
Canad. J. Math. Vol. 63 (4), 2011 pp. 862–877
doi:10.4153/CJM-2011-008-3
c©Canadian Mathematical Society 2011

Linear Combinations of Composition
Operators on the Bloch Spaces

Takuya Hosokawa, Pekka J. Nieminen, and Shûichi Ohno

Abstract. We characterize the compactness of linear combinations of analytic composition operators

on the Bloch space. We also study their boundedness and compactness on the little Bloch space.

1 Introduction

Let D be the open unit disc of the complex plane C, and let ϕ be an analytic map that

takes D into itself (often called an analytic self-map of D). The composition operator

induced by ϕ is the linear operator Cϕ defined by Cϕ f = f ◦ ϕ for any analytic

function f : D → C. The properties of such operators on various function spaces

have been studied extensively during the past few decades (see [2] for an overview up

to the mid-1990s).

The classical Bloch space, denoted by B, consists of all analytic functions f : D → C

satisfying

||| f ||| = sup{(1 − |z|2)| f ′(z)| : z ∈ D} < ∞.

The norm ‖ f ‖B = | f (0)| + ||| f ||| makes B a Banach space. It is a simple consequence

of the Schwarz–Pick inequality that any composition operator Cϕ takes the Bloch

space into itself, thus defining a bounded operator on B.

In this paper we will study linear combinations of composition operators, that is,

operators of the form

(1.1) T = λ1Cϕ1
+ · · · + λNCϕN

,

where λ1, . . . , λN are nonzero complex scalars, and ϕ1, . . . , ϕN are analytic self-maps

of D. Our main goal is to give a function-theoretic characterization in terms of the

coefficients λi and maps ϕi for when T is compact on B (i.e., maps bounded sets into

relatively compact ones). We will also characterize the boundedness and compact-

ness of T on the little Bloch space B0 consisting of those functions f ∈ B for which

(1 − |z|2)| f ′(z)| → 0 as |z| → 1.

Our work can be seen as a natural extension of previous research concerning com-

pactness properties of a single composition operator or the difference of a pair of
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them acting on the Bloch spaces. Indeed, the analysis of composition operators in

the context of Bloch spaces was initiated in 1995 by Madigan and Matheson [12],

who characterized the compactness of Cϕ on B and B0 in terms of the hyperbolic

derivative of ϕ (see Section 2). More recently the authors of this paper have inves-

tigated compact differences of composition operators on these spaces [8, 9, 13], and

the first author has also considered the more general case of weighted composition

operators [7]. The study of differences is directly related to and motivated by another

topic of considerable interest, that is, describing the topological structure of the set

of all composition operators acting on B or B0 (see in particular [8]).

Another, perhaps more interesting, aspect of studying compact linear combina-

tions of the form (1.1) is the following. On any reasonable function space, including

B and B0, the operator T vanishes identically only in the case that the maps ϕi all

agree and λ1 + · · ·+λN = 0 (see e.g., [2, Exercise 1.1.10]). Thus there are no nontriv-

ial linear relations in the set of composition operators. However, it is usually possible

to find plenty of examples where T becomes compact, or equivalently, vanishes in the

corresponding Calkin algebra of operators (i.e., in the quotient algebra of bounded

operators by the compact ones). Thus, from the Calkin algebra viewpoint, there are

interesting linear relations among composition operators, and characterizing when

T is compact amounts to describing these.

The compactness of (1.1)-type linear combinations has recently been studied in a

few other settings. Gorkin and Mortini [5] considered the norms and the essential

norms (i.e., distances from the compact operators) of linear combinations of endo-

morphisms on general uniform algebras. Here endomorphisms can be represented

as composition operators. In the particular case of H∞, the space of bounded ana-

lytic functions on D, Izuchi and the third author [10] obtained more explicit results

and gave a complete characterization for the compactness of T. In the results of these

papers, the pseudo-hyperbolic distances between different members ϕi and ϕ j of the

linear combination have played a central role. In another direction, Kriete and Moor-

house [11] have initiated the study of linear combinations of composition operators

on the Hardy space H2 and weighted Dirichlet spaces.

Our main result is Theorem 3.1, which characterizes the compactness of T on the

Bloch space B. As is perhaps to be expected, the characterizing condition is of the

form
∑

i∈I

λi = 0 for certain sets I ⊂ {1, . . . , N}.

These sets I will be determined by the boundary behaviour of the hyperbolic deriva-

tives of the maps ϕi and the pseudo-hyperbolic distances between pairs of them;

it will actually turn out that a couple of apparently different but equivalent formula-

tions are possible. The results obtained and ideas employed in the proofs are partially

similar to those in the H∞ case [10]; however, the important role played by the hy-

perbolic derivatives will give rise to major additional complications. For this reason

we need to borrow some techniques from [13] in a refined form.

The paper is organized as follows. In Section 2 we collect some preliminaries on

hyperbolic distances and derivatives, and we also review the basics of composition

operators acting on the Bloch spaces. In Section 3 we state our main result concern-
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ing compact linear combinations of composition operators on B and give a related

example. The main result is proved in Section 4. Finally, in Section 5 we consider

the boundedness and compactness of such linear combinations on the little Bloch

space B0.

2 Preliminaries

In this section we review some preliminaries on hyperbolic metrics and derivatives

and on composition operators in the Bloch space context. After recalling the basic

concepts, we collect a few useful lemmas that will be needed later on. This material

ought to be well known to experts in the field, and the reader may wish to skip this

section on first reading and consult it later as the need arises.

2.1 Hyperbolic Metrics and Derivatives

For two points z, w ∈ D, the pseudo-hyperbolic distance is given by ρ(z, w) =

|z − w|/|1 − wz|. The hyperbolic distance between z and w is then

inf
γ

∫

γ

|dζ|
1 − |ζ|2 =

1

2
log

1 + ρ(z, w)

1 − ρ(z, w)
,

where the infimum is taken over all rectifiable arcs γ joining z and w in D.

For any analytic ϕ : D → D, we define

ϕ#(z) =
1 − |z|2

1 − |ϕ(z)|2 ϕ ′(z).

Then ϕ# is the hyperbolic derivative of ϕ in the sense that

|ϕ#(z)| = lim
w→z

ρ(ϕ(z), ϕ(w))

ρ(z, w)
.

By the invariant form of the Schwarz lemma, ϕ is always a contraction with respect

to ρ. Equivalently, |ϕ#(z)| ≤ 1 for all z ∈ D, which is the content of the classical

Schwarz–Pick inequality. (See e.g., [3, Section I.1].)

2.2 Bloch Spaces

Recall that the Bloch space B consists of all functions f analytic in D and satisfying

||| f ||| = sup{(1 − |z|2)| f ′(z)| : z ∈ D} < ∞ (see the introduction). There are several

other ways of describing Bloch functions. For instance, in view of the definition of

the hyperbolic metric above, an analytic function f : D → C belongs to B if and only

if it is Lipschitz-continuous from the hyperbolic metric into the Euclidean one, ||| f |||
being the corresponding Lipschitz-constant. It is well known that the space H∞ of

bounded analytic functions on D is continuously embedded in B.
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The little Bloch space B0 was defined as the subspace of those f ∈ B for which

(1 − |z|2)| f ′(z)| → 0 as |z| → 1. Equivalently, B0 is the closure of analytic polyno-

mials in B. Not all bounded analytic functions belong to B0; however, there are also

unbounded functions in B0 and hence in B.

(A classic reference on Bloch spaces is [1]. See also [14].)

2.3 Composition Operators on B and B0

The fact that every analytic map ϕ : D → D induces a bounded composition operator

on B is seen by the chain rule. Indeed, for f ∈ B we have the identity

(1 − |z|2)|(Cϕ f ) ′(z)| = |ϕ#(z)| · (1 − |ϕ(z)|2)| f ′(ϕ(z))|,

which together with the Schwarz-Pick inequality shows that |||Cϕ f ||| ≤ ||| f ||| and hence

Cϕ f ∈ B. One may then apply the closed graph theorem or a simple function-

theoretic estimate on | f (ϕ(0))| to conclude that Cϕ : B → B is bounded. This was

observed by Madigan and Matheson [12], who then proved that

Cϕ is compact on B if and only if ϕ#(z) → 0 as |ϕ(z)| → 1.

In order for Cϕ to act boundedly on B0 (that is, take B0 into itself), an obvious

necessary condition is that ϕ ∈ B0, since ϕ = Cϕz. In [12] it was noted that this

condition is also sufficient. Furthermore, in this case the compactness criterion can

be expressed in the apparently stronger form that ϕ#(z) → 0 as |z| → 1.

2.4 A Few Continuity Lemmas

We proceed to state a few lemmas pertaining to the continuity properties of Bloch

functions and hyperbolic derivatives. In these lemmas c denotes a universal posi-

tive numeric constant whose value is unimportant and may differ from one occur-

rence to another. The proof of the first lemma is omitted; it can be found in e.g.,

[6, Lemma 5.1] or [9].

Lemma 2.1 For f ∈ B and z, w ∈ D,

∣

∣ (1 − |z|2) f ′(z) − (1 − |w|2) f ′(w)
∣

∣ ≤ c ||| f ||| ρ(z, w).

The next lemma is similar in spirit and observes that the hyperbolic derivative

of an analytic self-map of the disc is always Lipschitz-continuous from the pseudo-

hyperbolic metric to the Euclidean metric. This lemma is a special case of [4, The-

orem 6]. Since the proof given in [4] is quite long and technical, we include a more

straightforward argument for the present special case, based on the preceding lemma.

For w ∈ D we use αw to denote the standard self-inverse automorphism of D

defined by αw(z) = (w − z)/(1 − wz).

Lemma 2.2 Let ϕ : D → D be analytic. Then for all z, w ∈ D,

|ϕ#(z) − ϕ#(w)| ≤ cρ(z, w).
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Proof We first observe that the following inequality holds for all z, w ∈ D:

(2.1)

∣

∣

∣

∣

(1 − |z|2)(1 − |w|2)

(1 − wz)2
− 1

∣

∣

∣

∣

≤ cρ(z, w).

One way to check this is to apply Lemma 2.1 to the function

f (ζ) = (1 − |w|2)/w(1 − wζ).

Now fix w ∈ D and consider the function gw = αϕ(w) ◦ ϕ. Since gw is bounded in

modulus by 1, we have |||gw||| ≤ c. Routine computations show that

−(1 − |z|2)g ′
w(z) =

(1 − |ϕ(z)|2)(1 − |ϕ(w)|2)

(1 − ϕ(w)ϕ(z))2
ϕ#(z)(2.2)

and

−(1 − |w|2)g ′
w(w) = ϕ#(w).(2.3)

By Lemma 2.1, the difference of quantities (2.2) and (2.3) is bounded in modulus by

cρ(z, w). In addition, by (2.1) and the invariant Schwarz lemma,

∣

∣

∣

∣

(1 − |ϕ(z)|2)(1 − |ϕ(w)|2)

(1 − ϕ(w)ϕ(z))2
− 1

∣

∣

∣

∣

≤ cρ(ϕ(z), ϕ(w)) ≤ cρ(z, w).

The lemma follows from these estimates by a simple application of the triangle in-

equality (also recall that |ϕ#(z)| ≤ 1).

Our final lemma shows that hyperbolic derivatives do indeed work as derivatives

should in describing the local behaviour of the associated self-maps; instead of the

Euclidean metric we are just considering the hyperbolic (or pseudo-hyperbolic) scale.

In particular, if the values of two self-maps ϕ and ψ agree at some point z0 ∈ D, but

the hyperbolic derivatives are unequal, then the values of ϕ and ψ get uniformly

hyperbolically separated in a hyperbolic vicinity of z0.

Lemma 2.3 There are constants c1, c2, c3 > 0 with the following property: If ϕ,ψ are

analytic self-maps of D such that |ϕ#(z0) − ψ#(z0)| ≥ a for some z0 ∈ D and a > 0,

then

ρ(ϕ(z), ψ(z)) ≥ c1aρ(z, z0) − c2ρ(ϕ(z0), ψ(z0))

whenever ρ(z, z0) ≤ c3a.

Proof Define ϕ0 = αϕ(z0) ◦ ϕ ◦ αz0
and ψ0 similarly in terms of ψ. Then ϕ0 and ψ0

both fix the origin, ϕ ′
0(0) = ϕ#(z0) and ψ ′

0(0) = ψ#(z0). We recall that the second

derivative of any analytic self-map of D is bounded in the disc |ζ| ≤ 1
2

by a universal

constant. Therefore, for these values of ζ , Taylor’s formula yields an estimate of the

form

|ϕ0(ζ) − ψ0(ζ)| ≥ |ϕ ′
0(0) − ψ ′

0(0)||ζ| − c|ζ|2 ≥ (a − c|ζ|)|ζ|.

https://doi.org/10.4153/CJM-2011-008-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-008-3


Linear Combinations of Composition Operators on the Bloch Spaces 867

Put c3 = min(1/4, 1/2c). Then, for |ζ| ≤ c3a we have |ζ| ≤ min(1/2, a/2c) (since

a ≤ 2 by the Schwarz-Pick inequality) and hence |ϕ0(ζ) − ψ0(ζ)| ≥ a|ζ|/2. On

denoting z = αz0
(ζ), this inequality means that

∣

∣αϕ(z0)(ϕ(z)) − αψ(z0)(ψ(z))
∣

∣ ≥ 1
2
aρ(z, z0)

whenever ρ(z, z0) ≤ c3a. The rest now follows from the general fact that for all

u, u ′, v, v ′ ∈ D,

|αv(u) − αv ′(u ′)| ≤ 2ρ(u, u ′) + cρ(v, v ′).

We leave the verification of this to the reader (or see [13, Lemma 3.4]).

3 Compactness on the Bloch Space

In this section we characterize compact linear combinations of composition opera-

tors on the Bloch space B. We let ϕ1, . . . , ϕN be any analytic self-maps of the unit

disc and consider an operator of the form

(3.1) T =

N
∑

i=1

λiCϕi

where λ1, . . . , λN are nonzero complex scalars. This notation will remain fixed

throughout this section. We also write

ρi j(z) = ρ(ϕi(z), ϕ j(z))

for the pseudo-hyperbolic distance between ϕi(z) and ϕ j(z).

It will be convenient to formulate our results in terms of suitable test sequences

and associated partitions of the index set {1, . . . , N}. We start by defining these.

Let ∆ denote the collection of all sequences {zn} in D converging to some point of

∂D such that the sequences {ϕi(zn)}, {ϕ#
i (zn)}, and {ρi j(zn)} also converge for all

i, j = 1, . . . , N. Given a sequence {zn} ∈ ∆ and an index j = 1, . . . , N, define

I{zn} = {i : |ϕi(zn)| → 1},
I j{zn} = {i : ρi j(zn) → 0},

I∗j {zn} = I j{zn} ∩ {i : ϕ#
i (zn) 6→ 0},

I#
j {zn} = I j{zn} ∩ {i : lim ϕ#

i (zn) = lim ϕ#
j (zn)}.

All limits here are to be understood as n → ∞.

Note that every sequence {zn} in D with |zn| → 1 has subsequences belonging

to ∆. As we will see, given a sequence {zn} ∈ ∆, only the indices in the set I{zn}
will play a role in the compactness characterization of T on B. Furthermore, the sets

I j{zn} induce a natural partition of I{zn} (as well as of {1, . . . , N}), which can be

further refined by the sets I#
j {zn}. For instance, for each j ∈ I{zn} we clearly have
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j ∈ I j{zn} ⊂ I{zn}, and for different values of j, the sets I j{zn} are either the same

or disjoint. Thus, using “+” to denote disjoint unions, we may write

I{zn} = I j1
{zn} + · · · + I j p

{zn}

for some j1, . . . , j p ∈ I{zn}. Similarly, for each j = 1, . . . , N,

I j{zn} = I#
k1
{zn} + · · · + I#

kq
{zn},

where k1, . . . , kq ∈ I j{zn}.

The following theorem is our main result.

Theorem 3.1 The following conditions are equivalent:

(i) The operator T of (3.1) is compact.

(ii)
∑

i∈I j{zn}
λiϕ

#
i (zn) → 0 as n → ∞ for all {zn} ∈ ∆, j ∈ I{zn}.

(iii)
∑

i∈I∗j {zn}
λi = 0 for all {zn} ∈ ∆, j ∈ I{zn}.

(iv)
∑

i∈I#
j {zn}

λi = 0 for all {zn} ∈ ∆, j ∈ I{zn} with ϕ#
j (zn) 6→ 0.

The proof of Theorem 3.1 is given in the next section. Let us however make a

few comments. As regards the necessity of the stated conditions, (ii) is the easiest to

prove, while establishing (iii) and (iv) requires more careful analysis of the behaviour

of hyperbolic derivatives, based on the lemmas presented in Section 2. In the other

direction, (iv) seems to be the strongest of the conditions in the sense that it readily

implies (ii) and (iii) for any fixed {zn}.

Remark 3.2 The reader may wonder if the natural condition

(3.2)
∑

i∈I j{zn}

λi = 0 for all {zn} ∈ ∆, j ∈ I{zn}

could be added to the list above. It is indeed sufficient for the compactness of T.

While not completely obvious from the statement of the theorem, this can be seen

by examining the proof in the next section (implication (iii) ⇒ (iv)). However, (3.2)

fails to be necessary already for the case N = 1 of one composition operator: any

compact Cϕ with ‖ϕ‖∞ = 1 provides a counter-example. In fact, (3.2) is precisely

the characterization obtained in [10] for the compactness of T (N ≥ 2) on H∞.

In the special case of a single composition operator we have N = 1, λ1 = 1,

and Theorem 3.1 trivially reduces to the Madigan–Matheson compactness criterion

saying that ϕ#
1(z) → 0 as |ϕ1(z)| → 1 (see Section 2.2). For the case N = 2 we

have Corollary 3.3. Condition (i) of the corollary expresses the fact that basically

only differences may exhibit interesting examples of compact linear combinations of

two composition operators. Conditions (ii) and (iii) comprise the characterization

of compact differences that was previously obtained in [13] (see also [8, 9]).

Corollary 3.3 Let ϕ1 and ϕ2 be analytic self-maps of D, and suppose that neither Cϕ1

nor Cϕ2
is compact on B. Also, let λ1, λ2 ∈ C \ {0}. Then λ1Cϕ1

+ λ2Cϕ2
is compact

on B if and only if
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(i) λ1 + λ2 = 0,

and for each sequence {zn} ∈ ∆,

(ii) if |ϕ1(zn)| → 1, then ϕ#
1(zn) → 0 or ρ12(zn) → 0,

(iii) if |ϕ2(zn)| → 1, then ϕ#
2(zn) → 0 or ρ12(zn) → 0.

Proof Apply Theorem 3.1(iii). Observe that the noncompactness of Cϕ j
guarantees

the existence of a sequence {zn} ∈ ∆ such that j ∈ I{zn} and ϕ#
j (zn) 6→ 0.

For N ≥ 3 different types of compact linear combinations may occur. Here we

give an example where no linear combination of only two operators is compact.

Example 3.4 Let σ(z) = (1 + z)/(1 − z), and let

ϕ1(z) =

√
σ(z) − 1√
σ(z) + 1

be the so-called lens map. Put τ (z) = z + t(1 − z)2. Then τ is a self-map of D for

small enough t > 0. Define ϕ2(z) = τ (ϕ1(z)) and ϕ3(z) = −τ (−ϕ1(z)). Then

Cϕ1
−Cϕ2

−Cϕ3
is compact on B.

Proof Note that all the maps ϕ1, ϕ2, and ϕ3 admit a continuous extension to the

closed unit disc. The map ϕ1 fixes the points 1 and −1, and at each of these points

its image has a vertex with an angle 1
2
π. It is also easy to verify that |ϕ#

1(z)| → 1
2

as

z → ±1 (see [8]), but this information is not really needed here. In addition, we

have ϕ2(1) = 1 and |ϕ2(eiθ)| < 1 for eiθ 6= 1, and similarly, ϕ3(−1) = −1 and

|ϕ3(eiθ)| < 1 for eiθ 6= −1. Thus it is sufficient to consider only those test sequences

{zn} that converge either to 1 or to −1.

We show that for any sequence {zn} converging to 1 we have ρ12(zn) → 0. Then

I1{zn} = {1, 2}, since clearly 3 /∈ I{zn} and so 3 /∈ I1{zn}. Indeed, writing ϕ1(zn) =

1 + rneiθn we obtain

ρ12(zn) =

∣

∣

∣

∣

t(1 − ϕ1(zn))2

1 − |ϕ1(zn)|2 − tϕ1(zn)(1 − ϕ1(zn))2

∣

∣

∣

∣

=
trn

|rn + 2 cos θn + trn(1 + rne−iθn )e2iθn | .

Since 3
4
π ≤ θn ≤ 5

4
π for all n and rn → 0, we get ρ12(zn) → 0 as n → ∞.

Similarly one may show that I1{zn} = {1, 3} for {zn} converging to −1. The

compactness of T now follows from Theorem 3.1, or by the sufficient condition (3.2).

4 Proof of Theorem 3.1

The outline of the proof is the following. We first establish the equivalence of (i) and

(ii). This step is rather standard to anyone familiar with composition operators, and

involves constructing suitable test functions for the necessity part. Then we proceed
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to show that each of (ii) and (iii) implies (iv). This depends on a more delicate anal-

ysis of hyperbolic derivatives and related mapping properties of self-maps, and we

will utilize the lemmas given towards the end of Section 2. Finally we observe that

(almost trivially) (iv) implies both (ii) and (iii).

In establishing the equivalence of (i) and (ii) we will make use of the following

well-known principle: the operator T is compact if and only if ‖T fn‖B → 0 when-

ever { fn} is a bounded sequence in B such that fn → 0 pointwise. The main reasons

for this are that composition operators preserve pointwise convergence, and that any

bounded sequence in B is a normal family, thus containing subsequences that con-

vergence pointwise (even uniformly on compact sets); cf. [2, Proposition 3.11].

4.1 (ii) Implies (i)

We assume to the contrary that T is noncompact. This implies that there exists a

bounded sequence { fn} in B such that fn → 0 uniformly on compact sets, but

‖T fn‖B > C for all n, where C > 0. Hence we can find points zn ∈ D such that

for large n,

C < (1 − |zn|2)|(T fn) ′(zn)| = (1 − |zn|2)

∣

∣

∣

∣

N
∑

i=1

λi f ′
n (ϕi(zn))ϕ ′

i (zn)

∣

∣

∣

∣

=

∣

∣

∣

∣

N
∑

i=1

λiϕ
#
i (zn)(1 − |ϕi(zn)|2) f ′

n (ϕi(zn))

∣

∣

∣

∣

.

Passing to a subsequence we may assume that {zn} ∈ ∆. Since the derivatives ϕ#
i are

uniformly bounded and f ′
n → 0 on compact sets, the preceding inequality remains

true for large values of n even if the sum is taken over indices i ∈ I{zn} only. We

may further write I{zn} as the disjoint union I{zn} =
⋃p

s=1 Js where Js = I js
{zn}

for some js ∈ I{zn}. Therefore, for some (henceforth fixed) s and after passing to a

subsequence, we have

∣

∣

∣

∣

∑

i∈ Js

λiϕ
#
i (zn)(1 − |ϕi(zn)|2) f ′

n (ϕi(zn))

∣

∣

∣

∣

>
C

p
.

Since { fn} is bounded in B, the quantities (1 − |ϕi(zn)|2) f ′
n (ϕi(zn)) stay bounded.

Moreover, Lemma 2.1 ensures that for i, j ∈ Js,

∣

∣ (1 − |ϕi(zn)|2) f ′
n (ϕi(zn)) − (1 − |ϕ j(zn)|2) f ′

n (ϕ j(zn))
∣

∣ ≤ cρi j(zn) → 0

as n → ∞. These facts combine to show that

lim sup
n→∞

∣

∣

∣

∣

∑

i∈ Js

λiϕ
#
i (zn)

∣

∣

∣

∣

> 0,

which is a contradiction and completes the proof.
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4.2 (i) Implies (ii)

Suppose that {zn} ∈ ∆ is a sequence for which |ϕ1(zn)| → 1. We write I = I{zn}
and J = I1{zn}. Our aim is to show that

(4.1) lim
n→∞

∑

i∈ J

λiϕ
#
i (zn) = 0.

Let us recall the notation αw(z) = (w − z)/(1 − wz) used for the disc auto-

morphism that exchanges the points 0 and w. Let { fn} be the sequence of analytic

functions defined on D by

fn(z) = αϕ1(zn)(z)
∏

i∈I\ J

αϕi (zn)(z)2 − γn,

where γn = ϕ1(zn)
∏

i∈I\ J ϕi(zn)2. Then { fn} is a bounded sequence in H∞ and

hence in B. The constants γn are chosen such that fn(0) = 0 for each n. Moreover,

since αw − w → 0 uniformly on compact sets as |w| → 1, it follows that fn → 0

uniformly on compacts. Hence ‖T fn‖B → 0.

Next consider the estimate

‖T fn‖B ≥ (1 − |zn|2)|(T fn) ′(zn)|

=

∣

∣

∣

∣

N
∑

i=1

λiϕ
#
i (zn)(1 − |ϕi(zn)|2) f ′

n (ϕi(zn))

∣

∣

∣

∣

.

(4.2)

Since f ′
n → 0 uniformly on compact sets, we conclude exactly as in the proof of the

converse implication that the terms corresponding to indices i /∈ I tend to zero as

n → ∞. For i ∈ I \ J we note that the function fn has the property that f ′
n (ϕi(zn)) =

0. For i ∈ J we have ρ1i(zn) → 0, so Lemma 2.1 again yields

∣

∣ (1 − |ϕi(zn)|2) f ′
n (ϕi(zn)) − (1 − |ϕ1(zn)|2) f ′

n (ϕ1(zn))
∣

∣ → 0

as n → ∞. Putting these facts together and recalling that ‖T fn‖B → 0, we obtain

from (4.2) that

lim
n→∞

∣

∣

∣

∣

∑

i∈ J

λiϕ
#
i (zn)

∣

∣

∣

∣

(1 − |ϕ1(zn)|2)| f ′
n (ϕ1(zn))| = 0.

Now consider the derivative f ′
n (ϕ1(zn)). Since αϕ1(zn)(ϕ1(zn)) = 0, we see that when

applying the product rule of differentiation, the only nonzero contribution comes

from the term containing the factor α ′
ϕ1(zn)(ϕ1(zn)), which equals −(1−|ϕ1(zn)|2)−1.

Hence,

(1 − |ϕ1(zn)|2)| f ′
n (ϕ1(zn))| =

∣

∣

∣

∏

i∈I\ J

αϕi (zn)(ϕ1(zn))2
∣

∣

∣ =
∏

i∈I\ J

ρ1i(zn)2.

Since the limit of this is nonzero, the desired conclusion (4.1) follows.
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4.3 A Partitioning Lemma

In order to prove the necessity of (iii) and (iv), we first establish a lemma that enables

us to move from partitions induced by I#
j -type sets back to partitions induced by I j-

type sets. The lemma is based on the following idea: It may easily happen that along

some sequence {zn} ∈ ∆ we have ρi j(zn) → 0, but the limits of ϕ#
i (zn) and ϕ#

j (zn) are

unequal, so that i ∈ I j{zn} but i /∈ I#
j {zn}. However, in such a situation Lemma 2.3

implies that a small perturbation to the points zn will separate the values of ϕi and

ϕ j hyperbolically, and thus split the corresponding I j-equivalence class accordingly.

This line of thought (in a more implicit form) was used in [13] to analyse differences

of composition operators on B.

Lemma 4.1 Assume that {zn} ∈ ∆ and j = 1, . . . , N. There exists an ǫ0 > 0 with

the following property: If wn ∈ D are points with ρ(zn, wn) = ρ(z1, w1) ∈ (0, ǫ0) for all

n, then {wn} has a subsequence {w ′
n} ∈ ∆ such that

I#
j {zn} = I j1

{w ′
n} + · · · + I j p

{w ′
n}

for some j1, . . . , j p. Here j1, . . . , j p ∈ I{w ′
n} provided that j ∈ I{zn}.

Proof Assume that j = 1, and write J = I1{zn} and J#
= I#

1{zn}. Then for some

complex constant d, lim ϕ#
i (zn) = d for all i ∈ J#, but lim ϕ#

i (zn) 6= d for all i ∈ J\ J#.

Now Lemma 2.3 implies that there exist ǫ1 > 0 and c > 0 such that the following

holds for sufficiently large n: whenever w ∈ D is a point for which ρ(w, zn) ≤ ǫ1, then

ρii ′(w) ≥ cρ(w, zn) for i ∈ J#, i ′ ∈ J \ J#.

On the other hand, for any i ∈ J, i ′ ∈ Jc (the complement with respect

to {1, . . . , N}), we have lim ρii ′(zn) > 0. Thus if ǫ2 > 0 is small enough and

ρ(wn, zn) ≤ ǫ2 for all n, then lim inf ρii ′(wn) > 0 for i ∈ J, i ′ ∈ Jc because each

analytic self-map of D is contractive with respect to ρ.

Let ǫ0 = min(ǫ1, ǫ2), and choose points wn with ρ(wn, zn) = ρ(w1, z1) ∈ (0, ǫ0).

The previous observations combine to show that lim inf ρii ′(wn) > 0 for i ∈ J#,

i ′ ∈ ( J#)c. Therefore {wn} has a subsequence {w ′
n} in ∆ and the set J# consists of

one or more sets of the form Ik{w ′
n}, as required. Clearly |ϕi(wn)| → 1 for i ∈ J#

provided that |ϕ1(zn)| → 1, establishing the last claim.

4.4 (ii) Implies (iv)

We assume that {zn} ∈ ∆ and j ∈ I{zn} such that lim ϕ#
j (zn) 6= 0. If ǫ > 0 is small

enough and ρ(zn, wn) = ǫ for all n, then Lemma 4.1 guarantees the existence of a

subsequence {w ′
n} ∈ ∆ such that

I#
j {zn} = I j1

{w ′
n} + · · · + I j p

{w ′
n}

where j1, . . . , j p ∈ I{w ′
n}. Therefore our assumption shows that

lim
n→∞

∑

i∈I#
j {zn}

λiϕ
#
i (w ′

n) = 0.
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By Lemma 2.2 we have, for all i and n, |ϕ#
i (wn) − ϕ#

i (zn)| ≤ cǫ. Since ǫ can be made

arbitrarily small and lim ϕ#
i (zn) = lim ϕ#

j (zn) 6= 0 for i ∈ I#
j {zn}, we conclude that

∑

i∈I#
j {zn}

λi = 0.

4.5 (iii) Implies (iv)

As above, assume that {zn} ∈ ∆ and j ∈ I{zn} such that the limit of ϕ#
j (zn) is

nonzero. Once again, if ǫ > 0 is small enough, Lemma 4.1 shows that

I#
j {zn} = I j1

{w ′
n} + · · · + I j p

{w ′
n},

where j1, . . . , j p ∈ I{w ′
n} and {w ′

n} is a subsequence of some {wn} such that

ρ(zn, wn) = ǫ. By choosing a smaller ǫ, if necessary, we may assume that the limit

of ϕ#
i (w ′

n) is nonzero for each i ∈ I#
j {zn}; this follows by the continuity of the hyper-

bolic derivative (Lemma 2.2). Now our assumption ensures that
∑

i∈I js{w ′

n}
λi = 0

for each s = 1, . . . , p. Hence
∑

i∈I#
j {zn}

λi = 0.

4.6 (iv) Implies (ii) and (iii)

Given {zn} ∈ ∆ and j ∈ I{zn}, we write

I j{zn} = I#
k1
{zn} + · · · + I#

kq
{zn}

with k1, . . . , kq ∈ I j{zn}. Hence

∑

i∈I j{zn}

λiϕ
#
i (zn) =

q
∑

s=1

∑

i∈I#
ks
{zn}

λiϕ
#
i (zn).

Since the limits of ϕ#
i (zn) agree for all terms in each of the inner sums, our assump-

tion ensures that each inner sum (and hence the whole expression) tends to zero as

n → ∞. This gives (ii). It is even easier to deduce (iii); we leave this to the reader.

We close this section with a functional-analytic remark.

Remark 4.2 Apart from compactness, Theorem 3.1 also characterizes when the

operator T is weakly compact (i.e., takes bounded sets of B into sets that are relatively

compact in the weak topology). To see this, one may modify the test functions fn

constructed in Section 4.2 (implication (i) ⇒ (ii)) so that the sequence { fn} becomes

equivalent to the standard basis of the sequence space c0. This makes it possible to

invoke the Dunford–Pettis property of c0 and conclude that the operator T, now

assumed only weakly compact, sends the sequence { fn} onto a norm-null sequence

as required for the proof of condition (ii). We omit the details and refer the reader to

e.g., [13] where such an argument was carried out.
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5 Boundedness and Compactness on the Little Bloch space

In this section we consider linear combinations of composition operators acting on

the little Bloch space B0. As before, we let

T =

N
∑

i=1

λiCϕi
,

where ϕ1, . . . , ϕN are analytic self-maps of the unit disc, and λ1, . . . , λN are nonzero

complex scalars.

As in the case of a single composition operator, we first need to examine the

boundedness of T on B0. Retaining the notation explained in Section 3, we introduce

one more partition of our index set {1, . . . , N}: for {zn} ∈ ∆ and j = 1, . . . , N, let

J j{zn} =
{

i : lim
n→∞

ϕi(zn) = lim
n→∞

ϕ j(zn)
}

.

Note that the partition induced by these sets is coarser than the one induced by the

sets I j{zn} because convergence in the pseudo-hyperbolic metric always implies con-

vergence in the Euclidean metric.

Theorem 5.1 Consider the operator T defined above. The following are equivalent:

(i) T is bounded on B0, i.e., maps B0 into B0.

(ii) Tzk ∈ B0 for k = 1, . . . , N.

(iii) For {zn} ∈ ∆ and j = 1, . . . , N,

lim
n→∞

(1 − |zn|2)
∑

i∈ J j{zn}

λiϕ
′
i (zn) = 0.

It is worth noting here that the convergence requirements placed on {zn} ∈ ∆

guarantee that the sequences {(1 − |zn|2)ϕ ′
i (zn)} also converge.

Proof The implication (i) ⇒ (ii) is trivial.

We prove the implication (ii) ⇒ (iii). Let {zn} ∈ ∆. By permuting the index set,

if necessary, we can suppose that

{1, . . . , N} = J1{zn} + · · · + Jp{zn}

where 1 ≤ p ≤ N. For j = 1, . . . , p, write a j = limn→∞ ϕ j(zn) and

Λ j = lim
n→∞

(1 − |zn|2)
∑

i∈ J j{zn}

λiϕ
′
i (zn).

We aim to show that Λ j = 0 for each j. We have, for k = 1, . . . , N,

(5.1) (1 − |zn|2)(Tzk) ′(zn) = k(1 − |zn|2)

N
∑

i=1

λiϕi(zn)k−1ϕ ′
i (zn)

→ k

p
∑

j=1

ak−1
j Λ j as n → ∞.
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Since Tzk ∈ B0 by assumption, these limits must vanish. Hence,















1 1 · · · 1

a1 a2 · · · ap

a2
1 a2

2 · · · a2
p

...
...

...

a
p−1
1 a

p−1
2 · · · a

p−1
p





























Λ1

Λ2

Λ3

...

Λp















=















0

0

0
...

0















.

But the determinant of this Vandermonde matrix equals
∏

1≤ j<k≤p(ak − a j), which

by the definition of the a j ’s is nonzero. Hence the matrix is invertible, and we deduce

that Λ1 = · · · = Λp = 0. This completes the proof of (iii).

Finally we show the implication (iii) ⇒ (i). By calculating as in (5.1), we can check

that Tzk ∈ B0 for any positive integer k. Since the set of all analytic polynomials is

dense in B0, we get (i).

Remark 5.2 The number N in Theorem 5.1(ii) is the best possible. It is not suffi-

cient to require Tzk ∈ B0 for any smaller number of monomials. For instance, in the

case N = 2 consider the following trivial example: Let ϕ1 = σ and ϕ2 = −σ, where

σ(z) = exp((z + 1)/(z − 1)) is the standard singular inner function, which is not a

member of B0. Then (Cϕ1
+ Cϕ2

)z = 0 ∈ B0, but (Cϕ1
+ Cϕ2

)z2
= 2σ2 /∈ B0.

Next we study the compactness of T as an operator on B0.

Theorem 5.3 The following are equivalent:

(i) The operator T is compact from B0 into B0.

(ii)
∑

i∈I j{zn}
λiϕ

#
i (zn) → 0 as n → ∞ for all {zn} ∈ ∆, j = 1, . . . , N.

(iii)
∑

i∈I∗j {zn}
λi = 0 for all {zn} ∈ ∆, j = 1, . . . , N.

(iv)
∑

i∈I#
j {zn}

λi = 0 for all {zn} ∈ ∆, j = 1, . . . , N with ϕ#
j (zn) 6→ 0.

Remark 5.4 The only difference from Theorem 3.1 is that conditions (ii)–(iv) are

imposed for all indices j = 1, . . . , N instead of only j ∈ I{zn}. These stronger

conditions imply that T maps B0 into B0, so this need not be assumed a priori. In

fact, if we assume that T(B0) ⊂ B0 (i.e., the conditions of Theorem 5.1 hold), then

the compactness of T on B0 is equivalent to its compactness on B, and Theorem 3.1

applies. This can be seen by examining the function-theoretic characterizations given

above, but also follows more abstractly from the fact that the inclusion B0 ⊂ B

corresponds to the canonical embedding of B0 into its bidual (see [1, 14]) and, as

a consequence, T : B → B can be identified with the biadjoint of its restriction

B0 → B0.

We will use the following well-known criterion for compact sets in B0 (see

e.g., [12]).

Lemma 5.5 A bounded set E in B0 is relatively compact if and only if

lim
|z|→1

sup{(1 − |z|2)| f ′(z)| : f ∈ E} = 0.
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5.1 Proof of Theorem 5.3

The proof is almost identical to that of Theorem 3.1, and we just briefly indicate the

required modifications.

To prove (i) ⇒ (ii), we let {zn} ∈ ∆ and assume that j = 1. We consider test

functions fn of the form

fn(z) = αϕ1(zn)(z)
∏

i /∈I1{zn}

αϕi (zn)(z)2 − γn.

Now we do not know if { fn} converges to zero, but we may apply Lemma 5.5 to

the set {T fn}, which by assumption is relatively compact. This yields that (1 −
|zn|2)|(T fn) ′(zn)| → 0 as n → ∞, and the rest of the proof follows easily.

To prove (ii) ⇒ (i), we first observe that (ii) ensures that T(B0) ⊂ B0. Indeed, for

{zn} ∈ ∆ and j = 1, . . . , N, we have

lim
n→∞

(1 − |zn|2)
∑

i∈I j{zn}

λiϕ
′
i (zn) = lim

n→∞

∑

i∈I j{zn}

λi(1 − |ϕi(zn)|2)ϕ#
i (zn)

= lim
n→∞

(1 − |ϕ j(zn)|2)
∑

i∈I j{zn}

λiϕ
#
i (zn) = 0.

Since the sets I j{zn} induce a subpartition of the sets J j{zn}, Theorem 5.1 shows that

T(B0) ⊂ B0. The compactness of T is now immediate because condition (ii) clearly

implies the corresponding condition of Theorem 3.1, and so T is compact even on

the space B.

Finally, the equivalence of conditions (ii)–(iv) is established exactly as before: the

arguments used in the proof of Theorem 3.1 did not really depend on the assumption

j ∈ I{zn}.
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