ALGEBRAS ASSOCIATED WITH A FREE INVERSE MONOID

M. J. CRABB

(Received 21 April 2006; accepted 18 October 2006)

Communicated by D. Easdown

Abstract

Let S be an ideal of the free inverse monoid on a set X, and let \mathcal{B} denote the Banach algebra $l^{1}(S)$. It is shown that the following statements are equivalent: \mathcal{B} is $*$-primitive; \mathcal{B} is prime; X is infinite. A similar result holds if \mathcal{B} is replaced by $\mathbb{C}[S]$, the complex semigroup algebra of S.

2000 Mathematics subject classification: 43A20.
Keywords and phrases: primitivity, semigroup algebra.

By a $*$-module for an algebra A over the complex field \mathbb{C}, with involution *, we mean a (left) module V that admits an inner product $\langle\cdot \mid \cdot\rangle$ such that, for all $u, v \in V$ and all $a \in A$,

$$
\langle a u \mid v\rangle=\left\langle u \mid a^{*} v\right\rangle .
$$

As in [2], we say that A is $*$-primitive if and only if it has a faithful irreducible $*$-module. Clearly, if A is $*$-primitive then it is primitive.

Let S be an inverse semigroup, and let $l^{1}(S)$ denote the Banach $*$-algebra consisting of all functions $a: S \rightarrow \mathbb{C}$ such that $\sum_{s \in S}|a(s)|<\infty$. Addition and scalar multiplication are defined pointwise, multiplication is convolution, and $\|a\|$ $=\sum_{s \in S}|a(s)|$ for $a \in l^{1}(S)$. As is customary, we identify the elements of S with their characteristic functions, and write a typical element of $l^{1}(S)$ in the form $\sum_{x \in S} \alpha_{x} x$, where each $\alpha_{x} \in \mathbb{C}$ and $\sum_{x \in S}\left|\alpha_{x}\right|<\infty$. The involution on $l^{1}(S)$ is given by the rule that $\left(\sum \alpha_{x} x\right)^{*}=\sum \overline{\alpha_{x}} x^{-1}$, where $x \mapsto x^{-1}$ is inversion in S. Note that $\left\|a^{*}\right\|=\|a\|$ for all $a \in l^{1}(S)$.

The subalgebra of $l^{1}(S)$ consisting of all functions $S \rightarrow \mathbb{C}$ of finite support is the usual semigroup algebra of S over \mathbb{C}, and is denoted by $\mathbb{C}[S]$. The involution * on $l^{1}(S)$ restricts to an involution on $\mathbb{C}[S]$.

[^0]We shall not distinguish singleton sets from their elements. The cardinal of a set S is denoted by $|S|$.

The free inverse monoid on a nonempty set X can be constructed as follows. Let G_{X} denote the free group on X, the set of all reduced words in the formal alphabet $X \cup X^{-1}$ subject to the usual multiplication. For $w \in G_{X}$, denote by \bar{w} the set of all prefixes of w in reduced form, including 1 and w. For $H \subseteq G_{X}$, define $\bar{H}:=\bigcup_{h \in H} \bar{h}$. We say that H is left-closed if $\bar{H}=H$. Let \mathcal{E}_{X} denote the set of all nonempty finite left-closed subsets of G_{X}. Note that $\bar{g} \in \mathcal{E}_{X}$ for all $g \in G_{X}$. Write

$$
M_{X}:=\left\{(A, g) \in \mathcal{E}_{X} \times G_{X} \mid g \in A\right\}
$$

It can be verified that if $(A, g),(B, h) \in M_{X}$ then $A \cup g B \in \mathcal{E}_{X}$, and so we can define a multiplication in M_{X} by the rule that

$$
(A, g)(B, h)=(A \cup g B, g h)
$$

With this definition, M_{X} is the free inverse monoid on X, where $(A, g)^{-1}$ $=\left(g^{-1} A, g^{-1}\right)$ for all $(A, g) \in M_{X}$ [4]. The element $(1,1)$ is the identity of M_{X} and the ideal $M_{X} \backslash(1,1)$ of M_{X} is the free inverse semigroup on X.

For $A \subseteq G_{X}$, define $\operatorname{con}(A)$, the content of A, by
$\operatorname{con}(A):=\left\{x \in X \mid x\right.$ or x^{-1} occurs in the reduced form of some element of $\left.A\right\}$.
We require the following lemma, taken from [3]. For a proof, see [2] or [5].
Lemma 1. Let \mathcal{A} be a Banach algebra, V a Banach space and \circ a left action of \mathcal{A} on V such that

$$
\|a \circ v\| \leq \kappa\|a\|\|v\| \quad \text { for all } a \in \mathcal{A}, v \in V
$$

where κ is a positive constant. Suppose that there exists a cyclic vector v_{0} in V and that for all $v \in V \backslash 0$ there exists a sequence $\left(a_{n}\right)$ in \mathcal{A} such that $a_{n} \circ v \rightarrow v_{0}$. Then V is irreducible.

The next lemma provides the key step in the proof of the main result.
Lemma 2. Let X be an infinite set. Then $l^{1}\left(M_{X}\right)$ is $*$-primitive.
Proof. Write $\mathcal{A}:=l^{1}\left(M_{X}\right)$. Since $|X|=|X \times \mathbb{N}| \mid$, there exists a set \mathcal{S} with cardinality $|X|$ whose elements are countably-infinite pairwise-disjoint subsets of X. Then $|\mathcal{S}|=|X|=\left|\mathcal{E}_{X}\right|$, and so there exists a bijection $\theta: \mathcal{E}_{X} \rightarrow \mathcal{S}$. For each $A \in \mathcal{E}_{X}$, write $\phi(A):=\theta(A) \backslash \operatorname{con}(A)$. Since $\operatorname{con}(A)$ is finite, each $\phi(A)$ is an infinite subset of X; further, if A and B are distinct elements of \mathcal{E}_{X} then $\phi(A) \cap \phi(B)=\emptyset$. Define $H \subset G_{X}$ by

$$
H:=\{1\} \cup\left[\bigcup_{A \in \mathcal{E}_{X}} \bigcup_{x \in \phi(A)} x A\right] .
$$

Note that H is left-closed. Write $H^{-1}:=\left\{h^{-1} \mid h \in H\right\}$, and define V to be the Banach space $l^{1}\left(H^{-1}\right)$. Let V have the inner product $\langle\cdot \mid \cdot\rangle$, which has H^{-1} as an
orthonormal set. We define an action of $l^{1}\left(M_{X}\right)$ on V as follows. For $(A, g) \in M_{X}$ and $v \in H^{-1}$, write

$$
(A, g) \circ v:= \begin{cases}g v & \text { if } A \subseteq g v H \\ 0 & \text { otherwise }\end{cases}
$$

If here $A \subseteq g v H$, then $1 \in g v H$, and so $g v \in H^{-1}$. Let $(A, g),(B, h) \in M_{X}$ and $v \in H^{-1}$. Then

$$
(B, h) \circ[(A, g) \circ v]= \begin{cases}h g v & \text { if } A \subseteq g v H \text { and } B \subseteq h g v H \\ 0 & \text { otherwise }\end{cases}
$$

Also,

$$
\begin{aligned}
{[(B, h)(A, g)] \circ v } & =(B \cup h A, h g) \circ v \\
& = \begin{cases}h g v & \text { if } B \cup h A \subseteq h g v H, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Since $B \cup h A \subseteq h g v H$ if and only if $A \subseteq g v H$ and $B \subseteq h g v H$, it follows that $[(B, h)(A, g)] \circ v=(B, h)[(A, g) \circ v]$. For all $(A, g) \in M_{X}$ and $v \in H^{-1}, \|(A, g) \circ$ $v\|\leq 1=\| v \|$. Hence, by linearity and continuity, we can extend \circ to a left action of \mathcal{A} on V with the property that

$$
(\forall a \in \mathcal{A})(\forall v \in V) \quad\|a \circ v\| \leq\|a\|\|v\| .
$$

We first show that the action is faithful. Let $a=\sum_{0}^{\infty} \alpha_{k}\left(A_{k}, g_{k}\right) \in \mathcal{A}$, with $\alpha_{k} \in \mathbb{C}$, $\alpha_{0} \neq 0$, the $\left(A_{k}, g_{k}\right)$ distinct in M_{X}, and $\left|A_{0}\right|$ minimal among the $\left|A_{k}\right|$. Choose $n \in \mathbb{N}$ such that $\sum_{k>n}\left|\alpha_{k}\right|<\left|\alpha_{0}\right|$, and then choose $z \in \phi\left(A_{0}\right) \backslash \bigcup_{0}^{n} \operatorname{con}\left(A_{k}\right)$. This is possible since $\phi\left(A_{0}\right)$ is infinite. Note that $z, z g_{0} \in H$, since $z A_{0} \subset H$. Consider $\left\langle a \circ g_{0}^{-1} z^{-1} \mid z^{-1}\right\rangle$. Contributions to this come only from terms $\alpha_{k}\left(A_{k}, g_{k}\right)$ with $g_{k}=g_{0}$ and $A_{k} \subseteq z^{-1} H$. Now,

$$
z^{-1} H=z^{-1} \cup A_{0} \cup\left[\bigcup_{A \in \mathcal{E}_{X}} \bigcup_{x \in \phi(A) \backslash z} z^{-1} x A\right]
$$

In each set $z^{-1} x A$ here, x and z are distinct elements of X with $x \notin \operatorname{con}(A)$ (since $x \in \phi(A)$). Thus every element of $z^{-1} H \backslash A_{0}$ has z in its content. Hence if $k \leq n$ and $A_{k} \subseteq z^{-1} H$ then $A_{k} \subseteq A_{0}$, and so $A_{k}=A_{0}$; if also $g_{k}=g_{0}$, then $k=0$. Since $A_{0} \subseteq z^{-1} H,\left(A_{0}, g_{0}\right) \circ g_{0}^{-1} z^{-1}=z^{-1}$. Therefore

$$
\left\langle a \circ g_{0}^{-1} z^{-1} \mid z^{-1}\right\rangle=\alpha_{0}+\sum_{\text {some } k>n} \alpha_{k} \neq 0,
$$

and so $a \circ V \neq 0$. This shows that the representation is faithful.
Now consider irreducibility. We first prove that the element $1 \in V$ is cyclic. For all $h \in H, \bar{h} \in \mathcal{E}_{X}$ and $\bar{h} \subseteq H$. Hence, $\left(h^{-1} \bar{h}, h^{-1}\right)=\left(\overline{h^{-1}}, h^{-1}\right) \in M_{X}$ and
$\left(h^{-1} \bar{h}, h^{-1}\right) \circ 1=h^{-1}$. Consider $v \in V, v=\sum_{1}^{\infty} \alpha_{k} h_{k}^{-1}$, with $\alpha_{k} \in \mathbb{C}$ and $h_{k} \in H$. Then $a:=\sum_{1}^{\infty} \alpha_{k}\left(h_{k}^{-1} \overline{h_{k}}, h_{k}^{-1}\right) \in l^{1}\left(M_{X}\right)$ and $a \circ 1=v$. Therefore $1 \in V$ is cyclic.

Let $v \in V \backslash 0$. Write $v=\sum_{0}^{\infty} \alpha_{k} g_{k}^{-1}$, with $\alpha_{k} \in \mathbb{C}, \alpha_{0} \neq 0$, and the g_{k} distinct elements of H. Since $g_{0} \in H, \overline{g_{0}} \subset H$, and so $\left(\overline{g_{0}}, g_{0}\right) \circ g_{0}^{-1}=1$. For each k, $\left(\overline{g_{0}}, g_{0}\right) \circ g_{k}^{-1}$ is either $g_{0} g_{k}^{-1}$ or 0 . Therefore we can write $\left(\overline{g_{0}}, g_{0}\right) \circ v=\sum_{0}^{\infty} \beta_{k} h_{k}^{-1}$, where $h_{k} \in H, h_{0}=1, h_{k} \neq 1$ for all $k>0, \beta_{k} \in \mathbb{C}$, and $\beta_{0}=\alpha_{0}$. For each $k \in \mathbb{N}$, since $h_{k} \in H \backslash 1, h_{k} \in x_{k} A_{k}$ for some $A_{k} \in \mathcal{E}_{X}$ and $x_{k} \in \phi\left(A_{k}\right)$. For each $n \in \mathbb{N}$, choose $z_{n} \in \phi(1) \backslash \bigcup_{1}^{n} \operatorname{con}\left(A_{k}\right)$. Then $z_{n}=z_{n} 1 \in H$, and $\overline{z_{n}} \subset H$. Let $n \in \mathbb{N}$. For $k \in$ $\{1,2, \ldots, n\}, h_{k} z_{n} \in x_{k} A_{k} z_{n}$. Hence $h_{k} z_{n} \notin x_{k} A_{k}$, since $x_{k}, z_{n} \notin \operatorname{con}\left(A_{k}\right)$. Further, $h_{k} z_{n}$ has first letter x_{k} in reduced form, and the only elements of H with first letter x_{k} are those of $x_{k} A_{k}$. Thus $h_{k} z_{n} \notin H$. Hence $\overline{z_{n}} \nsubseteq h_{k}^{-1} H$, and so $\left(\overline{z_{n}}, 1\right) \circ h_{k}^{-1}=0$. Also, $\left(\overline{z_{n}}, 1\right) \circ 1=1$. Therefore

$$
\left[\left(\overline{z_{n}}, 1\right)\left(\overline{g_{0}}, g_{0}\right)\right] \circ v=\beta_{0} 1+\sum_{\text {some } k>n} \beta_{k} h_{k}^{-1}
$$

and so $a_{n} \circ v \rightarrow 1$ as $n \rightarrow \infty$, where $a_{n}=\beta_{0}^{-1}\left(\overline{z_{n}}, 1\right)\left(\overline{g_{0}}, g_{0}\right)$. By Lemma 1 , the representation is irreducible.

Finally, we show that V is a $*$-module, by showing that

$$
\begin{equation*}
(\forall a \in \mathcal{A})(\forall v, w \in V) \quad\langle a \circ v \mid w\rangle=\left\langle v \mid a^{*} \circ w\right\rangle . \tag{1}
\end{equation*}
$$

Consider first the case $a=(A, g) \in M_{X}$ and $v, w \in H^{-1}$. Then $a^{*}=\left(g^{-1} A, g^{-1}\right)$, and

$$
\begin{aligned}
a \circ v=w & \Leftrightarrow A \subseteq g v H, \quad g v=w \\
& \Leftrightarrow g^{-1} A \subseteq g^{-1} w H, \quad g^{-1} w=v \\
& \Leftrightarrow a^{*} w=v .
\end{aligned}
$$

Hence both sides of (1) are equal to 1 if $a \circ v=w$ and are otherwise 0 . Thus (1) is established in this case. Since, as is easily verified, $|\langle v \mid w\rangle| \leq\|v\|\|w\|$ for all $v, w \in V$, (1) follows in all cases by linearity and continuity.

We also need the following standard result, showing that every nonzero ideal of a primitive algebra (over an arbitrary field) is primitive.

Lemma 3. let V be a faithful irreducible left module for an algebra \mathcal{A}, and let \mathcal{B} be a nonzero ideal of \mathcal{A}. Then V is a faithful irreducible module for \mathcal{B}.

The main result now follows.
THEOREM. Let S be an ideal of M_{X}. The following are equivalent: (i) $l^{1}(S)$ is *primitive; (ii) $l^{1}(S)$ is prime; (iii) X is infinite; (iv) $\mathbb{C}[S]$ is *-primitive; (v) $\mathbb{C}[S]$ is prime.

Proof. By [1, Lemma 2], if X is finite then $\mathbb{C}[S]$ is not prime; and the proof shows also that $l^{1}(S)$ is not prime. This proves that (ii) implies (iii) and that (v) implies (iii). Since primitivity implies primeness, (i) implies (ii) and (iv) implies (v).

Now assume that X is infinite. By Lemma 3, the module V constructed in the proof of Lemma 2 is a faithful irreducible module for $l^{1}(S)$, and clearly also a $*$-module. This proves that (iii) implies (i). For $\mathbb{C}\left[M_{X}\right]$, we take as module $W:=\operatorname{lin}\left(H^{-1}\right)$, with the action defined as before. Then W is a faithful irreducible $*$-module for $\mathbb{C}\left[M_{X}\right]$, and so for its ideal $\mathbb{C}[S]$. The proof is on the same lines as that for $l^{1}\left(M_{X}\right)$, but is simpler, not requiring Lemma 1, for instance. This shows that (iii) implies (iv).
Remarks. The argument of Lemma 2 also shows that $F[S]$ is primitive for any ideal S of M_{X} and any field F when X is infinite: a result previously obtained in [1]. The module is taken to be $\operatorname{lin}\left(H^{-1}\right)$. The proof is a simplified version, not requiring Lemma 1 and ignoring the $*$-condition.

Acknowledgement

I am indebted to Professor W. D. Munn for numerous valuable suggestions.

References

[1] M. J. Crabb and W. D. Munn, 'On the algebra of a free inverse monoid', J. Algebra 184 (1996), 297-303.
[2] -, 'On the contracted l^{1}-algebra of a 0-bisimple inverse semigroup', Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), 285-295.
[3] J. Duncan, 'Dual representations of Banach algebras', PhD Thesis, University of Newcastle-uponTyne, 1964.
[4] M. V. Lawson, Inverse Semigroups (World Scientific, Singapore, 1998).
[5] C. M. McGregor, 'A representation for $l^{1}(S)$ ', Bull. London Math. Soc. 8 (1976), 156-160.

M. J. CRABB, Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland, UK
 e-mail: mjc@maths.gla.ac.uk

[^0]: (C) 2009 Australian Mathematical Society 1446-7887/2009 \$16.00

