3

4B3,5(u) + 6
5B4,5(u) + B5,5(u)

first increases from 0 at 0 to G1(u1) = 1.009 60 at u1 = 0.398 79, then decreases to G1(u2) =
0.993 46 at u2 = 0.588 48, and increases to G1(u3) = 1.048 01 at u3 = 0.887 72, and
ultimately decreases to G1(1) = 1. Behavior of G2 can be easily deduced from the relation
G2(u) = G1(1 − u). Accordingly, there is a local maximum of G1(u)G2(v) at the point
(u1, 1 − u1) of the open triangle 0 < u < v < 1, and this amounts to

G1(u1)G2(1 − u1) = G2
1(u1) = 1.019 297.

The product restricted to the diagonal G1(u)G2(u), 0 ≤ u ≤ 1, is symmetric about 1
2 and

bimodal. The maximal diagonal value

G1(0.381 68)G2(0.381 68) = G1(0.618 32)G2(0.618 32) = 1.003 42
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is less. Therefore, the bound
var T

σ 2 ≤ 1.0192 97,

following from Proposition 1, is not sharp here.
The value 1.003 42 is the best bound for two-point distributions. We can get a greater value

when we consider, for instance, symmetric three-point distributions

Pu(X1 = a ± b) = u, Pu(X1 = a) = 1 − 2u, 0 < u < 1
2 .

We easily verify that

varu X1 = 2ub2, varu T = [G2:6(u) + G5:6(u)]b2,

and

sup
0<u<1/2

varu T

varu X1
= max

0≤u≤1/2
G1(u) = 1.009 602 ∈ (1.003 42, 1.019 297),

attained at u1 = 0.398 79.

Note that, taking into account limiting symmetric three-point distributions, we do not
improve the lower approximation n/2 of the sharp upper bound for the mixture of series and
parallel systems of Example 2. The value n2/4 seems to be the greatest possible upper evaluation
for variances of lifetimes of arbitrary mixed systems with n components that follows from
Proposition 1. It is significantly greater thann, which is the maximal upper estimate of Papadatos
(1995) for all k-out-of-n systems. It remains an open question if there exists a coherent or mixed
system and a distribution function of component lifetimes such that var T/σ 2 > n.

On the other hand, for each system with an arbitrary signature, there are component lifetime
distributions such that var T/σ 2 > 1 − ε for arbitrarily small ε > 0. To check the claim, it is
sufficient to show that

max
0≤u≤1

G1(u)G2(u) ≥ 1

by analyzing the cases where function (5) runs above, below, and crosses the straight line joining
(0, 0) and (1, 1). In the first case, we have G1(0) = ns1 ≥ 1, and so G1(0)G2(0) = ns1 ≥ 1. In
the second case, G1(1)G2(1) = nsn ≥ 1. In the third case, for any crossing point 0 < u0 < 1,
we obtain G1(u0)G2(u0) = 1.
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