INDEFINITE QUADRATIC POLYNOMIALS

by R. J. COOK

(Received 23 November, 1981)

1. Introduction. Let

$$Q(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i x_j \qquad (\alpha_{ij} = \alpha_{ji})$$
(1)

be an indefinite quadratic form with real coefficients. A well-known result, due to Birch, Davenport and Ridout [1], [5] and [6], states that if $n \ge 21$ then for any $\varepsilon > 0$ there is an integer vector $\mathbf{x} \ne \mathbf{0}$ such that

$$|\mathbf{Q}(\mathbf{x})| < \varepsilon. \tag{2}$$

Recently [3] we have quantified this result, obtaining a function g(n) such that $g(n) \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$ and such that for any $\eta > 0$ and all large enough X there is an integer vector **x** satisfying

$$0 < |\mathbf{x}| \le X \quad \text{and} \quad |Q(\mathbf{x})| \ll X^{-g(n)+\eta}, \tag{3}$$

where $|\mathbf{x}| = \max |x_i|$ and the implicit constant in Vinogradov's «-notation is independent of X.

Suppose that when Q is expressed as a sum of squares of real linear forms, with positive and negative signs, there are r positive signs and n-r negative signs, then we may say that Q is of type (r, n-r). We shall call a quadratic polynomial

$$F(\mathbf{x}) = Q(\mathbf{x}) + L(\mathbf{x}) + C \tag{4}$$

indefinite if the quadratic part $Q(\mathbf{x})$ is indefinite. It is not possible to obtain a complete analogue of (3) with Q replaced by a general quadratic polynomial. For example, if Q and L have integer coefficients and $C = \frac{1}{2}$ then clearly it is not possible to obtain a result like (3). So we shall suppose that C = 0.

THEOREM. Let $F(\mathbf{x}) = Q(\mathbf{x}) + L(\mathbf{x})$ be a quadratic polynomial in n variables and having no constant term. Suppose that Q is indefinite of type (r, n-r), where

$$\min(\mathbf{r}, \mathbf{n} - \mathbf{r}) \ge 4. \tag{5}$$

Then there exists an absolute constant A such that for

$$f(n) = -\frac{1}{3} + A/n$$
 (6)

and any $\eta > 0$ and all large enough X there is an integer vector **x** satisfying

$$0 < |\mathbf{x}| \le X \quad and \quad |F(\mathbf{x})| \ll X^{-f(n)+\eta}. \tag{7}$$

The proof of the theorem shows that A < 33 and no doubt this could be improved; the major interest of the result is that $f(n) \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$.

The methods used here are capable of providing a non-trivial result when min(r, n-r) = 2 or 3, but the exponents obtained

$$-\frac{1}{5}+O(n^{-1})$$
 and $-\frac{2}{7}+O(n^{-1})$,

respectively, are weaker. The detailed calculations in these cases are left to the reader.

2. Preliminary lemmas. Our first lemma, which is Lemma 1 of [3], is essentially a reformulation of the result of Birch and Davenport [2]. It shows that indefinite diagonal quadratic forms take small values.

LEMMA 1. For any $\tau > 0$ there exists $C(\tau)$ with the following property. For any real $\lambda_1, \ldots, \lambda_5$, not all of the same sign, and real numbers X_1, \ldots, X_5 , Y, all at least 1, satisfying

$$Y(Y^{5}\Pi)^{\tau} < C(\tau)X_{i}^{1/2} |\lambda_{i}\Pi^{-1}|^{\frac{1}{4}} \quad for \quad 1 \le i \le 5,$$
(8)

where $\Pi = |\lambda_1 \cdots \lambda_5|$, there exist integers x_1, \ldots, x_5 , not all zero, such that

$$0 \le x_i \le X_i \quad for \quad i = 1, \dots, 5 \tag{9}$$

and

$$|\lambda_1 x_1^2 + \ldots + \lambda_5 x_5^2| < Y^{-1}.$$
(10)

In order to replace the indefinite quadratic polynomial F with another polynomial that is almost a diagonal quadratic form we make use of the following lemma of Birch and Davenport [1], it is essentially a sophisticated version of Dirichlet's pigeon-hole principle.

LEMMA 2. Suppose that m < n and let $L_1(\mathbf{x}), \ldots, L_m(\mathbf{x})$ be m real linear forms in n variables x_1, \ldots, x_n , say

$$L_i(\mathbf{x}) = \sum_{j=1}^n \gamma_{ij} x_j \quad for \quad i = 1, \dots, m.$$
(11)

Then, for any $P \ge 2$, there exists a non-zero integer vector **x** satisfying

$$|\mathbf{x}| \le P^m \quad and \quad \max_i |L_i(\mathbf{x})| \le C_0 P^{m-n} \sum_{j=1}^n |\gamma_{ij}|, \tag{12}$$

where C_0 is an absolute constant.

Our next lemma is the crucial result and its proof takes up the remaining sections of this paper.

LEMMA 3. Let $F(\mathbf{x}) = Q(\mathbf{x}) + L(\mathbf{x})$ be a quadratic polynomial in n variables, having no constant term. Let $Q(\mathbf{x})$ be indefinite of type (4, n-4). Then for any $\eta > 0$ and all sufficiently large X there is an integer vector \mathbf{x} satisfying

$$0 < |\mathbf{x}| \le X \quad and \quad |F(\mathbf{x})| \ll X^{-\frac{1}{3} + (49/3n) + \eta},$$
 (13)

provided that n is large.

QUADRATIC POLYNOMIALS 135

We now deduce the main theorem from Lemma 3. Replacing Q by -Q, if necessary, we may suppose that $\min(r, n-r) = r$. Using an appropriate integral unimodular transformation $\mathbf{x} = U\mathbf{y}$ and then completing the square, we can express Q in the form

$$-\alpha_{1}\xi_{1}^{2}-\ldots-\alpha_{n-r}\xi_{n-r}^{2}+\alpha_{n-r+1}\xi_{n-r+1}^{2}+\ldots+\alpha_{n}\xi_{n}^{2}, \qquad (14)$$

where $\alpha_1, \ldots, \alpha_n$ are positive and ξ_1, \ldots, ξ_n are linear forms with real coefficients having a triangular matrix

$$\xi_j = \beta_{jj} x_j + \ldots + \beta_{jn} x_n. \tag{15}$$

Taking $x_i = 0$ for i = n - r + 5, ..., n, we see that Q represents a form Q_1 of type (4, n-r) in n-r+4 variables. Now $r \leq \frac{1}{2}n$ and so $n-r+4 \geq \frac{1}{2}n+4$. Thus, for any $\eta > 0$ and large enough Ξ , there exist x_1, \ldots, x_{n-r+4} such that

$$0 < \max |x_i| \le \Xi$$
 and $|F_1(\mathbf{x})| < \Xi^{-\frac{1}{3} + (A/n) + \eta}$, (16)

for some absolute constant A. Since Q is of type (r, n-r) the forms ξ_j given by (15) are independent and so $\beta_{ij} \neq 0$ for j = 1, ..., n. Inverting transformation U we find that there is a number B = B(Q), independent of X and Ξ , such that

$$|\mathbf{y}| \le B \, |\mathbf{x}|. \tag{17}$$

Taking $\Xi = X/B$ in (16), we then obtain a suitable solution of the inequalities (7) since y=0 only if x=0.

3. A suitable diagonalization. We may now suppose that $Q(\mathbf{x})$ is an indefinite quadratic form of type (4, n-4). As in Davenport [4], there is a non-singular linear transformation $\mathbf{y} = T\mathbf{x}$ which takes $Q(\mathbf{x})$ into a quadratic form $Q'(\mathbf{y})$ satisfying

$$Q'(y_1, y_2, y_3, y_4, 0, \dots, 0) > 0$$
⁽¹⁸⁾

if y_1, \ldots, y_4 are not all zero, and

$$Q'(0, 0, 0, 0, y_5, \dots, y_n) < 0 \tag{19}$$

provided that y_s, \ldots, y_n are not all zero. Since T is non-singular, $|\mathbf{x}|$ is bounded by constant multiples of $|\mathbf{y}|$ and vice-versa. Therefore there is no loss of generality in proving Lemma 3 under the additional hypothesis that Q satisfies (18) and (19). Then

$$\alpha_{11} = Q(1, 0, \dots, 0) > 0. \tag{20}$$

With $Q(\mathbf{x})$ we associated the bilinear form

$$B(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i y_j$$
(21)

and use a suitably chosen linear transformation

$$\mathbf{x} = u_1 \mathbf{z}^1 + \ldots + u_5 \mathbf{z}^5, \tag{22}$$

where $\mathbf{z}^1, \ldots, \mathbf{z}^5$ are non-zero vectors in \mathbb{Z}^n , to show that $F(\mathbf{x})$ represents a quadratic polynomial that is close to a diagonal quadratic form in 5 variables.

Let

$$L(\mathbf{x}) = \sum_{j=1}^{n} \lambda_j x_j.$$
⁽²³⁾

We choose z^1 by applying Lemma 2 with m = 1, n = 4,

$$L_1(\mathbf{x}) = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 \tag{24}$$

and P replaced by Z. We obtain a non-zero integer vector

$$\mathbf{z}^{1} = (\zeta_{1}, \dots, \zeta_{4}, 0, \dots, 0)$$
 (25)

satisfying

$$|\mathbf{z}^1| \le Z$$
 and $|L(\mathbf{z}^1)| \ll Z^{-3}$. (26)

Since Q satisfies (18), we have

$$Q(\mathbf{z}^{1}) = B(\mathbf{z}^{1}, \mathbf{z}^{1}) > 0.$$
 (27)

Having chosen $\mathbf{z}^1, \ldots, \mathbf{z}^{i-1}$, we choose \mathbf{z}^i by applying Lemma 2 with m = j, $L_i(\mathbf{x}) = B(\mathbf{z}^i, \mathbf{x})$ for $i = 1, \ldots, j-1$ and $L_j(\mathbf{x}) = L(\mathbf{x})$. We obtain a non-zero integer vector \mathbf{z}^i such that

$$|\mathbf{z}^{j}| \le P^{j} \quad \text{for} \quad 2 \le j \le 5, \tag{28}$$

$$|B(\mathbf{z}^1, \mathbf{z}^j)| \ll ZP^{j-n} \quad \text{for} \quad 2 \le j \le 5,$$
(29)

$$|B(\mathbf{z}^{i}, \mathbf{z}^{j})| \ll P^{i+j-n} \quad \text{for} \quad 2 \le i, j \le 5, i \ne j,$$

$$(30)$$

and

$$|L(\mathbf{z}^{j})| \ll P^{j-n} \quad \text{for} \quad 2 \le j \le 5.$$
(31)

Since the exponents of P are negative, the effect of the transformation (22) is to take Q into a polynomial that is almost a diagonal form.

4. Proof of theorem. Under the linear transformation (22),

$$Q(\mathbf{x}) = \Phi(u_1, \ldots, u_5) = \sum_{i=1}^{5} \sum_{j=1}^{5} \beta_{ij} u_i u_j, \qquad (32)$$

where $\beta_{ij} = B(\mathbf{z}^i, \mathbf{z}^j)$, and

$$L(\mathbf{x}) = \Lambda(u_1, ..., u_5) = \sum_{j=1}^{5} \mu_j u_j,$$
 (33)

where $\mu_i = L(\mathbf{z}^i)$. Thus

$$F(\mathbf{x}) = \Phi_0(\mathbf{u}) + \Phi_1(\mathbf{u}) + \Lambda(\mathbf{u}) = \Psi(\mathbf{u}), \tag{34}$$

say, where

$$\Phi_0(\mathbf{u}) = \beta_{11}u_1^2 + \ldots + \beta_{55}u_5^2 \tag{35}$$

and $\Phi_1(\mathbf{u}) = \Phi(\mathbf{u}) - \Phi_0(\mathbf{u})$.

136

We consider the values taken by $\Psi(\mathbf{u})$, where

$$|u_1| \le XZ^{-1}/5$$
 and $|u_i| \le XP^{-i}/5$ for $2 \le i \le 5$ (36)

so that $|\mathbf{x}| \leq X$. Now

$$|\beta_{11}| \ll Z^2 \text{ and } |\beta_{ii}| \ll P^{2i} \text{ for } 2 \le i \le 5$$
 (37)

so that

$$\Pi = |\beta_{11} \dots \beta_{55}| \ll Z^2 P^{28}.$$
(38)

On taking

$$Y = X^{\frac{1}{2} - \epsilon} Z^{-\frac{1}{2}} P^{-7}$$
(39)

for some fixed $\varepsilon > 0$ and choosing $\tau > 0$ sufficiently small, we have

$$(XZ^{-1})^{\frac{1}{2}}|\beta_{11}\Pi^{-1}|^{\frac{1}{4}} \gg Y(Y^{5}\Pi)^{\tau}$$
(40)

and, for i = 2, ..., 5,

$$(XP^{-i})^{\frac{1}{2}} |\beta_{ii}\Pi^{-1}|^{\frac{1}{4}} \gg Y(Y^{5}\Pi)^{\tau}.$$
(41)

Further, let n be large,

$$P = X^{7/3n}$$
 and $Z = X^{\frac{1}{3}}$ (42)

so that

$$X^2 P^{-n} = X Z^{-4} = X^{-\frac{1}{3}}.$$
(43)

If any $|\beta_{ii}| < Y^{-1}$ then, taking $\mathbf{x} = \mathbf{z}^i \neq 0$, we have

$$|F(\mathbf{x})| \le |\beta_{ii}| + |L(\mathbf{z}^{i})| \ll Y^{-1} + Z^{-1} + P^{5-n} \ll Y^{-1},$$
(44)

from (26) and (31), so that \mathbf{z}^i is a suitable solution of the inequality (13). Now we may suppose that each $|\beta_{ii}| \ge Y^{-1}$ and, from (29) and (30), we see that the off-diagonal coefficients of Φ are $o(Y^{-1})$, provided that *n* is large enough. Therefore Φ is nearly diagonal and is non-singular, so that if $\mathbf{u} \neq \mathbf{0}$ then $\mathbf{x} \neq \mathbf{0}$. Since *Q* represents Φ, Φ is of type (r, 5-r) where $r \le 4$.

Since $\beta_{11} > 0$, it now follows that $\beta_{11}, \ldots, \beta_{55}$ are not all of the same sign; so we may apply Lemma 1 to the diagonal form Φ_0 . We obtain integers u_1, \ldots, u_5 , not all zero, satisfying (36) and

$$|\beta_{11}u_1^2 + \ldots + \beta_{55}u_5^2| < Y^{-1}.$$
(45)

Now, from (29), (30) and (36),

$$|\Phi_{1}(\mathbf{u})| = \left| \sum_{i \neq j} \beta_{ij} u_{i} u_{j} \right| \ll \sum_{j} ZP^{j-n} XZ^{-1} XP^{-j} + \sum_{i \neq j} P^{i+j-n} XP^{-i} XP^{-j} \ll X^{2}P^{-n} = X^{-\frac{1}{3}}.$$
 (46)

From (26), (31) and (36), we have

$$|\Lambda(\mathbf{u})| \leq \sum_{j=1}^{5} |L(\mathbf{z}^{j})| |u_{j}|$$

$$\ll XZ^{-4} + XP^{-n}$$

$$\ll X^{-\frac{1}{3}}.$$
(47)

Thus there exist u_1, \ldots, u_5 , not all zero, satisfying (36) and

$$\begin{aligned} |\Psi(\mathbf{u})| &\leq |\Phi_0(\mathbf{u})| + |\Phi_1(\mathbf{u})| + |\Lambda(\mathbf{u})| \\ &\ll Y^{-1} + X^{-\frac{1}{3}} \\ &\ll X^{-\frac{1}{3} + (49/3n) + \varepsilon} \end{aligned}$$

and then $|\mathbf{x}| \le X$, $\mathbf{x} \ne \mathbf{0}$ since $\mathbf{u} \ne \mathbf{0}$, and $F(\mathbf{x}) = \Psi(\mathbf{u})$, which completes the proof.

REFERENCES

1. B. J. Birch and H. Davenport, Indefinite quadratic forms in many variables, Mathematika 5 (1958), 8-12.

2. B. J. Birch and H. Davenport, On a theorem of Davenport and Heilbronn, Acta Math. 100 (1958), 259–279.

3. R. J. Cook, Small values of indefinite quadratic forms and polynomials in many variables (submitted for publication).

4. H. Davenport, Indefinite quadratic forms in many variables, Mathematika 3 (1956), 81-101.

5. H. Davenport and D. Ridout, Indefinite quadratic forms, Proc. London Math. Soc. (3) 9 (1959), 554-555.

6. D. Ridout, Indefinite quadratic forms, Mathematika 5 (1958), 122-124.

UNIVERSITY OF SHEFFIELD SHEFFIELD S10 2TN

138