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Endpoint Estimates of Riesz Transforms
Associated with Generalized Schrödinger
Operators

Yu Liu and Shuai Qi

Abstract. In this paper we establish the endpoint estimates and Hardy type estimates for the Riesz
transform associated with the generalized Schrödinger operator.

1 Introduction

_e Riesz transform is a singular integral operator in harmonic analysis and has been
investigated bymany scholars. In [8,9], Shen studied Lp estimates for the Riesz trans-
form related to the Schrödinger operator and the generalized Schrödinger operator,
respectively. It should be noted that these operatorsmight not be Calderon–Zygmund
operators if the potential satisûes some weaker conditions. Recently,Wu and Yan [11]
studied the Hardy space by means of a maximal function associated with the heat
semigroup generated by the generalized Schrödinger operator and obtained charac-
terizations via atomic decomposition andRiesz transform. Following theirworks, the
goal of our paper is to obtain the weak type estimates and Hardy type estimates for
the Riesz transform associated with the generalized Schrödinger operator.

In order to state our main results, we recall some basic facts about the generalized
Schrödinger operator which, in this paper, is deûned as follows:

L = −∆ + µ on Rn , n ≥ 3,

where µ is a nonnegative Radon measure on Rn and µ /≡ 0 satisûes the following
conditions: there exist positive constants C0 ,C1 and δ such that

µ(B(x , r)) ≤ C0(
r
R
)

n−2+δ
µ(B(x , R)) ,(1.1)

µ(B(x , 2r)) ≤ C1µ(B(x , r) + rn−2)(1.2)

for all x ∈ Rn and 0 < r < R, where B(x , r) denotes the open ball centered at x with
radius r. As in [9], themeasure µ satisûes conditions (1.1) and (1.2) for some δ > 0 if
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dµ = V(x)dx and V(x) ≥ 0 satisûes

(
1

∣B(x , r)∣ ∫B(x ,r)
V(y)n/2 dy)

2
n
≤ C( 1

∣B(x , r)∣ ∫B(x ,r)
V(y) dy) ;

in other words, V(x) is in the reverse Hölder class (RH)n/2. Moreover, by virtue of
[9], the auxiliary function m(x , µ) is deûned by

1
m(x , µ)

= sup
r>0

{ r ∶ µ(B(x , r))
rn−2 ≤ C1} ,

where C1 is the constant in (1.2) and the distance function is deûned by

d(x , y, µ) = inf
γ ∫

1

0
m(γ(t), µ)∣γ′(t)∣dt

with themodiûed Agmon metric
ds2 = m(x , µ){dx2

1 + ⋅ ⋅ ⋅ + dxn
1 },

where γ∶ [0, 1]→ Rn is absolutely continuous satisfying γ(0) = x , γ(1) = y.
Let R = ∇(−∆ + µ) 1

2 be the Riesz transform associated with the generalized
Schrödinger operator. Using functional calculus, we can write

(−∆ + µ)−
1
2 =

1
π ∫

∞

0
λ−

1
2 (−∆ + µ + λ)−1dλ.

For f ∈ C∞0 (Rn),
R f (x) = ∫

Rn
K(x , y) f (y)dy,

where
K(x , y) = 1

π ∫
∞

0
λ−

1
2∇xΓµ+λ(x , y)dλ

and Γµ+λ(x , y) denotes the fundamental solution of −∆ + µ + λ.
_e following is the ûrst main result of the paper.

_eorem 1.1 Let µ be a nonnegative Radon measure in Rn , n ≥ 3. Assume that µ
satisûes conditions (1.1) and (1.2) for some δ ∈ (0, 1). _en

∣ {x ∈ Rn
∶ ∣R f (x)∣ > α}∣ ≤ C

α
∥ f ∥L1 , for every α > 0.

Remark 1.2 _eorem 1.1 combined with the L2-boundedness given in [9] implies
the Lp-boundedness of the generalized Riesz transforms by theMarcinkiewicz inter-
polation theorem for 1 < p < 2.

As we know, the classical Hardy space is a good substitute for the Lebesgue space
Lp(Rn) with p ∈ (0, 1] in the study for the boundedness of some singular integral
operators, and it is essentially related to the Laplace operator ∆ onRn . And its gener-
alization, theHardy space associated with L, which has been studied by Wu and Yan
in [11], is the counterpart of the classical Hardy space in the study for the bounded-
ness of some singular integral operators associated with the generalized Schrödinger
operator. In particular, this Hardy space was introduced in [3] when dµ = V(x)dx
and V ∈ (RH)n/2.
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To state our next result, we need to recall some basic facts on the Hardy space
associatedwithL. We denote by TL

s (x , y) the kernel of the semigroup {TL
s ∶ s > 0} =

{e−sL ∶ s > 0}. It follows from [11] that the kernel of the semigroup {TL
s ∶ s > 0} has

a Gaussian upper bound, that is,

0 ⩽ TL
s (x , y) ⩽ (4πs)−

n
2 e−

∣x−y∣2
4s .

_e following Hardy space H1
L has been investigated by Wu and Yan in [11] and is

deûned as follows.

Deûnition 1.3 A function f ∈ L1(Rn) is said to be in H1
L if themaximal function

ML f belongs to L1(Rn). _e norm of such a function is deûned by ∥ f ∥H1
L
(Rn) =

∥ML f ∥L1(Rn), where ML f (x) is themaximal function associated with {TL
s ∶ s > 0}

deûned by ML f (x) = sups>0 ∣ TL
s f (x) ∣ .

Deûnition 1.4 Let 1 ≤ q ≤ ∞. A function a ∈ Lq(Rn) is called an H1,q
L

-atom if
r < 1

m(x0 ,µ) and the following conditions hold:

(i) supp a ⊂ B(x0 , r);
(ii) ∥a∥Lq(Rn) ≤ ∣B(x0 , r)∣

1
q −1;

(iii) if r < 1
4m(x0 ,µ) , then ∫B(x0 ,r) a(x) dx = 0.

In [11],Wu and Yan gave the following atomic decomposition for H1
L(Rn).

Proposition 1.5 Let µ be a nonnegative Radon measure in Rn , n ≥ 3. Assume that µ
satisûes conditions (1.1) and (1.2) for some δ > 0. _en f ∈ H1

L(Rn) if and only if f can
be written as f = ∑ j λ j a j , where a j are H1,∞

L
(Rn)-atoms, ∑ j ∣λ j ∣ < ∞, and the sum

converges in the H1
L(Rn) quasi-norm. Moreover,

∥ f ∥H1
L
(Rn) ∼ inf {∑

j
∣λ j ∣} ,

where the inûmum is taken over all atomic decompositions of f into H1,∞
L

-atoms.

By Proposition 1.5, we can conclude that the classical Hardy space H1(Rn) is a
subspace of the Hardy space H1

L(Rn). Furthermore, it is really easy to check that an
H1,∞

L
-atom is also an H1,q

L
-atom for 1 ≤ q < ∞. _en we immediately have another

equivalent characterization using the atomic decomposition.

Proposition 1.6 Let µ be a nonnegative Radon measure in Rn , n ≥ 3. Assume that µ
satisûes conditions (1.1) and (1.2) for some δ > 0. _en f ∈ H1

L(Rn) if and only if f can
be written as f = ∑ j λ j a j , where a j are H1,q

L
-atoms with 1 ≤ q <∞,∑ j ∣λ j ∣ <∞, and

the sum converges in the H1
L(Rn) quasi-norm. Moreover,

∥ f ∥H1
L
(Rn) ∼ inf {∑

j
∣λ j ∣} ,

where the inûmum is taken over all atomic decompositions of f into H1,q
L

-atoms.

https://doi.org/10.4153/CMB-2017-080-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-080-0


790 Y. Liu and S. Qi

Next, we state our second result.

_eorem 1.7 Let µ be a nonnegative Radon measure in Rn , n ≥ 3. Assume that µ
satisûes conditions (1.1) and (1.2) for some δ ∈ (0, 1). _e Riesz transformR is bounded
from H1

L(Rn) into the classical Hardy space H1(Rn). Moreover, there exists a positive
constant C such that for all f ∈ H1

L(Rn),

∥R( f )∥H1(Rn) ≤ C∥ f ∥H1
L
(Rn) .

Remark 1.8 If δ > 1, it follows from [9] that the Riesz transform R is a Calderón–
Zygmund operator. So the weak-type estimate and the boundedness in (classical)
Hardy space for R are therefore already known. If 0 < δ < 1, however, R is not a
Calderón–Zygmund operator. Hence, the weak-type estimate for R is not obvious.
Moreover, since the classical Hardy space H1(Rn) is a subspace of the Hardy space
H1

L(Rn), _eorem 1.7 implies that R is bounded from H1
L(Rn) into H1

L(Rn). We
also conclude that R is bounded on H1(Rn).

Based on the previous argument, the Schrödinger operator −∆ + V can be re-
garded as a special case of generalized Schrödinger operators,where V ∈ (RH)q with
1 < q <∞. As we know, the boundedness of Riesz transform associated with the
Schrödinger operator has been studied by several scholars (cf. [1, 5,7, 8, 13]). _e end-
point estimates andHardy type estimates have been investigated in [2,6,7,12], respec-
tively. _e ideas of proofs in [7] and [2] provided us with the inspiration to prove our
main results in this paper. During the proof of the ûrst main result, we need some es-
timates for the Riesz transform that can easily be obtained from [9], such as Lemmas
3.1 and 3.2. We also need to apply some new methods and techniques to deal with
the proof of the main results. Moreover, since the Laplace operator adds a potential,
the atom has no vanishing condition when r ≥ 1/(4m(x0 , µ)), which is the impor-
tant diòerence between H1(Rn) and H1

L(Rn). _erefore, the proof of the second
main result will bemore complicated than the classical case, where the classical Riesz
transform ∇(−∆)− 1

2 is bounded from H1(Rn) into H1(Rn).
_roughout the paper, the letters c and C will denote (possibly diòerent) constants

that are independent of the essential variables. By A ∼ B we mean that there exists a
positive constant C such that 1

C ≤ A
B ≤ C. By U ≲ V wemean that there is a constant

C > 0 such that U ≤ CV.

2 Estimates for Kernels

In this section we recall some basic properties of the function m(x , µ) proved in [9].
In the sequel, C0, C1 and δ are positive constants in (1.1) and (1.2).

Lemma 2.1 Assume that µ satisûes conditions (1.1) and (1.2). _en
(i) 0 < m(x , µ) <∞ for any x ∈ Rn .
(ii) If r = m(x , µ)−1, then rn−2 ≤ µ(B(x , r)) ≤ C1rn−2 .
(iii) m(x , µ) ∼ m(y, µ) if ∣x − y∣ ≤ C

m(x ,µ) .
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(iv) _ere exist constants C , c > 0 such that

m(x , µ) ≤ C(1 + ∣x − y∣m(y, µ))k0m(y, µ),

m(x , µ) ≥ cm(y, µ)(1 + ∣x − y∣m(y, µ))−k0/(1+k0) ,

where k0 = C2
δ and C2 = log2(C1 + 2n−2).

Remark 2.2 Remark 0.13 in [9] implies that (1.1) is equivalent to the condition

∫
B(x ,R)

dµ(y)
∣x − y∣n−2 ≤ C µ(B(x , R))

Rn−2 .

Moreover, there exist two positive constants C and k1 such that

µ(B(x , R))
Rn−2 ≤ C{1 + Rm(x , µ)}k1

for all x ∈ Rn and R > 0.

Denote by Γµ(x , y) the fundamental solution of−∆+µ. _enwehave the following
estimate of the fundamental solution (cf. [9]).

Lemma 2.3 Let µ be a nonnegative Radon measure in Rn , n ≥ 3. Assume that µ
satisûes conditions (1.1) and (1.2) for some δ > 0. _en

ce−ε2d(x ,y ,µ)

∣x − y∣n−2 ≤ Γµ(x , y) ≤
Ce−ε1d(x ,y ,µ)

∣x − y∣n−2 ,

where ε1 , ε2 ,C , c are positive constants depending only on n and constants C0 ,C1 , δ in
(1.1) and (1.2).

It is easy to check that the measure µ + λ satisûes conditions (1.1) and (1.2) with
constants C0 ,C1 , δ independent of λ ≥ 0. For the fundamental solution of −∆+ µ+ λ,
the estimate

ce−ε2d(x ,y ,µ+λ)

∣x − y∣n−2 ≤ Γµ+λ(x , y) ≤
Ce−ε1d(x ,y ,µ+λ)

∣x − y∣n−2

is also valid. Moreover, [11, (3.1)] tells us that

(2.1) 0 ≤ Γµ+λ(x , y) ≤
Ce−ε

√
λ∣x−y∣e−εd(x ,y ,µ)

∣x − y∣n−2 , λ ≥ 0.

For the kernel of the Riesz transform R, we conclude that the following theorem
holds true using the proof of [9, Lemma 7.10].
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_eorem 2.4 Let µ be a nonnegative Radon measure in Rn , n ≥ 3. Assume that µ
satisûes conditions (1.1) and (1.2) for some δ ∈ (0, 1). _en

∣K(x , y)∣(2.2)

≤ Ce−ε(1+∣x−y∣m(y ,µ))
1

k0+1
(

1
∣ x − y ∣n−1 ∫B(y ,∣x−y∣)

dµ(z)
∣z − y∣n−1 +

1
∣ x − y ∣n

) ,

∣K(x , y) −K0(x , y)∣(2.3)

≤ Ce−ε(1+∣x−y∣m(y ,µ))
1

k0+1

× (
1

∣ x − y ∣n−1 ∫B(y ,∣x−y∣)

dµ(z)
∣z − y∣n−1 +

(∣x − y∣m(x , µ))δ

∣ x − y ∣n
) ,

whereK0(x , y) is the kernel for the operator ∇(−∆)− 1
2 .

3 The Weak Type L1 Estimate and (H1
L,H1) Estimate

In this section we will prove the main results in this paper. Our results are based on
the following two lemmas about the kernel of R, where we suppose that δ ∈ (0, 1).

Lemma 3.1 Let r = 1
m(x ,µ) . _en

∫∣x−y∣>r
∣K(y, x)∣ dy ≤ C .

Proof Let 1 ≤ q < 2−δ
1−δ and I(x) = ∫B ∣y − x∣1−ndµ(y), where B = B(x0 , r). We

conclude from [9, Lemma 7.9] or [11, Lemma 4.4] that

(3.1) ∥ I ∥Lq(B ,dx)≤ C
µ(3B)

rn(1−
1
q )−1

.

Now, let 1
p1

= 1
q −

2
n . For j ≥ 1 integer, we use (3.1), Remark 2.2, and (2.2) to obtain

{ ∫
2 j−1 r<∣x−y∣≤2 j r

∣K(y, x)∣qdy}
1
q

≤ Ce−ε2
j

k0+1
{

1
(2 jr)n−1 ( ∫∣x−y∣≤2 j+1 r

I(y)qdy)
1
q + (2 jr)

n
q −n

}

≤ Ce−ε2
j

k0+1
{
(2 jr)

n
q −n+1

(2 jr)n−1 µ(3B(x , 2 j+1r)) + (2 jr)
n
q −n

}

≤ Ce−ε2
j

k0+1
{(2 jr)

n
q −n

(1 + 2 j
)
k1 + (2 jr)

n
q −n

}

≤ Ce−ε2
j

k0+1
(1 + 2 j

)
k1(2 jr)−

n
q′ ,

where r = 1
m(x ,µ) .
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By theHölder inequality,

∫∣x−y∣>r
∣K(y, x)∣ dy ≤ C

∞
∑
j=1

( ∫
2 j−1 r<∣x−y∣≤2 j r

∣K(y, x)∣q dy)
1
q
(2 jr)

n
q′

≤ C
∞
∑
j=1
e−ε2

j
k0+1

(1 + 2 j
)
k1 = C .

Lemma 3.2 Let r = 1
m(x ,µ) . _en

∫∣x−y∣≤r
∣K(y, x) −K0(y, x)∣ dy ≤ C .

Proof Let j ≤ 0 be an integer and let 1 ≤ q < 2−δ
1−δ . Via (3.1), Remark 2.2, and (1.1),

we have

( ∫
2 j−1 r<∣x0−y∣≤2 j r

∣ K(y, x) −K0(y, x) ∣
q dy)

1
q

≤ Ce−ε2
j

k0+1
{

1
(2 jr)n−1 ( ∫∣x−y∣≤2 j+1 r

I(y)qdy)
1
q + (2 jr)

n
q −n2 jδ}

≤ Ce−ε2
j

k0+1
{
(2 jr)

n
q −n+1

(2 jr)n−1 µ(3B(x , 2 j+1r)) + (2 jr)
n
q −n2 jδ}

≤ Ce−ε2
j

k0+1
{(2 jr)

n
q −n µ(3B(x , 2 jr))

rn−2 2 jδ
+ (2 jr)

n
q −n2 jδ}

≤ Ce−ε2
j

k0+1
{(2 jr)

n
q −n2 jδ

+ (2 jr)
n
q −n2 jδ}

≤ C2 jδ
(2 jr)−

n
q′ .

_erefore, by theHölder inequality,

∫∣x−y∣≤r
∣K(y, x) −K0(y, x)∣ dy

≤
0

∑
j=−∞

( ∫
2 j−1 r<∣x−y∣≤2 j r

∣K(y, x) −K0(y, x)∣qdy)
1
q (2 jr)

n
q′

≤ C
0

∑
j=−∞

(2 j
)
δ
= C .

Now we are in a position to give the proof of_eorem 1.1.

Proof of_eorem 1.1 By theCalderón–Zygmunddecomposition, given f ∈ L1(Rn)
and α > 0, we have f = f1 + f2, with f2 = ∑k bk , such that
(a) ∣ f1(x)∣ ≤ Cα, for a. e. x ∈ Rn .
(b) Each bk is supported in a ball Bk ,

∫
Bk

∣bk(x)∣dx ≤ Cα∣Bk ∣ and ∫
Bk
bk(x) dx = 0.

(c) ∑k ∣Bk ∣ ≤
C
α ∥ f ∥L1 .
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Because R is bounded on L2(Rn) (cf. [9,_eorem 7.1]), it is easy to see that

(3.2) ∣ {x ∈ Rn
∶ ∣R f1(x)∣ >

α
2
}∣ ≤

C
α2 ∥ f1 ∥

2
2≤
C
α
∥ f ∥1 .

Let Bk = B(xk , rk) and Ω = ⋃k B(xk , 2rk). _en

(3.3) ∣Ω∣ ≤ C∑
k

∣Bk ∣ ≤
C
α
∥ f ∥1 .

We only need to consider R f2(x) for x ∈ Ωc . If rk ≥ 1
m(xk ,µ) , by Lemma 2.1(iv),

we have 1
m(x ,µ) ≤ C rk for any x ∈ Bk . By Lemma 3.1, we get

∫∣xk−x ∣≥2rk
∣Rbk(x)∣ dx ≤ ∫∣xk−x ∣≥2rk ∫Bk

∣K(x , y)∣ ∣bk(y)∣ dy dx ≤ C ∥bk∥ L1 .

If rk < 1
m(xk ,µ) , then (iii) of Lemma 2.1 implies that 1

m(xk ,µ) ∼
1

m(x ,µ) for any x ∈ Bk .
SinceK0(x , y) is a Calderón–Zygmund kernel, by Lemmas 3.1 and 3.2 we obtain

∫∣xk−x ∣≥2rk
∣Rbk(x)∣ dx

≤ ∫
2rk≤∣xk−x ∣< 2

m(xk ,µ)

∣Rbk(x)∣ dx + ∫∣xk−x ∣≥ 2
m(xk ,µ)

∣Rbk(x)∣ dx

≤ ∫
2rk≤∣xk−x ∣< 2

m(xk ,µ)
∫
Bk

∣K(x , y) −K0(x , y)∣ ∣bk(y)∣ dy dx

+ ∫
2rk≤∣xk−x ∣< 2

m(xk ,µ)
∫
Bk

∣K0(x , y) −K0(x , xk)∣ ∣bk(y)∣ dy dx

+ ∫∣xk−x ∣≥ 2
m(xk ,µ)

∫
Bk

∣K(x , y)∣ ∣bk(y)∣ dy dx

≤ C ∥bk∥ L1 ,
whence,

∥Rbk∥ L1((B∗k )c)
≤ C ∥bk∥ L1 .

_en

∫
Ωc

∣R f2(x)∣ dx ≤∑
k

∥Rbk∥ L1((B∗k )c)
≤ C∑

k
∥bk∥ L1 ≤ Cλ∑

k
∣Bk ∣ ≤ C ∥ f ∥ L1 .

_erefore,

(3.4) ∣ {x ∈ Ωc
∶ ∣R f2(x)∣ >

λ
2
} ∣ ≤

C
λ
∥ f ∥ L1 .

_eorem 1.1 follows from the combination of (3.2), (3.3), and (3.4).

Proof of_eorem 1.7 To prove this theorem, we need to use themolecular charac-
terization of H1(Rn) in [10] (see also [4]).

Let є ∈ (0,∞) and b ≡ 1 − 1/p0 + є. Recall that in [10] (see also [4, Deûnition 7.13,
p. 328]), a function M ∈ Lp0(Rn) is called a (1, p0 , є)-molecule centered at x0 ∈ Rn if

∥M∥
є/b
Lp0 (Rn)∥∣ ⋅ − x0∣nbM∥

1−є/b
Lp0 (Rn) ≤ 1,(3.5)

∫
Rn

M(x) dx = 0.(3.6)
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Let p0 ∈ (1, 2−δ
1−δ ) and a be a H1,∞

L
-atom associated with the ball B ≡ B(x0 , r) for

some x0 ∈ Rn and r ∈ (0, 1
m(x0 ,µ)). By Proposition 1.6, we only need to show that

R(a) is a (1, p0 , є)-molecule up to a harmless multiplicative constant. To this end,
we now consider two cases.

Case (i) r ≥ 1
4m(x0 ,µ) . In this case, to prove that R(a) satisûes (3.5), by the Lp0(Rn)-

boundedness of R (see [9,_eorem 7.1]), we have

(3.7) ∥R(a)∥ Lp0 (Rn) ≲ ∥a∥Lp0 (Rn) ≲ [
1

m(x0 , µ)
]
−n/p0

′

.

To estimate ∥∣ ⋅ − x0∣nbR(a)∥Lp0 (Rn) , for j ∈ N, let B j ≡ B(x0 , 2 j

m(x0 ,µ)). _en we have

∥ ∣ ⋅ − x0∣nbR(a)∥ Lp0 (Rn) ≤ ∥ χB1 ∣ ⋅ − x0∣nbR(a)∥ Lp0 (Rn)

+ ∥ χB∁1 ∣ ⋅ − x0∣nbR(a)∥ Lp0 (Rn)
≡ I + II,

where B∁1 = (B1)
∁. By (3.7), we have

I ≤ C[ 1
m(x0 , µ)

]
nє
.

To estimate II, by (2.2) andMinkowski’s inequality, we obtain

II ≲ ∫
B

∣a(y)∣[∥ χB∁1 ∣ ⋅ − x0∣nb
e−ε(1+∣ ⋅ −y∣m(y ,µ))

1
k0+1

∣ ⋅ − y∣n−1 ∫

B( ⋅ ,∣ ⋅ −y∣/4)

dµ(z)
∣z − ⋅ ∣n−1 ∥

Lp0 (Rn)

+ ∥ χB∁1 ∣ ⋅ − x0∣nb
e−ε(1+∣ ⋅ −y∣m(y ,µ))

1
k0+1

∣ ⋅ − y∣n
∥

Lp0 (Rn)
] dy

≡ ∫

B

∣a(y)∣(II1 + II2) dy.

To estimate II2 , by Lemma 2.1(iii), we have

(3.8) II2 ≲ C[
1

m(x0 , µ)
]

N
k0+1 ∥

χB∁1 ( ⋅ )

∣ ⋅ − x0∣
N

k0+1+n−nb
∥

Lp0 (Rn)
≲ C[ 1

m(x0 , µ)
]

nє
.

On II1, by Minkowski’s inequality, we further decompose it into

II1 ≲
∞
∑
j=1

{ ∫

B j+1∖B j

[ 1
m(y ,µ) ]

Np0
k0+1

[2 j 1
m(x0 ,µ) ]

( N
k0+1+n−1−nb)p0

∣ ∫

B(x , ∣x−y∣/4)

dµ(z)
∣x − z∣n−1 ∣

p0

dx}
1/p0

≡
∞
∑
j=1

II1,j .
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Let k1 be the constant as inRemark 2.2 and letN ∈ ((k0+1)(k1+nє), ∞). Combining
the boundedness from I (see [9, Lemma 7.9]) with Lemma 2.1(iii), we have

II1, j ≲ { ∫

B j+1∖B j

[ 1
m(y ,µ) ]

Np0
k0+1

[2 j 1
m(x0 ,µ) ]

( N
k0+1+n−1−nb)p0

∣ ∫

B j+2

dµ(z)
∣x − z∣n−1 ∣

p0

dx}
1/p0

≲ [
1

m(x0 , µ)
]

N
k0+1 µ(3B j+2)

[2 j 1
m(x0 ,µ) ]

n−1− n
p0

[2 j 1
m(x0 , µ)

]
nb+1−n− N

k0+1

≲ [
1

m(x0 , µ)
]

N
k0+1

(1 + 2 j
)
k1[2 j 1

m(x0 , µ)
]

nb−n− N
k0+1+

n
p0

∼ 2 j(k1+nє− N
k0+1 )[

1
m(x0 , µ)

]
nє
.

_is implies that II1 ≲ [ 1
m(x0 ,µ) ]

nє , which together with (3.8) shows that

(3.9) II ≲ [
1

m(x0 , µ)
]

nє
.

Combining the estimates of I and II, we obtain

∥∣ ⋅ − x0∣nbR(a)∥Lp0 (Rn) ≲ [
1

m(x0 , µ)
]

nє
,

which together with (3.7) shows that

∥R(a)∥є/bLp0 (Rn)∥∣ ⋅ − x0∣nbR(a)∥1−є/b
Lp0 (Rn) ≲ 1.

_us, we obtain (3.5) up to a harmless multiplicative constant.
To prove thatR(a) satisûes (3.6),we ûrst show thatR(a) andL−1/2(a) ∈ L1(Rn).

To estimate R(a), by Hölder’s inequality and (3.5), we see that

∫

Rn

∣R(a)(x)∣ dx = ∫

∣x−x0 ∣≤1

∣R(a)(x)∣ dx + ∫

∣x−x0 ∣>1

⋅ ⋅ ⋅ dx

≲ ∥ χB(x0 , 1)R(a)∥ Lp0 (Rn)

+ ∥χB∁(x0 ,1)∣ ⋅ − x0∣nb ×R(a)( ⋅ )∥Lp0 (Rn) <∞.

In what follows, we need to estimate ∥L−1/2(a)∥L1(Rn). Since

L−1/2
=

1
π ∫

∞

0
λ−1/2

(−∆ + µ + λ)−1 dλ,
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using (2.1) we show that

∫

Rn

∣L−1/2
(a)(x)∣ dx

≲

1

∫
0
∫

B
∫

∣x−y∣≥2 1
m(x0 ,µ)

λ−1/2∣Γµ+λ(x , y)∣ ∣ a(y)∣ dx dy dλ

+

1

∫
0
∫

B
∫

∣x−y∣<2 1
m(x0 ,µ)

⋅ ⋅ ⋅ dx dy dλ +
∞

∫
1
∫

B
∫

∣x−y∣≥2 1
m(x0 ,µ)

⋅ ⋅ ⋅ dx dy dλ

+

∞

∫
1
∫

B
∫

∣x−y∣< 1
m(x0 ,µ)

⋅ ⋅ ⋅ dx dy dλ ≡
4

∑
i=1
Ei .

To estimate E1, we obtain, by [9, (3.19)] and Lemma 2.1(iv),

d(x , y, µ) ≥ C(1 + ∣x − y∣m(y, µ))
1

(k0+1)2

for ∣x − y∣m(y, µ) ≥ 2. Note that m(y, µ) ∼ m(x0 , µ) when y ∈ B(x0 , r). _en by
(2.1), we have

E1 ≲

1

∫
0

λ−1/2
∫

B

{ ∫

∣x−y∣≥2 1
m(x0 ,µ)

e−ε
√

λ∣x−y∣e−εd(x ,y ,µ)

∣x − y∣n−2 dx}∣a(y)∣ dy dλ

≲

1

∫
0

λ−1/2
∫

B

{ ∫

∣x−y∣≥2 1
m(x0 ,µ)

(∣x − y∣m(y, µ))
−N

(k0+1)2

∣x − y∣n−2 dx}∣a(y)∣ dy dλ

≲ m(x0 , µ)
−N

(k0+1)2
∫

∞

2
m(x0 ,µ)

s1−
N

(k0+1)2 ds ≲ 1
m(x0 , µ)2 <∞,

where we have chosen N > 2(k0 + 1)2.
For E2, by (2.1) again, we obtain

E2 ≲

1

∫
0

λ−1/2
∫

B

[ ∫

∣x−y∣<2 1
m(x0 ,µ)

1
∣x − y∣n−2 dx] ∣a(y)∣ dy dλ

≲
1

m(x0 , µ)2 <∞.
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From (2.1) with N ∈ (1/2,∞), it follows that E3 is controlled by

E3 ≲

∞

∫
1

λ−1/2
∫

B

[ ∫

∣x−y∣≥2 1
m(x0 ,µ)

e−ε
√

λ∣x−y∣e−εd(x ,y ,µ)

∣x − y∣n−2 dx] ∣a(y)∣ dy dλ

≲

∞

∫
1

λ−1/2−N
∫

B

[ ∫

∣x−y∣≥2 1
m(x0 ,µ)

1
∣x − y∣N+n−2 dx] ∣a(y)∣ dy dλ

≲ m(x0 , µ)N−2
<∞.

Similarly, there exists N ∈ (1/2, 2) such that

E4 ≲

∞

∫
1

λ−1/2
∫

B

0

∑
i=−∞

∫

2i−1 1
m(x0 ,µ)

≤∣x−y∣<2i 1
m(x0 ,µ)

∣a(y)∣
(
√

λ∣x − y∣) N
∣x − y∣n−2

dx dy dλ

≲

∞

∫
1

λ−(1+2N)/2
∫

B

{
0

∑
i=−∞

∫

2i 1
m(x0 ,µ)

≤∣x−y∣<2i+1 1
m(x0 ,µ)

1
[2i 1

m(x0 ,µ) ]
N+n−2

dx}

× ∣a(y)∣ dy dλ

≲ m(x0 , µ)N−2
<∞.

Combining the estimates for Ei with i ∈ {1, 2, 3, 4} implies that L−1/2(a) ∈ L1(Rn).
Now we choose {φ j}

∞
j=0 ⊂ C∞(Rn) such that

(a) ∑∞
j=0 φ j(x) = 1 for almost every x ∈ Rn ;

(b) there exists a family {Q j} j∈N of balls such that suppφ j ⊂ 2Q j , φ j = 1 on Q j and
0 ≤ φ j ≤ 1;

(c) there exists a positive constant C(φ) such that for all j ∈ N and x ∈ Rn , φ j(x) +
∣∇φ j(x)∣ + ∣∇2φ j(x)∣ ≤ C(φ);

(d) there exists Nφ ∈ N such that∑∞
j=0 χ2Q j ≤ Nφ .

Using the properties of {φ j}
∞
j=0 and L−1/2(a), R(a) ∈ L1(Rn) together with Leb-

esgue’s dominated convergence theorem, we obtain

∫

Rn

∇(L−1/2)(a)(x) dx =
∞
∑
j=0
∫

Rn

∇(φ jL
−1/2

)(a)(x) dx .

For each j, let η j ∈ C∞(Rn) satisfy η j = 1 on 2Q j and supp η j ⊂ 4Q j . _en by the
divergence formula, for every k ∈ {1, . . . , n}, we have

∫

Rn

∂
∂xk

(φ jL
−1/2

)(a)(x) dx = ∫
Rn

η j(x)
∂

∂xk
(φ jL

−1/2
)(a)(x) dx

= −∫

Rn

φ j(x)L−1/2
(a)(x) ∂

∂x l
η j(x) dx = 0,

which implies that ∫Rn R(a)(x) dx = 0. Hence,R(a) satisûes (3.6). _us, in this case,
R(a) is a (1, p0 , є)-molecule up to a harmless multiplicative constant.
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Case (ii) r < 1/(4m(x0 , µ)). In this case, a is a classical (1,∞)-atom of H1(Rn). It is
well known that∇(−∆)− 1

2 is a Calderón–Zygmund operator, and hence it is bounded
on H1(Rn). Moreover,∇((−∆)− 1

2 )(a) is a (1, p0 , є)-molecule up to a harmless mul-
tiplicative constant; see, for example, [4, _eorem 7.18, p. 335]. By this, we see that
in order to show that R(a) is a (1, p0 , є)-molecule up to a harmless multiplicative
constant, it suõces to prove that L(a) is a (1, p0 , є)-molecule up to a harmless mul-
tiplicative constant, where L ≡ R −∇(−∆)− 1

2 .
To prove that L(a) satisûes (3.5), we estimate ∥L(a)∥Lp0 (Rn) by

∥L(a)∥Lp0 (Rn) ≤ ∥ χB1L(a)∥ Lp0 (Rn) + ∥ χB∁1 L(a)∥ Lp0 (Rn) ≡ J1 + J2 ,

where B1 is the same as in Case (i).
To estimate J2, from the size estimate of the kernel of ∇(−∆)− 1

2 and an argument
similar to the estimate of II in Case (i) with a suitable choice of N , we have

J2 ≤ ∥ χB∁1 ( ⋅ )∫
B

∣a(y)∣
∣ ⋅ − y∣n

dy∥
Lp0 (Rn)

+ ∥ χB∁1 R(a)∥ Lp0 (Rn) ≲ [
1

m(x0 , µ)
]
− n

p′0 .

Using (2.3) andMinkowski’s integral inequality, we estimate J1 by

J1 ≲ ∫
B

∣a(y)∣{(∫

B1

[
1

∣x − y∣n−1 ( ∫

B(x , ∣x−y∣/4)

dµ(z)
∣z − x∣n−1 )]

p0

dx)
1/p0

+ (∫

B1

[
1

∣x − y∣n
(
∣x − y∣

1
m(y ,µ)

)
δ
]

p0

dx)
1/p0

} dy

≡ ∫

B

∣a(y)∣(U1 +U2) dy.

To estimate U2, by Lemma 2.1(iii), we have

(3.10) U2 ≲ [
1

m(x0 , µ)
]
δ
{

3
m(x0 ,µ)

∫
0

s(−n+δ) p0+n−1 ds}
1/p0

≲ [
1

m(x0 , µ)
]
− n

p′0 .

Now, for any y ∈ B and j ∈ Z, let Tj ≡ B(y, 2 j+1 1
m(x0 ,µ)). Obviously, B1 ⊂ T1 and

by Minkowski’s inequality, we further have

U1 ≲
0

∑
j=−∞

{ ∫

T j+1∖T j

1
∣x − y∣(n−1) p0

[ ∫

B(x , ∣x−y∣/4)

dµ(z)
∣z − x∣n−1 ]

p0

dx}
1/p0

≡
0

∑
j=−∞

U1, j .

To estimate U1, j , by (1.1) and the boundedness from I (see [9, Lemma 7.9]) again,
we obtain

U1, j ≲
1

[2 j 1
m(x0 ,µ) ]

n−1

µ(3Tj+2)

[2 j 1
m(x0 ,µ) ]

n−1− n
p0
≲ 2 jδ

[2 j 1
m(x0 , µ)

]
− n

p′0 .
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_us, we have

U1 ≲
0

∑
j=−∞

U1, j ≲ [
1

m(x0 , µ)
]
− n

p′0 ,

which together with (3.10) and the estimate for J2 imply that

(3.11) ∥L(a)∥Lp0 (Rn) ≲ [
1

m(x0 , µ)
]
− n

p′0 .

To estimate ∥∣ ⋅ − x0∣nbL(a)∥Lp0 (Rn), we write it as

∥ ∣ ⋅ − x0∣nbL(a)∥ Lp0 (Rn) ≤ ∥ χB1 ∣ ⋅ − x0∣nbL(a)∥ Lp0 (Rn)

+ ∥ χB∁1 ∣ ⋅ − x0∣
nbL(a)∥ Lp0 (Rn)

≡ S1 + S2 .

To estimate S2, by the size estimate of the kernel of ∇(−∆)− 1
2 and (3.9), we have

S2 ≤ ∥ χB∁1 ∫
B

∣a(y)∣
∣ ⋅ − x0∣n(1−b)

dy∥
Lp0 (Rn)

+ II ≲ [
1

m(x0 , µ)
]

nє
,

where II is the same as in Case (i). From (3.11), it follows that

S1 ≲ [
1

m(x0 , µ)
]

nb
∥L(a)∥Lp0 (Rn) ≲ [

1
m(x0 , µ)

]
nє
.

_us, ∥ ∣ ⋅ − x0∣L(a)∥ Lp0 (Rn) ≲ [ 1
m(x0 ,µ) ]

nє , which together with (3.11) implies (3.5).
To prove that L(a) satisûes (3.6), we make use of the fact that ∇(−∆)− 1

2 (a)
is a (1, p0 , є)-molecule up to a harmless multiplicative constant to deduce that
∫Rn ∇(−∆)− 1

2 (a)(x) dx = 0. _us, we only need to show that R(a) satisûes (3.6).
Notice that in Case (i), when proving ∫Rn R(a)(x) dx = 0, we did not use the condi-
tion r ≥ 1/(4m(x0 , µ)). _us, the same argument also shows that ∫Rn R(a)(x) dx = 0
when r < 1/(4m(x0 , µ)), which further implies that L(a) satisûes (3.6).

_us, in both cases, R(a) is a (1, p0 , є)-molecule up to a harmless multiplicative
constant, which completes the proof of_eorem 1.7.
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