INDEFINITE QUADRATIC POLYNOMIALS

by R. J. COOK

(Received 23 November, 1981)

1. Introduction. Let

$$
\begin{equation*}
Q(\mathbf{x})=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j} x_{i} x_{j} \quad\left(\alpha_{i j}=\alpha_{j i}\right) \tag{1}
\end{equation*}
$$

be an indefinite quadratic form with real coefficients. A well-known result, due to Birch, Davenport and Ridout [1], [5] and [6], states that if $n \geq 21$ then for any $\varepsilon>0$ there is an integer vector $\mathbf{x} \neq \mathbf{0}$ such that

$$
\begin{equation*}
|Q(\mathbf{x})|<\varepsilon . \tag{2}
\end{equation*}
$$

Recently [3] we have quantified this result, obtaining a function $g(n)$ such that $g(n) \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$ and such that for any $\eta>0$ and all large enough X there is an integer vector \mathbf{x} satisfying

$$
\begin{equation*}
0<|\mathbf{x}| \leq X \quad \text { and } \quad|Q(\mathbf{x})| \ll X^{-\mathrm{g}(n)+\eta} \tag{3}
\end{equation*}
$$

where $|\mathbf{x}|=\max \left|x_{i}\right|$ and the implicit constant in Vinogradov's \ll-notation is independent of X.

Suppose that when Q is expressed as a sum of squares of real linear forms, with positive and negative signs, there are r positive signs and $n-r$ negative signs, then we may say that Q is of type ($r, n-r$). We shall call a quadratic polynomial

$$
\begin{equation*}
F(\mathbf{x})=Q(\mathbf{x})+L(\mathbf{x})+C \tag{4}
\end{equation*}
$$

indefinite if the quadratic part $Q(\mathbf{x})$ is indefinite. It is not possible to obtain a complete analogue of (3) with Q replaced by a general quadratic polynomial. For example, if Q and L have integer coefficients and $C=\frac{1}{2}$ then clearly it is not possible to obtain a result like (3). So we shall suppose that $C=0$.

Theorem. Let $F(\mathbf{x})=Q(\mathbf{x})+L(\mathbf{x})$ be a quadratic polynomial in n variables and having no constant term. Suppose that Q is indefinite of type ($r, n-r$), where

$$
\begin{equation*}
\min (r, n-r) \geq 4 \tag{5}
\end{equation*}
$$

Then there exists an absolute constant A such that for

$$
\begin{equation*}
f(n)=-\frac{1}{3}+A / n \tag{6}
\end{equation*}
$$

and any $\eta>0$ and all large enough X there is an integer vector \mathbf{x} satisfying

$$
\begin{equation*}
0<|\mathbf{x}| \leq X \quad \text { and } \quad|F(\mathbf{x})| \ll X^{-f(n)+\eta} \tag{7}
\end{equation*}
$$

The proof of the theorem shows that $A<33$ and no doubt this could be improved; the major interest of the result is that $f(n) \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$.

Glasgow Math. J. 24 (1983) 133-138.

The methods used here are capable of providing a non-trivial result when $\min (r, n-r)=2$ or 3 , but the exponents obtained

$$
-\frac{1}{5}+O\left(n^{-1}\right) \quad \text { and } \quad-\frac{2}{7}+O\left(n^{-1}\right)
$$

respectively, are weaker. The detailed calculations in these cases are left to the reader.
2. Preliminary lemmas. Our first lemma, which is Lemma 1 of [3], is essentially a reformulation of the result of Birch and Davenport [2]. It shows that indefinite diagonal quadratic forms take small values.

Lemma 1. For any $\tau>0$ there exists $C(\tau)$ with the following property. For any real $\lambda_{1}, \ldots, \lambda_{5}$, not all of the same sign, and real numbers X_{1}, \ldots, X_{5}, Y, all at least 1 , satisfying

$$
\begin{equation*}
Y\left(Y^{5} \Pi\right)^{\tau}<C(\tau) X_{i}^{1 / 2}\left|\lambda_{i} \Pi^{-1}\right|^{\frac{1}{4}} \quad \text { for } \quad 1 \leq i \leq 5, \tag{8}
\end{equation*}
$$

where $\Pi=\left|\lambda_{1} \cdots \lambda_{5}\right|$, there exist integers x_{1}, \ldots, x_{5}, not all zero, such that

$$
\begin{equation*}
0 \leq x_{i} \leq X_{i} \quad \text { for } \quad i=1, \ldots, 5 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda_{1} x_{1}^{2}+\ldots+\lambda_{5} x_{5}^{2}\right|<Y^{-1} \tag{10}
\end{equation*}
$$

In order to replace the indefinite quadratic polynomial F with another polynomial that is almost a diagonal quadratic form we make use of the following lemma of Birch and Davenport [1], it is essentially a sophisticated version of Dirichlet's pigeon-hole principle.

Lemma 2. Suppose that $m<n$ and let $L_{1}(\mathbf{x}), \ldots, L_{m}(\mathbf{x})$ be m real linear forms in n variables x_{1}, \ldots, x_{n}, say

$$
\begin{equation*}
L_{i}(\mathbf{x})=\sum_{j=1}^{n} \gamma_{i i} x_{j} \quad \text { for } \quad i=1, \ldots, m \tag{11}
\end{equation*}
$$

Then, for any $P \geq 2$, there exists a non-zero integer vector \mathbf{x} satisfying

$$
\begin{equation*}
|\mathbf{x}| \leq P^{m} \quad \text { and } \quad \max _{i}\left|L_{i}(\mathbf{x})\right| \leq C_{0} P^{m-n} \sum_{j=1}^{n}\left|\gamma_{i j}\right| \tag{12}
\end{equation*}
$$

where C_{0} is an absolute constant.
Our next lemma is the crucial result and its proof takes up the remaining sections of this paper.

Lemma 3. Let $F(\mathbf{x})=Q(\mathbf{x})+L(\mathbf{x})$ be a quadratic polynomial in n variables, having no constant term. Let $Q(\mathbf{x})$ be indefinite of type (4, $n-4$). Then for any $\eta>0$ and all sufficiently large X there is an integer vector \mathbf{x} satisfying

$$
\begin{equation*}
0<|\mathbf{x}| \leq X \quad \text { and } \quad|F(\mathbf{x})| \ll X^{-\frac{1}{3}+(49 / 3 n)+\eta}, \tag{13}
\end{equation*}
$$

provided that n is large.

We now deduce the main theorem from Lemma 3. Replacing Q by $-Q$, if necessary, we may suppose that $\min (r, n-r)=r$. Using an appropriate integral unimodular transformation $\mathbf{x}=U \mathbf{y}$ and then completing the square, we can express Q in the form

$$
\begin{equation*}
-\alpha_{1} \xi_{1}^{2}-\ldots-\alpha_{n-r} \xi_{n-r}^{2}+\alpha_{n-r+1} \xi_{n-r+1}^{2}+\ldots+\alpha_{n} \xi_{n}^{2} \tag{14}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are positive and ξ_{1}, \ldots, ξ_{n} are linear forms with real coefficients having a triangular matrix

$$
\begin{equation*}
\xi_{j}=\beta_{i j} x_{i}+\ldots+\beta_{i n} x_{n} . \tag{15}
\end{equation*}
$$

Taking $x_{i}=0$ for $i=n-r+5, \ldots, n$, we see that Q represents a form Q_{1} of type $(4, n-r)$ in $n-r+4$ variables. Now $r \leq \frac{1}{2} n$ and so $n-r+4 \geq \frac{1}{2} n+4$. Thus, for any $\eta>0$ and large enough Ξ, there exist x_{1}, \ldots, x_{n-r+4} such that

$$
\begin{equation*}
0<\max \left|x_{i}\right| \leq \Xi \quad \text { and } \quad\left|F_{1}(\mathbf{x})\right|<\Xi \Xi^{-\frac{1}{3}+(A / n)+\eta}, \tag{16}
\end{equation*}
$$

for some absolute constant A. Since Q is of type ($r, n-r$) the forms ξ_{j} given by (15) are independent and so $\beta_{i j} \neq 0$ for $j=1, \ldots, n$. Inverting transformation U we find that there is a number $B=B(Q)$, independent of X and Ξ, such that

$$
\begin{equation*}
|\mathbf{y}| \leq B|\mathbf{x}| . \tag{17}
\end{equation*}
$$

Taking $\boldsymbol{B}=X / B$ in (16), we then obtain a suitable solution of the inequalities (7) since $\mathbf{y}=\mathbf{0}$ only if $\mathbf{x}=\mathbf{0}$.
3. A suitable diagonalization. We may now suppose that $Q(\mathbf{x})$ is an indefinite quadratic form of type (4, n-4). As in Davenport [4], there is a non-singular linear transformation $\mathbf{y}=T \mathbf{x}$ which takes $Q(\mathbf{x})$ into a quadratic form $Q^{\prime}(\mathbf{y})$ satisfying

$$
\begin{equation*}
Q^{\prime}\left(y_{1}, y_{2}, y_{3}, y_{4}, 0, \ldots, 0\right)>0 \tag{18}
\end{equation*}
$$

if y_{1}, \ldots, y_{4} are not all zero, and

$$
\begin{equation*}
Q^{\prime}\left(0,0,0,0, y_{5}, \ldots, y_{n}\right)<0 \tag{19}
\end{equation*}
$$

provided that y_{5}, \ldots, y_{n} are not all zero. Since T is non-singular, $|\mathbf{x}|$ is bounded by constant multiples of $|\mathbf{y}|$ and vice-versa. Therefore there is no loss of generality in proving Lemma 3 under the additional hypothesis that Q satisfies (18) and (19). Then

$$
\begin{equation*}
\alpha_{11}=Q(1,0, \ldots, 0)>0 \tag{20}
\end{equation*}
$$

With $Q(\mathbf{x})$ we associated the bilinear form

$$
\begin{equation*}
B(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j} x_{i} y_{j} \tag{21}
\end{equation*}
$$

and use a suitably chosen linear transformation

$$
\begin{equation*}
\mathbf{x}=u_{1} \mathbf{z}^{1}+\ldots+u_{5} \mathbf{z}^{5} \tag{22}
\end{equation*}
$$

where $\mathbf{z}^{1}, \ldots, \mathbf{z}^{5}$ are non-zero vectors in \mathbb{Z}^{n}, to show that $F(\mathbf{x})$ represents a quadratic polynomial that is close to a diagonal quadratic form in 5 variables.

Let

$$
\begin{equation*}
L(\mathbf{x})=\sum_{j=1}^{n} \lambda_{j} x_{j} \tag{23}
\end{equation*}
$$

We choose \mathbf{z}^{1} by applying Lemma 2 with $m=1, n=4$,

$$
\begin{equation*}
L_{1}(\mathbf{x})=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}+\lambda_{4} x_{4} \tag{24}
\end{equation*}
$$

and P replaced by Z. We obtain a non-zero integer vector

$$
\begin{equation*}
\mathbf{z}^{1}=\left(\zeta_{1}, \ldots, \zeta_{4}, 0, \ldots, 0\right) \tag{25}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\left|\mathbf{z}^{1}\right| \leq Z \quad \text { and } \quad\left|L\left(\mathbf{z}^{1}\right)\right| \ll Z^{-3} . \tag{26}
\end{equation*}
$$

Since Q satisfies (18), we have

$$
\begin{equation*}
Q\left(\mathbf{z}^{1}\right)=B\left(\mathbf{z}^{1}, \mathbf{z}^{1}\right)>0 . \tag{27}
\end{equation*}
$$

Having chosen $\mathbf{z}^{1}, \ldots, \mathbf{z}^{i-1}$, we choose \mathbf{z}^{i} by applying Lemma 2 with $m=j, L_{i}(\mathbf{x})=$ $B\left(\mathbf{z}^{i}, \mathbf{x}\right)$ for $i=1, \ldots, j-1$ and $L_{i}(\mathbf{x})=L(\mathbf{x})$. We obtain a non-zero integer vector \mathbf{z}^{i} such that

$$
\begin{align*}
\left|\mathbf{z}^{i}\right| \leq P^{j} \quad \text { for } \quad 2 \leq j \leq 5, \tag{28}\\
\left|B\left(\mathbf{z}^{1}, \mathbf{z}^{i}\right)\right| \ll Z P^{j-n} \quad \text { for } \quad 2 \leq j \leq 5, \tag{29}\\
\left|B\left(\mathbf{z}^{i}, z^{j}\right)\right| \ll P^{i+j-n} \quad \text { for } \quad 2 \leq i, j \leq 5, i \neq j, \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
\left|L\left(\mathbf{z}^{i}\right)\right| \ll P^{j-n} \quad \text { for } \quad 2 \leq j \leq 5 \tag{31}
\end{equation*}
$$

Since the exponents of P are negative, the effect of the transformation (22) is to take Q into a polynomial that is almost a diagonal form.
4. Proof of theorem. Under the linear transformation (22),

$$
\begin{equation*}
Q(\mathbf{x})=\Phi\left(u_{1}, \ldots, u_{5}\right)=\sum_{i=1}^{5} \sum_{j=1}^{5} \beta_{i j} u_{i} u_{j}, \tag{32}
\end{equation*}
$$

where $\beta_{i j}=B\left(\mathbf{z}^{i}, \mathbf{z}^{i}\right)$, and

$$
\begin{equation*}
L(\mathbf{x})=\Lambda\left(u_{1}, \ldots, u_{5}\right)=\sum_{j=1}^{5} \mu_{j} u_{j} \tag{33}
\end{equation*}
$$

where $\mu_{i}=L\left(\mathbf{z}^{i}\right)$. Thus

$$
\begin{equation*}
F(\mathbf{x})=\Phi_{0}(\mathbf{u})+\Phi_{1}(\mathbf{u})+\Lambda(\mathbf{u})=\Psi(\mathbf{u}) \tag{34}
\end{equation*}
$$

say, where

$$
\begin{equation*}
\Phi_{0}(\mathbf{u})=\beta_{11} u_{1}^{2}+\ldots+\beta_{55} u_{5}^{2} \tag{35}
\end{equation*}
$$

and $\Phi_{1}(\mathbf{u})=\Phi(\mathbf{u})-\Phi_{0}(\mathbf{u})$.

We consider the values taken by $\Psi(\mathbf{u})$, where

$$
\begin{equation*}
\left|u_{1}\right| \leq X Z^{-1} / 5 \text { and }\left|u_{i}\right| \leq X P^{-i} / 5 \text { for } 2 \leq i \leq 5 \tag{36}
\end{equation*}
$$

so that $|\mathbf{x}| \leq X$. Now

$$
\begin{equation*}
\left|\beta_{11}\right| \ll Z^{2} \text { and }\left|\beta_{i i}\right| \ll P^{2 i} \quad \text { for } \quad 2 \leq i \leq 5 \tag{37}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Pi=\left|\beta_{11} \ldots \beta_{55}\right| \ll Z^{2} P^{28} \tag{38}
\end{equation*}
$$

On taking

$$
\begin{equation*}
Y=X^{\frac{1}{2}-8} Z^{-\frac{1}{2}} P^{-7} \tag{39}
\end{equation*}
$$

for some fixed $\varepsilon>0$ and choosing $\tau>0$ sufficiently small, we have

$$
\begin{equation*}
\left(X Z^{-1}\right)^{\frac{1}{2}}\left|\beta_{11} \Pi^{-1}\right|^{\frac{1}{2}} \gg Y\left(Y^{5} \Pi\right)^{\tau} \tag{40}
\end{equation*}
$$

and, for $i=2, \ldots, 5$,

$$
\begin{equation*}
\left(X P^{-i}\right)^{\frac{1}{2}}\left|\beta_{i i} \Pi^{-1}\right|^{\frac{1}{4}} \gg Y\left(Y^{5} \Pi\right)^{\tau} . \tag{41}
\end{equation*}
$$

Further, let n be large,

$$
\begin{equation*}
P=X^{7 / 3 n} \quad \text { and } \quad Z=X^{\frac{1}{3}} \tag{42}
\end{equation*}
$$

so that

$$
\begin{equation*}
X^{2} P^{-n}=X Z^{-4}=X^{-\frac{1}{3}} \tag{43}
\end{equation*}
$$

If any $\left|\beta_{i i}\right|<Y^{-1}$ then, taking $x=\mathbf{z}^{i} \neq 0$, we have

$$
\begin{align*}
|F(\mathbf{x})| & \leq\left|\beta_{i i}\right|+\left|L\left(\mathbf{z}^{i}\right)\right| \\
& \ll Y^{-1}+Z^{-1}+P^{5-n} \ll Y^{-1} \tag{44}
\end{align*}
$$

from (26) and (31), so that \mathbf{z}^{i} is a suitable solution of the inequality (13). Now we may suppose that each $\left|\beta_{i i}\right| \geq Y^{-1}$ and, from (29) and (30), we see that the off-diagonal coefficients of Φ are $o\left(Y^{-1}\right)$, provided that n is large enough. Therefore Φ is nearly diagonal and is non-singular, so that if $\mathbf{u} \neq \mathbf{0}$ then $\mathbf{x} \neq \mathbf{0}$. Since Q represents Φ, Φ is of type ($r, 5-r$) where $r \leq 4$.

Since $\beta_{11}>0$, it now follows that $\beta_{11}, \ldots, \beta_{55}$ are not all of the same sign; so we may apply Lemma 1 to the diagonal form Φ_{0}. We obtain integers u_{1}, \ldots, u_{5}, not all zero, satisfying (36) and

$$
\begin{equation*}
\left|\beta_{11} u_{1}^{2}+\ldots+\beta_{55} u_{5}^{2}\right|<Y^{-1} \tag{45}
\end{equation*}
$$

Now, from (29), (30) and (36),

$$
\begin{align*}
\left|\Phi_{1}(\mathbf{u})\right|= & \left|\sum_{i \neq j} \sum_{i j} u_{i} u_{j}\right| \ll \sum_{i} Z P^{j-n} X Z^{-1} X P^{-j} \\
& +\sum_{i \neq j} P^{i+j-n} X P^{-i} X P^{-i} \ll X^{2} P^{-n}=X^{-\frac{1}{3}} \tag{46}
\end{align*}
$$

From (26), (31) and (36), we have

$$
\begin{align*}
|\Lambda(\mathbf{u})| & \leq \sum_{j=1}^{5}\left|L\left(\mathbf{z}^{i}\right)\right|\left|u_{i}\right| \\
& \ll X Z^{-4}+X P^{-n} \\
& \ll X^{-\frac{1}{3}} . \tag{47}
\end{align*}
$$

Thus there exist u_{1}, \ldots, u_{5}, not all zero, satisfying (36) and

$$
\begin{aligned}
|\Psi(\mathbf{u})| & \leq\left|\Phi_{0}(\mathbf{u})\right|+\left|\Phi_{1}(\mathbf{u})\right|+|\Lambda(\mathbf{u})| \\
& \ll Y^{-1}+X^{-\frac{1}{3}} \\
& \ll X^{-\frac{1}{3}+(49 / 3 n)+\varepsilon}
\end{aligned}
$$

and then $|\mathbf{x}| \leq X, \mathbf{x} \neq \mathbf{0}$ since $\mathbf{u} \neq \mathbf{0}$, and $F(\mathbf{x})=\Psi(\mathbf{u})$, which completes the proof.

REFERENCES

1. B. J. Birch and H. Davenport, Indefinite quadratic forms in many variables, Mathematika 5 (1958), 8-12.
2. B. J. Birch and H. Davenport, On a theorem of Davenport and Heilbronn, Acta Math. 100 (1958), 259-279.
3. R. J. Cook, Small values of indefinite quadratic forms and polynomials in many variables (submitted for publication).
4. H. Davenport, Indefinite quadratic forms in many variables, Mathematika 3 (1956), 81-101.
5. H. Davenport and D. Ridout, Indefinite quadratic forms, Proc. London Math. Soc. (3) 9 (1959), 554-555.
6. D. Ridout, Indefinite quadratic forms, Mathematika 5 (1958), 122-124.

University of Sheffield
Sheffield S10 2TN

